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Abstract A class of N-person stochastic games of resource extraction with dis-
counted payoffs in discrete time is considered. It is assumed that transition prob-
abilities have special additive structure. It is shown that the Nash equilibria and
corresponding payoffs in finite horizon games converge as horizon goes to infinity.
This implies existence of stationary Nash equilibria in the infinite horizon case.
In addition the algorithm for finding Nash equilibria in infinite horizon games is
discussed.

1 Introduction

This paper deals with stochastic games of a resource extraction, which belong to
the class of N-person noncooperative discounted dynamic games with uncountable
state space. In general the existence of Nash equilibria in this class of games is
an open problem. In some special cases the existence of equilibria in these games
has been proved – for example by Himmelberg et al. (1976), Parthasarathy and
Sinha (1991) or Nowak (1985). There are some economic games of this type that
have stationary Nash equilibria. For example, they have been studied by Curtat
(1996) and Dutta and Sundaram (1992). For a good survey of the existing litera-
ture on Nash equilibria in stochastic games with infinitely many states the interested
reader is refereed to Nowak (2003) and Amir (2003).

The special case of these games are games of resource extraction or capital
accumulation. The pioneering work in this field is Levhari and Mirman (1980).
Papers of Amir (1996) and Nowak (2003) also deal with such games and the model
in this paper is somewhat similar to theirs. However, unlike in this paper, for proofs
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of existence of Nash equilibria they used fixed point theorems. In this paper we
construct convergent sequences of equilibria and corresponding payoffs in finite
horizon games.

The method for construction of equilibria in finite horizon games has been
developed by Rieder (1979) in more general case. In this paper we can restrict our-
selves to pure Markov strategies. The convergence of equilibria and corresponding
payoffs in finite horizon games in general case is an open problem. In our model
the assumption of special additive transition probabilities structure gives such con-
vergence. This assumption is similar to one used in Basar and Olsder (1995) in
other classes of dynamic games. The only other paper about such convergence is
Balbus and Nowak (2004), but only symmetric games are studied there.

We present also some considerations on a best reply algorithm. Similar algo-
rithms has also been studied by Gabay and Moulin (1980) for one step games.

This paper is organized in the following way: in the first section the model and
basic assumptions are described. The main results are placed in the second section
and in the third one there are some auxiliary lemmas needed in preceding proofs.

2 The model and basic assumptions

Definition 2.1 An N -person nonzero-sum stochastic game of resource extraction
is defined by the following objects:

(S, D, ū, p),

where

(1) S is an interval in [0, ∞) containing zero called the set of all resource levels
or the state space,

(2) D := {(s, x̄) : s ∈ S, x̄ = (xi)
N
i=1, xi ∈ Ai(s)}, where Ai(s) := [0, ai(s)]

represents the set of actions available to player i in state s. Here ai : S → R
are nonnegative Borel measurable functions such that

N∑

i=1

ai(s) ≤ s for every s ∈ S

This implies that ai(0) = 0. The quantity ai(s) represent the consumption
capacity of player i in state s.

(3) ū = (ui)
N
i=1 and ui : S → R is a nonnegative bounded utility function for

player i.
(4) p is a transition probability from D to S, called the law of motion among

states.

The game is played in discrete time. If in some stage the game is in a state s,
then player i chooses his/her consumption level xi ∈ Ai(s) ⊆ R+ = [0, +∞) and
obtains his/her payoff ui(xi) (which depends on his/her own consumption only).
The game changes then its state according to the transition probability p(·|s, x̄),
where x̄ = (x1, . . . , xN).



Constructions of Nash equilibria in stochastic games 241

Definition 2.2 Let H 1 = S and for n ≥ 2

Hn = D1 × · · · × Dn−1 × S,

where Di = D, i = 1, . . . , n − 1.
Hn for n = 1, 2, . . . is called the space of all n-stage histories of the game.
Let H∞ = D × D × · · ·
H∞ is called the space of all infinite histories of the game.

Note

(a) Both spaces of infinite and finite histories of the game are endowed with the
product σ -algebra.

(b) In this paper we deal only with nonrandomized (pure) strategies of the game.
However Nash equilibria that we obtain in the class of pure strategies are also
Nash equilibria in the class of randomized strategies. This follows from the
theory of dynamic programming (see Blackwell 1965).

(c) Every player has full information about the past history of the game and the
actions performed by the other players.

Definition 2.3 A strategy of player i is a sequence

πi = (πi,1, πi,2, . . . ),

where πi,n is Borel measurable mapping from Hn into S such that for every

hn = (s0, a0, . . . , sn) ∈ Hn,

we have

πi,n(h
n) ∈ Ai(sn).

The set of all strategies of player i is denoted by �i .

Definition 2.4 Strategy πi ∈ �i, πi = (πi,1, πi,2, . . . ) such that πi,n depends only
on n and the n-th state of the game sn is called Markov.

Definition 2.5 Borel measurable mapping form S into Ai(s) (independent of the
stage of the game) is called a stationary strategy of player i. By Fi we denote the
set of stationary strategies of player i.

Let us note that a stationary strategy is a special case of a Markov strategy.
For each strategy profile of the players π̄ = (πi)

N
i=1 for any initial state of

the game s1 = s ∈ S, a probability P π̄
s and stochastic process {(sn, x̄n)} (where

x̄n = (xi,n)
N
i=1) is defined on H∞ in the canonical way (see Chap 7 in Bertsekas

and Shreve 1978), where the random variables sn and x̄n represent a state of the
game and a vector of players’ decisions on n-th stage of the game respectively.

Note
{(sn, x̄n)} and P π̄

s exist by the Ionescu-Tulcea Theorem (see Proposition V.1.1
in Neveu 1965).
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Definition 2.6 Let � = �1 × · · · × �N, π̄ ∈ � and β be a discount factor
(β ∈ (0, 1)). We define:

(a) β-discounted expected payoff of player i in the m-stage game as the fol-
lowing function γ m

i (π̄) : S → R+:

γ m
i (π̄)(s) := Eπ̄

s

(
m∑

n=1

βn−1ui(xi,n)

)
(1)

where Eπ̄
s is expected value operator with respect to the probability measure P π̄

s

and xi,n is consumption of player i on stage n.
(b) β-discounted expected payoff of player i in the infinite horizon game as the

following function γi(π̄) : S → R+ :

γi(π̄)(s) := Eπ̄
s

( ∞∑

n=1

βn−1ui(xi,n)

)

= lim
m→∞ γ m

i (π̄)(s).

Definition 2.7 π̄∗ ∈ � is a Nash equilibrium in the discounted stochastic game
with an infinite horizon if and only if, for each s ∈ S, we have:

γi(π̄
∗)(s) ≥ γi(π̄

∗
−i , πi)(s)

for each πi ∈ �i , where

π̄∗
−i = (π∗

1 , . . . , π∗
i−1, π

∗
i+1, . . . , π∗

N),

(π̄∗
−i , πi) = (π∗

1 , . . . , π∗
i−1, πi, π

∗
i+1, . . . , π∗

N).

Nash equilibrium in the m-stage discounted game is defined in a similar way.
We make additional assumptions about the model of the game described above.

Assumption 2.1 (a) 0 ∈ S and p({0}|0, 0, . . . , 0) = 1.
(b) For any (s, x̄) ∈ D, where s > 0, transition probability can be expressed in

the following form:

p(·|s, x̄) = q(·|s, x̄) + g0(s, x̄)δ0(·), (2)

where

q(·|s, x̄) =
N∑

i=1

gi(ai(s) − xi)Hi(·|s), (3)

(1) gi : S → [0, 1] (i = 1, . . . , N ) is increasing, strictly concave and twice
differentiable,

N∑

i=1

gi(t) ≤ 1, ∀t ∈ S

and gi(0) = 0,
(2) Hi(·|s) are transition probabilities from S into S with support S+ := S\{0},
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(3) δ0 is Dirac delta at the point zero.
(c) For any s ∈ S, we have

N∑

i=1

ai(s) = s.

Note

(a) The form of transition probability (2) implies that

g0(s, x̄) = 1 −
N∑

i=1

gi(ai(s) − xi). (4)

(b) From (4) it follows that if ai(s) = xi for each player i, then g0(s, x̄) = 1.
(c)Assumption 2.1 (c) may be interpreted that there is a possibility that resource

runs out. This assumption can be replaced with a condition that for all s ∈ S we
have

N∑

i=1

ai(s) < s,

which means that on every stage of the game some amount of resource is left.
Then we should however omit also the assumption that gi(0) = 0 and assume that
for some i we have gi(0) > 0. Otherwise, we obtain a model, which is difficult
to justify. In this model, in situation that all players make maximal consumption
(xi = ai(s) for each i) – we have some amount of resource left as investment for
the next stage and the state of the game moves to zero with probability 1 in spite
of that.

(d) Assumption 2.1 (c) can be replaced with the condition that for s ∈ S̃ ⊂ S,
we have

N∑

i=1

ai(s) < s

and for other s ∈ S \ S̃

N∑

i=1

ai(s) = s.

Such assumption can be interpreted that for some states of the game (from the set
S̃) complete consumption of resource is not possible, and for other states – it is.
In this case we should make the following assumption on the functions gi : they
depend also on s, for s ∈ S̃ we have gi(s, 0) > 0, and for s ∈ S \ S̃ we have
gi(s, 0) = 0.

(e) If in some stage of the game the state is zero, with probability 1 it stays
there forever.
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(f) Assumption (3) is typical in the theory of dynamic games, specially differ-
ential games (see Amir 2003 or Basar and Olsder 1995). It means that the influence
of the players on evolution of the state process is – in some sense – additive. Similar
assumption can be found in Himmelberg et al. (1976), but unlike in that paper here
we restrict ourselves to nonrandomized equilibria and study some convergence
problems, which have relevance to computing approximate equilibria.

Assumption 2.2 Utility functions ui are increasing, concave, bounded and twice
differentiable. We also assume that ui(0) = 0.

Let us denote by B0(S) the space of bounded, Borel measurable, nonnegative
functions v : S → R such that v(0) = 0. In the space B0(S) we consider the metric

ρ(v, w) := sup
s∈S

|v(s) − w(s)|,

where v, w ∈ B0(S).
The metric space B0(S) is complete. Let fi ∈ Fi and v ∈ B0(S). Let us intro-

duce now the following notation:

(T i
f̄−i

v)(s) = max
xi∈Ai(s)

[ui(xi) + β

∫

S

v(s ′)p(ds ′|s, (f̄−i (s), xi))]

and

(Li
f̄
v)(s) = ui(fi(s)) + β

∫

S

v(s ′)p(ds ′|s, f̄ (s)),

where (f̄−i (s), xi) = (f1(s), . . . , fi−1(s), xi, fi+1(s), . . . , fN(s)), f̄ (s) = (f1(s),
. . . , fN(s)).

Put

vf̄−i
(s) = sup

πi∈�i

γi(f̄−i , πi)(s).

It is easy to see that for β < 1 the operator Li
f̄

: B0(S) → B0(S) is a contrac-
tion. This implies that, for any v ∈ B0(S), we have

lim
n→∞((Li

f̄
)nv)(s) = γi(f̄ )(s)

= (Li
f̄
γi(f̄ ))(s) (5)

for every s ∈ S.

3 Main results

We first introduce two well known helpful lemmas. These are facts from the the-
ory of discounted dynamic programming (see Dynkin and Yushkevich 1979 or
Blackwell 1965).
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Lemma 3.1 (Blackwell) γi(f̄ )(s) = vf̄−i
(s) for every s ∈ S if and only if

vf̄−i
(s) = (Li

f̄
vf̄−i

)(s) = (T i
f̄−i

vf̄−i
)(s) (6)

for every s ∈ S.

In the following sections the question of existence of best replies of player i to
strategies of other players is an important issue:

Lemma 3.2 Each player i has stationary strategy fi ∈ Fi that is optimal if the
other players choose stationary strategies f̄−i ∈ ∏

j �=i

Fj .

For proof – see Blackwell (1965), Dynkin and Yushkevich (1979) or Bertsekas
and Shreve (1978).

3.1 Convergence of Nash equilibria and payoffs in finite horizon games

For v̄ = (v1, v2, . . . , vN), where vi ∈ B0(S) and s ∈ S let us define �(v̄, s) as the
auxiliary game with the following payoff function of player i

hi(v̄, s, x̄) = ui(xi) + β

∫

S

vi(s
′)p(ds ′|s, x̄),

where (s, x̄) ∈ D.

Note

(a) As vi(0) = 0 (i = 1, . . . , N), we have hi(v̄, s, x̄) in the following form

hi(v̄, s, x̄) = ui(xi) + β

∫

S+

vi(s
′)q(ds ′|s, x̄),

where S+ := S \ {0}.
(b) If in �(v̄, s) the state is s = 0, then x̄ = (0, . . . , 0) is unique vector of

feasible actions. It is then also a trivial Nash equilibrium in �(v̄, 0).

Theorem 3.1 In every N -person m-stage discounted stochastic game of resource
extraction described in section 2 fulfilling Assumptions 2.1 and 2.2 exists unique
nonrandomized Markov Nash equilibrium.

Note
To prove this theorem we construct a Nash equilibrium by the algorithm of the back-
ward induction. For similar construction – see Rieder (1979). However, here we
obtain nonrandomized Nash equilibria.
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Proof (a) Note that f̄ 1(s) = (s1(s), . . . , aN(s)) is the unique nonrandomized
Nash equilibrium in the one stage game.

(b) Assume that in the m-stage game exist a unique nonrandomized Markov
Nash equilibrium

f̄ ∗m = (f̄ m, . . . , f̄ 1),

where f̄ k = (f k
1 , . . . , f k

N), f k
i ∈ Fi .

Denote the vector of corresponding payoffs by

v̄m := (vm
1 , . . . , vm

N),

where vm
i ∈ B0(S).

Now, finding the equilibrium strategies in the first stage of the (m + 1)-stage
game is equivalent to finding the Nash equilibrium in �(v̄m, s). We can rewrite
hi(v̄

m, s, x̄) in the following way:

hi(v̄
m, s, x̄) = ui(xi) +

N∑

j=1

gj (aj (s) − xj )Ĩj (s),

where Ĩj (s) = β
∫
s+

vm
j (s̃)H(ds̃|s).

It is easy to see that the strict concavity of ui(xi)+ Ĩigi(ai(s)− xi) implies the
existence and the uniqueness of the nonrandomized Nash equilibrium

f̄ m+1 = (f m+1
1 , . . . , f m+1

N )

in �(v̄m, s) (where f m+1
i ∈ Fi).

Note that

f ∗m+1 = (f̄ m+1, f̄ m, . . . , f̄ 1)

is the unique nonrandomized Markov Nash equilibrium in the (m+1)-stage game.

Theorem 3.2 Consider the N -person m-stage stochastic game of resource extrac-
tion described in section 2 and fulfilling Assumptions 2.1 and 2.2. Let v̄k =
(vk

1, . . . , vk
N) be the vector of payoffs in the Nash equilibrium in a k-stage game

and

πi,k := (f k
i , f k−1

i , . . . , f 1
i )

be the strategy of player i from the Markov equilibrium (π1,k, . . . , πN,k).
Then

vm
i (s) ≤ vm+1

i (s) ∀i = 1, . . . , N, m ≥ 1, s ∈ S.

Moreover

f m
i (s) ≥ f m+1

i (s) ∀i = 1, . . . , N, m ≥ 1

for all s ∈ S.
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Proof For s = 0 we have v̄m(s) = (0, . . . , 0) for any m.
Denote

v1
i (s) := max

x∈Ai(s)
ui(x), s ∈ S.

Clearly v1
i ∈ B0(S).

Let us consider the game �(v̄1, s), s ∈ S+. For the payoff vector in the Nash
equilibrium v̄2 in this game we have

max
x∈Ai(s)

ui(x) = v1
i (s) ≤ v2

i (s) = max
x∈Ai(s)

[ui(x) + β

∫

S

v1
i (s̃)p(ds̃|s, x̄)]

= max
x∈Ai(s)

[ui(x) + β

∫

S+

v1
i (s̃)q(ds̃|s, x̄)]

for all i = 1, . . . , N. This is implied by the special form of payoffs and transi-
tion probabilities. We also have following correspondence between strategies in
the first and second-stage games: f 1

i (s) ≥ f 2
i (s). (This inequality is trivial, since

in first-stage game players “take all”. In second-stage game consumption in the
first stage may be smaller, because players may want to invest some amount of the
resource).

Let us assume that vm−1
i (s) ≤ vm

i (s), i = 1, . . . , N for some m ≥ 2 and
v̄m(s) = (vm

1 (s), . . . , vm
N(s)) is a vector of payoffs corresponding to the Nash

equilibrium in the game �(v̄m−1, s).
Fix s > 0. Let G1 be the game �(v̄m−2, s) and let G2 be the game �(v̄m−1, s).

In G1 we have the following payoff functions

ki(x̄) := hi(v̄
m−1, s, x̄) = ui(xi) +

N∑

j=1

Ijgj (cj − xj ),

and in G2:

li(x̄) := hi(v̄
m, s, x̄) = ui(xi) +

N∑

j=1

Jjgj (cj − xj ),

where

Ij = β

∫

S+

vm−1
j (s ′)Hj (ds ′|s),

Jj = β

∫

S+

vm
j (s ′)Hj (ds ′|s),

cj = aj (s).

Since vm−1
i (s) ≤ vm

i (s), we obtain Ii ≤ Ji ∀i=1,··· ,N . Let f m+1
i (s) :=

argmax
x∈Ai(s)

[ui(x) + β
∫

S

vm
i (s̃)p(ds̃|s, x̄)]. From Lemma 4.2 we have ki(f̄

m(s)) ≤
li(f̄

m+1(s)), and this implies that vm
i (s) ≤ vm+1

i (s). We also have f m
i (s) ≥

f m+1
i (s). �
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Note
From the above theorem we obtain not only existence of Nash equilibrium, but
also possibility of calculation of ε-equilibria in the class of stationary strategies in
the infinite horizon game. This is illustrated in example at the end of this section.

Corollary The sequence {f̄ m} converges pointwise to a Nash equilibrium in the
infinite horizon game as m → ∞. Similarly the sequence {v̄m} converges to the
vector of equilibrium payoffs in infinite horizon game (this is implied by Bellman
equation – see Lemma 3.1). So the outcome from Theorem 3.2 is:

Theorem 3.3 In every N -person game with infinite horizon game of resource
extraction described in section 2 and fulfilling Assumptions 2.1 and 2.2 exists non-
randomized stationary Nash equilibrium (f ∗

1 , . . . , f ∗
N), wheref ∗

i (s)= lim
m→∞ f m

i (s).

Moreover for every s ∈ S we have

v∗
i (s) := lim

m→∞ vm
i (s) = γi(f

∗
1 , . . . , f ∗

N)(s) ∀i = 1, . . . , N

where vm
i (s) are total payoffs in Nash equilibrium in m-stage game.

Proof From the definition of f m
i and vm

i we conclude

vm+1
i (s) = ui(f

m+1
i (s)) + β

∫

S

vm
i (s̃)p(ds̃|s, f̄ m+1) ∀s ∈ S (7)

and vk
i (s) and f k

i (s) converge monotonically as k → ∞ for every i = 1, . . . , N ,
s ∈ S.

If m → ∞ right hand side of (7) converges to (this is implied by monotone
convergence Lebesgue theorem)

(Li
f̄ ∗v

∗
i )(s) = ui(f

∗
i (s)) + β

∫

S

v∗
i (s̃)p(ds̃|s, f̄ ∗)

= (T i
f̄ ∗

−i

v∗
i )(s).

We obtain

v∗
i (s) = (Li

f̄ ∗v
∗
i )(s) = (T i

f̄ ∗
−i

v∗
i )(s),

which is the Bellman optimality equation [see Lemma (3.1)] in the game with
infinite horizon. So we can conclude that (f ∗

1 , . . . , f ∗
N) is a Nash equilibrium in

this game and

γi(f
∗
1 , . . . , f ∗

N)(s) = v∗
i (s). �

Corollary If we assume that ai(s) and
∫
S
v(s ′)Hi(ds ′|s) are continuous in S, for

any v ∈ B0(s), S is a compact interval, vm
i (s) are continuous, v∗

i (s) is continu-
ous (for i = 1, . . . , N) and also f m

i (s), f ∗
i (s) are continuous, then from the Dini

Theorem convergence vm
i to v∗

i and f m
i to f ∗

i is uniform.
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Theorem 3.4 Assume that Hi(·|s) do not depend on s and ai(s) have Lipschitz
property with constant 1 and are nondecreasing.

Then f m
i (s) are nondecreasing and have Lipschitz property with constant 1.

Corollary f ∗
i (s) is Lipschitz continuous for every i.

Proof From (19) f m
i (s) are of the form

f m
i (s) = argmax

x∈[0,ai (s)]
[ui(x) + Iigi(ai(s) − x)]

for some Ii ≥ 0.
By Lemma 4.4 we can conclude that ui(x) + Iigi(ai(s) − x) is supermodular

with respect to (s, x). ai(s) is nondecreasing, so from Topkis’ theorem (see Topkis
1978) we obtain that f m

i (s) is a nondecreasing function.
Consider

k(s) := s − f m
i (s) = argmax

z∈[s−ai (s),ai (s)]
[ui(s − z) + Iigi(ai(s) − (s − z))].

Again from Lemma 4.4 we can conclude that ui(s − z) + Iigi(ai(s) − s + z)
is supermodular with respect to (s, z). Both ai(s) and s − ai(s) are nondecreasing
(s − ai(s) is nondecreasing because ai(s) has Lipschitz property with constant
1) and from Topkis’ theorem k(s) is nondecreasing. This implies that f m

i (s) has
Lipschitz property with constant 1. �
Example Let us consider a second-person game described in section 2 with:

S = [0, 1], Ai(s) = [0,
s

2
], u1(x) = 4(x − x2), u2(y) = 3y − 2y2,

β = 0.99, q(·|s, x, y) = [g(
s

2
− x) + g(

s

2
− y)]µ(·),

where g(t) = 2
3 (2t − t2), and µ is the probability on [0, 1] with the distribution

function F(s) = s2.
We start our algorithm with f 1

1 (s) = f 1
2 (s) = s/2 for both players (that is we

assume that players consume all available resource).
In such a game functions f n

i (s) (actions of player i on the first stage of the
n-stage game) are of the following form:

f n
i (s) =

{
s
2 for 0 ≤ s ≤ sn

i

an
i s + bn

i for sn
i < s ≤ 1

where an
i , bn

i , s
n
i are positive constants (see Table 1).

The functions vn
i (s) – total payoffs of player i in the n-stage game – are piece-

wise square functions on the intervals [0, min{sn
1 , sn

2 }], [min{sn
1 , sn

2 }, max{sn
1 , sn

2 }],
[max{sn

1 , sn
2 }, 1]. The supremum norm of the differences vn+1

i − vn
i decreases as n

increases (see Table 2).
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Table 1 Constants an
i , bn

i , s
n
i (approximate values) in n-stage games with n from 2 to 5

n an
1 bn

1 sn
1 an

2 bn
2 sn

2

2 0.06043956 0.31868132 0.725 0.09919840 0.40280561 1
3 0.06116209 0.31651372 0.72125428 0.10221392 0.39225129 0.98608600
4 0.06119600 0.31641200 0.72107820 0.10240218 0.39159238 0.98489568
5 0.06119773 0.31640680 0.72106921 0.10241307 0.39155426 0.98482679

Table 2 The supremum norm of differences between payoffs in successive iterations (approxi-
mate values)

i sup
s∈[0,1]

|vi+1
1 (s) − vi

1(s)| sup
s∈[0,1]

|vi+1
2 (s) − vi

2(s)|

1 0.06648352 0.11243751
2 0.00786529 0.00567793
3 0.00060686 0.00034841
4 0.00003454 0.00001979

Note
The pair (f n

1 , f n
2 ) := f n is a stationary ε-equilibrium in the infinite horizon game

that is, for some ε > 0 we have:

∀i ∈ {1, 2} ∀πi ∈ �i γi(f
n)(s) ≥ γi(f

n
−i , πi)(s) − ε.

First we note that for any n we have vn+1
i (s) ≥ vn

i (s) for s ∈ S and i = 1, 2,
where vn+1

i (s) = (Li

(f n+1
1 ,f n+1

2 )
vn)(s). Iterating Li

(f n+1
1 ,f n+1

2 )
we obtain:

vn
i (s) ≤ (Li

(f n+1
1 ,f n+1

2 )
vn)(s) ≤ ((Li

(f n+1
1 ,f n+1

2 )
)2vn)(s) ≤ · · ·

· · · ≤ ((Li

(f n+1
1 ,f n+1

2 )
)kvn)(s).

If k → ∞ we get

vn
i (s) ≤ lim

k→∞
((Li

(f n+1
1 ,f n+1

2 )
)kvn)(s) = γi(f

n+1
1 , f n+1

2 )(s). (8)

f n+1
1 and f n+1

2 are stationary strategies of players 1 and 2 in the infinite horizon
game. Denote δ1 := 0.00003455 and δ2 := 0.0000198. From Table 2 we can see
that vn+1

i (s) ≤ vn
i (s) + δi for all s ∈ S with n = 4.

We have

vn
1 (s) + δ1 ≥ vn+1

1 (s) = (T 1
f n+1

2
vn

1 )(s),

hence

(T 1
f n+1

2
vn

1 )(s) + βδ1 ≥ (T 1
f n+1

2
(vn

1 + δ1))(s) ≥ ((T 1
f n+1

2
)2vn

1 )(s).

Iterating above inequality we obtain

((T 1
f n+1

2
)kvn

1 )(s) ≤ ((T 1
f n+1

2
)k−1(vn

1 + δ1))(s)

≤ ((T 1
f n+1

2
)k−2((T 1

f n+1
2

vn
1 ) + βδ1))(s) ≤ · · ·

≤ ((T 1
f n+1

2
)k−1vn

1 )(s) + βk−1δ1

≤ · · · ≤ vn
1 (s) + δ1(1 + β + β2 + · · · + βk−1).
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If k → ∞, from above inequality we conclude that

vn
1 (s) + δ1

1 − β
≥ sup

π∈�1

γ1(π, f n+1
2 )(s). (9)

[Recall (5).] We can also show that

vn
2 (s) + δ2

1 − β
≥ sup

π∈�2

γ2(f
n+1
1 , π)(s). (10)

From (8) and (9), it follows that

γ1(f
n+1
1 , f n+2

2 )(s) + δ1

1 − β
≥ vn

1 (s) + δ1

1 − β
≥ sup

π∈�1

γ1(π, f n+1
2 )(s).

From (8) and (10) we can obtain also similar result for player 2:

γ2(f
n+1
1 , f n+2

2 )(s) + δ2

1 − β
≥ vn

2 (s) + δ2

1 − β
≥ sup

π∈�2

γ2(f
n+1
1 , π)(s).

This means that (f n+1
1 , f n+1

2 ) is an ε-equilibrium in the infinite horizon game with

ε = max

{
δ1

1 − β
,

δ2

1 − β

}
.

For n = 4 we have ε = max{ 0.00003455
1−0.99 , 0.0000198

1−0.99 } = 0.003455.

3.2 An algorithm based on best responses in infinite horizon games

In previous section we have shown convergence of strategies from the algorithm
based on finding Nash equilibria in finite horizon games. In this section we study
a natural algorithm based on best responses in an infinite horizon game. We point
out that such an approach does not lead to a Nash equilibrium in general – without
concavity assumptions as made in this paper.

In the first step of the algorithm (n = 0), we assume that in an infinite horizon
game all players consume all of available resource that is, f 0

i (s) := ai(s). Then
v0

i (s) = ui(ai(s)), because from second stage onwards the game is in state s = 0
with probability 1.

In the second step the first player (i = 1) chooses his or her strategy as the best
response f 1

1 ∈ F1 to the strategies of the other players (f 0
2 , . . . , f 0

N). Let

v1
1(s) := γ1(f

1
1 , f 0

2 , . . . , f 0
N)(s).

In the third step the second player (i = 2) chooses the best response f 1
2 ∈ F2

to the strategies (f 1
1 , f 0

3 , . . . , f 0
N). Put

v1
2(s) := γ2(f

1
1 , f 1

2 , f 0
3 , . . . , f 0

N)(s).
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Generally – in every step some player i chooses the best response f n
i ∈ Fi to

the strategies (f n
1 , . . . , f n

i−1, f
n−1
i+1 , . . . , f n−1

N ). Define

vn
i (s) := γi(f

n
1 , . . . , f n

i , f n−1
i+1 , . . . , f n−1

N )(s).

The existence of such stationary best responses follows from Blackwell (1965)
paper – see Lemma 3.2.

Let us now consider the sequence of strategies {(f n
i (s))Ni=1}∞n=1 constructed

above.

Theorem 3.5 When n → ∞ the sequence {(f n
i (s))Ni=1}∞n=1 converges to a Nash

equilibrium in the infinite horizon game.

Proof From Lemma 4.3 we can conclude that for any i both {f n
i (s)}∞n=1 and

{vn
i (s)}∞n=1 are monotone: ({f n

i (s)}∞n=1 is nonincreasing, {vn
i (s)}∞n=1 is nondecreas-

ing) and these sequences are bounded. This implies their convergence that is,

f ∗
i (s) := lim

n→∞ f n
i (s)

and

v∗
i (s) := lim

n→∞ vn
i (s)

exist.
Argumentation based on the Bellman optimality equations allows to conclude

that {f ∗
i (s)}Ni=1 is a Nash equilibrium in the infinite horizon game. �

4 Auxiliary lemmas

Lemma 4.1 Let x ∈ [0, c], c > 0, Ik > 0, for k = 1, 2, and functions 
k :
[0, c] −→ R be defined as follows:


k(x) = u(x) + Ikg(c − x),

where u and g are increasing, nonnegative, concave, twice differentiable and at
least one of them is strictly concave.

Denote:

x∗
k := argmax

x∈[0,c]

k(x),

m∗
k := max

x∈[0,c]

k(x).

If

I1 ≤ I2,

then

x∗
1 ≥ x∗

2 (11)

and

m∗
1 ≤ m∗

2. (12)
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Proof For I1 = I2 inequality (11) is obvious. Assume that

0 < I1 < I2 (13)

and consider three following cases:
(a) x∗

1 = 0,
(b) x∗

1 = c,
(c) x∗

1 ∈ (0, c).

The function 
k(x) (k = 1, 2) is strictly concave as a sum of concave and
strictly concave function.

So 
k
′(x) = u′(x) − Ikg

′(c − x) is decreasing in x.
(a) If x∗

1 = 0, then 
1
′(x∗+

1 ) ≤ 0, because 
1
′(x) is decreasing. We obtain

u′(x) − I1g
′(c − x) < 0 ∀x ∈ (0, c].

So u′(x) < I1g
′(c − x), and from (13) we obtain

u′(x) < I2g
′(c − x).

From this we get


2
′(x) < 0 ∀x ∈ (0, c].

This means that 
2(x) is decreasing in x and attains its maximum at x∗
2 = 0.

In case (b) relation in (11) is obvious, because c is maximal value for both x∗
1

and x∗
2 .

In case (c) we can conclude that


1
′(x∗

1 ) = 0.

Let

f1(x) = u′(x) − I1g
′(c − x),

f2(x) = u′(x) − I2g
′(c − x).

Note that since g is increasing and concave and since (13) holds we have

f1(x) > f2(x) ∀x ∈ (0, c]. (14)

Both functions are decreasing, so

f ′
1(x) = 
1

′′(x) ≤ 0 (15)

and

f ′
2(x) = 
2

′′(x) ≤ 0.

Let us assume that

x∗
2 > x∗

1 .
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From x∗
1 ∈ (0, c) we can conclude that x∗

2 ∈ (0, c], so – from the definition of
f2 we obtain

f2(x
∗
2 ) ≥ 0,

and from (14) we have

f1(x
∗
2 ) > 0.

By Lagrange’s theorem

∃ξ ∈ (x∗
1 , x∗

2 ) : f ′
1(ξ) = f1(x

∗
2 ) − f1(x

∗
1 )

x∗
2 − x∗

1

> 0,

which is a contradiction to (15). Hence (11) follows.
Now we will prove inequality (12). Form I1 ≤ I2 and the fact that g are non-

negative we obtain

u(x) + I1g(c − x) ≤ u(x) + I2g(c − x) ∀x ∈ [0, c],

and consequently

m∗
1 = max

x∈[0,c]

1(x) = u(x∗

1 ) + I1g(c − x∗
1 )

≤ u(x∗
1 ) + I2g(c − x∗

1 )

≤ max
x∈[0,c]

[u(x) + I2g(c − x)] = m∗
2. (16)

�
Let us now consider two auxiliary one-stage games.

Definition 4.1 Let G1 and G2 be games, in which the sets of actions are

Xi := [0, ci], i = 1, . . . , N,

where ci > 0.
The payoff function of player i in the game G1 is

hi(x̄) := ui(xi) +
N∑

j=1

gj (cj − xj )Ij

and

li(x̄) := ui(xi) +
N∑

j=1

gj (cj − xj )Jj

is the payoff function of player i in the game G2 and

(a) Ii, Ji are constants such that

0 ≤ Ii ≤ Ji;
(b) the functionsgi are increasing, nonnegative, concave and twice differentiable;
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(c) the functionsui are increasing, nonnegative, concave and twice differentiable;
(d) for each i the function ui or the function gi is strictly concave.

Lemma 4.2 Let x̄∗ and ȳ∗ be Nash equilibria in G1 and G2, respectively. Then
we have

hi(x̄
∗) ≤ li(ȳ

∗) (17)

and

x∗
i ≥ y∗

i (18)

for every i = 1, . . . , N .
Moreover, in both considered games equilibria are unique.

Proof Note that x̄∗ = (x∗
i )

N
i=1 is Nash equilibrium in game G1 if and only if

x∗
i = argmax

x∈[0,ci ]
[ui(x) + Iigi(ci − x)] (19)

for every player i. (For ȳ∗ – Nash equilibrium in G2 – analogously.)
For any player i we can rewrite his or her payoffs in the following form:

hi(x̄) := ui(xi) + Iigi(ci − xi) + �(x̄−i ),

li(x̄) := ui(xi) + Jigi(ci − xi) + (x̄−1),

in games G1 and G2, respectively, where �(x̄−i ) and (x̄−i ) are defined as

�(x̄−i ) =
∑

j∈{1,··· ,N}\{i}
gj (cj − xj )Ij

and

(x̄−1) =
∑

j∈{1,··· ,N}\{i}
gj (cj − xj )Jj .

Observe that both �(x̄−i ) and (x̄−i ) do not depend on xi (In connection with
strict concavity of hi and li for Ii > 0 and the fact that ui in increasing this implies
uniqueness of Nash equilibria).

If Ii > 0, from Lemma 4.1 we obtain (18). If Ii = 0, then (18) is obvious since
ui is increasing.

Since gi(·) are increasing and we have 0 ≤ Ii ≤ Ji(i = 1, . . . , N), so
�(x̄∗

−i ) ≤ (ȳ∗
−i ), which together with Lemma 4.1 implies (17). �

Our next lemma is needed in the proof of Theorem 3.5.
Fix player i and consider two profiles π−i , σ−i of stationary strategies of the

other players. Let π−i = (f 1
n )n�=i and σ−i = (f 2

n )n�=i , f
j
n ∈ Fn, j = 1, 2.

Let

v1
i (s) := sup

πi∈�i

γi(π−i , πi)(s),

v2
i (s) := sup

πi∈�i

γi(σ−i , πi)(s).
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We will show that under our assumptions about transition probabilities the fact
that if the profile of stationary strategies π−i means greater consumption of players
n �= i (comparing to the profile σ−i), then player i consumes more, when he or
she plays against π−i , than in the situation where he or she plays against σ−i . In
the first case player i have worse “perspectives”, because other players “care less”
for the future resource renewal, which partly explains player i’s behaviour.

Lemma 4.3 Assume that π−i and σ−i are such that

f 1
n (s) ≥ f 2

n (s) ∀n�=i,s∈S. (20)

Let φi ∈ Fi and ξi ∈ Fi be the best response of player i to strategy profile π−i and
σ−i respectively.

Then

φi(s) ≥ ξi(s) ∀s ∈ S

and

v1
i (s) ≤ v2

i (s) ∀s ∈ S.

Proof We define

v1
i,m := sup

πi∈�i

γ m
i (π−i , πi)(s)

and

v2
i,m := sup

πi∈�i

γ m
i (π−i , σi)(s)

for the m-stage game.
These are the optimal payoffs of player i in the m-stage games if player i plays

against π−i and σ−i , respectively. In the one stage game we have v
j

i,1 = max
x∈Ai(s)

ui(x)

for j = 1, 2, and optimal strategies are in both cases identical that is, player i

chooses f
j

i,1 = ai(s), s ∈ S.
For m ≥ 1, let

π
j

i,m = (f
j

i,m, f
j

i,m−1, . . . , f
j

i,1) (21)

be optimal Markov response of the player i to strategy profile (f
j
n )n�=i of the other

players (in the m-stage game). f j

i,1(s) = ai(s), s ∈ S. We additionally assume that
for some m ≥ 1, it holds

f
j

i,m(s) ≤ f
j

i,m−1(s) ≤ · · · ≤ f
j

i,1(s) (22)

and

v
j

i,m(s) ≥ v
j

i,m−1(s) ≥ · · · ≥ v
j

i,1(s) (23)

for each s ∈ S. Moreover, we have f 1
i,k(s) ≥ f 2

i,k(s) and v1
i,k(s) ≤ v2

i,k(s) for

k ≤ m, s ∈ S and v
j

i,k ∈ B0(S). (This is our inductional hypothesis.)
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For the (m + 1)-stage game define:

f
j

i,m+1(s) := argmax
x∈[0,ai (s)]

[ui(x) + β

∫

S

v
j

i,m(s ′)p(ds ′|s, (f j
n (s))n�=i , x)]

= argmax
x∈[0,ai (s)]

[ui(x) + β

∫

S+

v
j

i,m(s ′)q(ds ′|s, (f j
n (s))n�=i , x)]

(second equation follows from v
j

i,m ∈ B0(S) that is, v
j

i,m(0) = 0). Put

v
j

i,m+1(s) := (T i

(f
j
n )n�=i

v
j

i,m)(s).

The function f
j

i,m+1 defined above can be rewritten in the following form:

f
j

i,m+1(s) = argmax
x∈[0,ai (s)]

[ui(x) + I
j

i,mgi(ai(s) − x)

+
∑

n∈{1,··· ,N}\{i}
I j
n,m(s)gn(an(s) − f j

n (s))]

= argmax
x∈[0,ai (s)]

[ui(x) + I
j

i,mgi(ai(s) − x)] (24)

where I
j
n,m(s) := β

∫

S

v
j

i,m(s ′)Hn(ds ′|s).
The payoff function v

j

i,m+1(s) can be rewritten in the manner.

It is easy to see that I
j

n,k(s) ≤ I
j

n,k+1(s) and I 1
n,k(s) ≤ I 2

n,k(s) for k < m. So,
from Lemma 4.1 we conclude that

v1
i,m+1(s) ≤ v2

i,m+1(s),

v
j

i,m(s) ≤ v
j

i,m+1(s),

f 1
i,m+1(s) ≥ f 2

i,m+1(s)

and

f
j

i,m(s) ≥ f
j

i,m+1(s).

By induction we obtained sequences that satisfy (22) and (23) for any m. The
sequences {f 1

i,m(s)} and {f 2
i,m(s)} are respectively converging to φi(s) and ξi(s)

and φi(s) ≥ ξi(s).
Define

v
j∗
i (s) := lim

m→∞ v
j

i,m(s).

It is easy to see (using the Bellman equation for the m-stage games and the
infinite horizon game) that

v1∗
i (s) = v1

i (s) = sup
πi∈�i

γi(π−i , πi)(s)
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and

v2∗
i (s) = v2

i (s) = sup
πi∈�i

γi(σ−i , πi)(s).

Moreover, we have v1
i (s) = v1∗

i (s) ≤ v2∗
i (s) = v2

i (s), s ∈ S. �
The last lemma refers to the problem of monotonicity and Lipschitz property

of equilibrium strategies. This is a light modification of Lemma 0.2 from Amir
(1996) paper.

In the below calculus we will treat the set S × S as poset with natural partial
order relation defined as follows:

(x1, y1) � (x2, y2) ⇔ x1 ≥ x2 and y1 ≥ y2.

Lemma 4.4 Let the functionU : S → R be concave and let the functionh : S → S
be nondecreasing and h(0) = 0. Then the set

� = {(s, x) : s ∈ S, x ∈ [0, h(s)]}
is a lattice and U(−x + h(s)) is supermodular on � that is �(s, x) := U(−x +
h(s)) holds for any (s1, x1), (s2, x2) ∈ �

�((s1, x1) ∨ (s2, x2)) + �((s1, x1) ∧ (s2, x2)) ≥ �(s1, x1) + �(s2, x2),

where (s1, x1) ∨ (s2, x2) and (s1, x1) ∧ (s2, x2) denote the least upper bound and
the greatest lower bound of the pair ((s1, x1), (s2, x2)) in relation “�”.

Proof Note that fact that � is a lattice comes straight from the fact that h(s) is
nondecreasing.

Now we will prove that U(−x+h(s)) has nondecreasing differences in (s, x) ∈
�, which is equivalent to supermodularity in �.

Let (s1, x1), (s2, x2) ∈ � be such that s1 ≤ s2 and x1 ≥ x2. Note that (s1, x2)
and (s2, x1) are also in the lattice � (as the greatest lower bound and the least upper
bound of the pair ((s1, x1), (s2, x2))).

For i = 1, 2,

−x2 + h(s2) ≥ −x3−i + h(si) ≥ −x1 + h(s1)

holds and the sum of the “inner” terms is equal to the sum of the “outer” terms.
So, there exists α ∈ [0, 1] such that

−x1 + h(s2) = α(−x2 + h(s2)) + (1 − α)(−x1 + h(s1))

and

−x2 + h(s1) = (1 − α)(−x2 + h(s2)) + α(−x1 + h(s1)).

Using concavity of U we conclude

U(−x1 + h(s2)) + U(−x2 + h(s1))

≥ αU(−x2 + h(s2)) + (1 − α)U(−x1 + h(s1))

+(1 − α)U(−x2 + h(s2)) + αU(−x1 + h(s1))

= U(−x1 + h(s1)) + U(−x2 + h(s2)).
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This inequality can be rewritten in the following form:

U(−x1 + h(s1)) − U(−x2 + h(s1)) ≤ U(−x1 + h(s2))

−U(−x2 + h(s2)), (25)

which means that U(−x + h(s)) has nondecreasing differences. �

Note

(a) If we consider U(−x + h(s)) + f (x) instead of U(−x + h(s)) where f is
any real function on S, inequality (25) still holds.

(b) The sum of two supermodular functions is a supermodular function.
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