
Abstract. Marshall-Olkin bivariate semi-Pareto distribution (MO-BSP) and
Marshall-Olkin bivariate Pareto distribution (MO-BP) are introduced and
studied. AR(1) and AR(k) time series models are developed with minification
structure having MO-BSP stationary marginal distribution. Various charac-
terizations are investigated.

Key words: MO-BSP distribution; Autoregressive minification processes of
order 1 and k; Characterizations.

1 Introduction

The study of first order autoregressive processes having minification structure
began with the work of Tavares (1980) and subsequently many authors
developed autoregressive minification processes having various marginal
distributions. Lewis and McKenzie (1991) define a first order autoregressive
minification process as a sequence having the general structure

Xn ¼
kXn�1 with probability p
kminðXn�1;2nÞ with probability 1� p

�
ð1:1Þ

where f2ng is an innovation process of independent and identically distrib-
uted random variables chosen to ensure that fXng is a stationary Markov
process with a specified marginal distribution function FXðxÞ.

Another form of minification process is having the structure

Xn ¼
k 2n with probability p
kminðXn�1;2nÞ with probability 1� p

�
ð1:2Þ

Because of the structure of the process, fXng as defined above is called a
minification process. (For details see Yeh et al. (1988), Arnold and Robertson
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(1989) and Pillai et al. (1995)). Minification processes find applications for
modeling time series data from hydrological as well as socio-economic con-
texts. Block et al. (1988) introduced additive first order autoregressive pro-
cesses with bivariate exponential and geometric stationary marginal
distributions and studied their properties. Dewald et al. (1989) introduced an
additive first order autoregressive bivariate exponential process.

In many socio-economic contexts, the data are usually multivariate in
nature. Several components like income, expenditure, area of land holdings
etc. are taken into consideration. In such cases the data are often skewed and
show a tendency to follow heavy tailed distributions. The role of Pareto law
in modeling data on income, stock price fluctuations, insurance risks, business
failures etc. is well known. Thus a wide variety of socio-economic data have
distributions which are heavy tailed and reasonably well fitted by Pareto or
generalized Pareto distribution. In reliability contexts also bivariate Pareto
distributions are found to be appropriate models. Sankaran and Nair (1993)
discuss the application of bivariate Pareto distributions in reliability theory.
Alice and Jose (2002) introduced and studied the univariate Marshall-Olkin
Pareto processes. In this paper, AR (1) and AR (k) time series models useful
in generating first order and kth order autoregressive minification processes
having a specified stationary bivariate marginal distribution are introduced
and studied.

In the present paper we consider a new family of distributions introduced
by Marshall-Olkin (1997) and similar to those introduced by Pillai, Jose and
Jayakumar (1995). In section 2, we introduce the Marshall-Olkin bivariate
semi-Pareto distribution as a generalization of the bivariate semi-Pareto
distribution of Balakrishna and Jayakumar (1997). In section 3, we consider
the Marshall-Olkin bivariate Pareto (MO-BP) distribution in detail. Some
characteristic properties of MO-BSP distribution are obtained in section 4. In
section 5, we construct a bivariate semi-Pareto AR (1) model having MO-BSP
stationary distribution. We generalize it to the kth order autoregressive model
in section 6. The model developed here is analogous to the model introduced
by Lawrance and Lewis (1982) where the role of addition is taken by mini-
mization.

2 Marshall-Olkin bivariate semi-Pareto distributions

Now we consider the bivariate semi-Pareto distribution and distributions
related to it, which are generally used for modelling socio-economic data. A
random vector (X, Y) is said to have the bivariate semi-Pareto distribution
with parameters b1; b2 and q if its survival function is of the form

�F(x, y) ¼ 1

1þ w(x,y)
ð2:1Þ

where w(x,y) satisfies the functional equation

qw(x,y) ¼ w q1=b1x; q1=b2y
� �

: ð2:2Þ

The equation is true for all x � 0, y � 0 and particular q; b1; b2 where
0 < q < 1; b1 > 0, b2 > 0. Also w(x,y) is a monotonically increasing function
in both x and y satisfying
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lim
x!0

lim
y!0

wðx; yÞ ¼ 0 and lim
x!1

lim
y!1

wðx; yÞ ¼ 1:

Writing q ¼ expðzÞ, x ¼ expðuÞ, y ¼ expðvÞ, a ¼ 1=b1, b ¼ 1=b2 and taking
logarithms, equation (2.2) can be written as

zþH(u, v) ¼ Hðuþ az; vþ bzÞ:
This functional equation is a special case of the general equation (4) in
pp. 310 in Aczel (1966).

The solution of the functional equation (2.2) is given by

wðx; yÞ ¼ xb1hðxÞ þ yb2hðyÞ;
where h(x) and h(y) are the periodic functions in log x and log y with periods
2pb1

� logq and 2pb2

� log q respectively. (See Kagan et al. (1973)). It can be verified that
the univariate marginal distributions of X and Y are the univariate semi-
Pareto distribution of Pillai (1991), by taking wðxÞ � wðx; 0Þ and wðyÞ �
wð0; yÞ.

Marshall and Olkin (1997) considered a bivariate extension of a family of
distributions as follows.

Let (X, Y) be a random vector with joint survival function �F(x,y). Then

�G(x,y) ¼ a �F ðx; yÞ
1� ð1� aÞ �F ðx; yÞ ; x, y � 0; 0 < a < 1; ð2:3Þ

is a proper bivariate survival function. The family of distributions of the form
(2.3) shall be called Marshall-Olkin bivariate family of distributions.

From (2.3) we can see that the new survival function is

�Gðx, y; aÞ ¼ 1

1þ 1
a wðx; yÞ

; x, y � 0; 0 < a < 1; ð2:4Þ

which we shall refer to as Marshall-Olkin bivariate semi-Pareto distribution
denoted by MO-BSP. Similar bivariate distributions can be developed by
considering bivariate Weibull and exponential survival functions. For
example a bivariate semi-Weibull distribution has a survival function of the
form �F(x, y) ¼ expð�w(x,y)Þ, where w(x,y) satisfies the conditions specified
above. Then the Marshall-Olkin Bivariate Semi-Weibull distribution has the
survival function given by

�Gðx,y; aÞ ¼ ae�wðx;yÞ

1� ð1� aÞe�wðx;yÞ : ð2:6Þ

Theorem 2.1. Let fðXi;YiÞ; i � 1g be a bivariate sequence of non-negative
random vectors independently and identically distributed as Marshall-Olkin

Bivariate Semi-Pareto, then Zn ¼ ððn=aÞ1=b1 minðX1;X2; . . . ;XnÞ; ðn=aÞ1=b2

minðY1;Y2; . . . ;YnÞÞ; b1 > 0, b2 > 0, n > 1, n > a is asymptotically distrib-
uted as bivariate semi-Weibull as n goes to infinity.

Proof. If (X, Y) is distributed as MO-BSP, then from (2.4) we have
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�G(x, y) ¼ 1

1þ 1
a wðx; yÞ

;

F �ZðnÞ ðx; yÞ ¼ P

�
ðn=aÞ1=b1 minðX1;X2; . . . ;XnÞ

> x; ðn=aÞ1=b2 minðY1;Y2; . . . ;YnÞ > y

�

¼ G
�
ðn=aÞ�1=b1x; ðn=aÞ�1=b2y
� �� �n

¼ 1

1þ wðx;yÞ
n

 !n

which tends to e�wðx;yÞ as n goes to infinity.
This establishes the theorem. As a corollary we have the following

result. j

Corollary 2.1. If fðXi;YiÞ; i � 1g be a sequence of bivariate non–negative
random vectors identically and independently distributed as Marshall-Olkin

bivariate Pareto, then ZðnÞ ¼ ððn=aÞ1=b1 minðX1;X2; . . . ;XnÞ; ðn=aÞ1=b2

minðY1;Y2; . . . ;YnÞÞ; b1; b2 > 0, n > 1, n > a is asymptotically distributed as
bivariate Weibull as n goes to infinity.

Now we consider the extension of the concept of domain of attraction to
the multivariate set up given by Marshall and Olkin (1983) and discussed in
detail by Castillo (1988).

Definition 2.1. For a; b; x 2 Rk write, aþ bx to denote the vector ða1 þ b1x1;
. . . ; ak þ bkxkÞ where a ¼ ða1; a2; . . . ; akÞ, b ¼ ðb1; b2; . . . ; bkÞ and x ¼ ðx1; x2;
. . . ; xkÞ. Let Xð1Þ;Xð2Þ; . . . be a sequence of independent k-dimensional ran-

dom vectors with common distribution G and let W ðnÞ
j ¼ min

1<i�n
X ðiÞj ; j ¼

1; 2; . . . ; k. We say G is in the domain of attraction of F for minimum if there

exists sequences of vectors faðnÞg and fbðnÞ > 0g such that lim
n!1

G
�ðnÞ

aðnÞ þ bðnÞx
� �

¼ �F ðxÞ for all x.

Now we have the following result.

Theorem 2.2. The Marshall-Olkin bivariate semi-Pareto distribution (MO-
BSP) is in the domain of attraction for minimum of the bivariate semi-Weibull
distribution.

Proof. We have

�G(x,y) ¼ 1

1þ 1
a wðx; yÞ

:

Taking aðnÞ ¼ ð0; 0Þ and bðnÞ ¼ ððn=aÞ�1=b1Þ, ðn=aÞ�1=b2Þ and x ¼ (x,y) we have
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G
�ðnÞ

aðnÞ þ bðnÞx
� �

¼ G
�
ðn=aÞ�1=b1x; ðn=aÞ�1=b2y
� �� �n

¼ 1

1þ wðx;yÞ
n

 !n

:

Therefore

lim
n!1

G
�ðnÞ

aðnÞ þ bðnÞx
� �

¼ e�wðx;yÞ

which is the survival function of the bivariate semi-Weibull family of distri-
butions j

3 Marshall-Olkin bivariate Pareto distribution

In this section we consider the special case namely bivariate Pareto distri-
bution having the survival function

�F(x,y) ¼ 1

1þ xb1 þ yb2
; x, y � 0; b1; b2 > 0:

It may be noted that if �F(x,y) is a survival function, then �Fðxa; ybÞ is also a
survival function.

From (2.3) the new survival function is

�G(x, y) ¼ 1

1þ 1
a xb1 þ yb2ð Þ

; x, y � 0; b1 > 0; b2 > 0; 0 < a < 1;

which is known as Marshall-Olkin bivariate Pareto(MO-BP) distribution.
The density function is given by

g(x, y) ¼ 2b1b2xb1�1yb2�1 1

a2
1þ ð1=aÞðxb1 þ yb2Þ
� ��3

;

x,y � 0; b1 > 0; b2 > 0; 0 < a < 1:

The marginal distributions of X and Y are

g(x) ¼ b1

a
xb1�1 1þ ð1=aÞxb1

� ��2
; x � 0; b1 > 0; 0 < a < 1:

and

g(y)¼b2

a
yb2�1 1þð1=aÞyb2

� ��2
; y� 0; b2> 0; 0<a< 1:

EðX r
i Þ¼ a1=bi

� �r
B 1þ r

bi
;1� r

bi

� 	
; r<bi

VðXiÞ¼ a2=bi Cð1þð2=biÞÞCð1�ð2=biÞÞ� Cð1þð1=biÞÞCð1�ð1=biÞÞð Þ2
n o

;

if ðbi> 2Þ:

E(XY)¼ 2a
1
b1
þ 1

b2
�2B

1

b1

þ1;2� 1

b1

� 	
B

1

b2

þ1;1� 1

b1

� 1

b2

� 	
:

Using these the correlation between X and Y can be obtained.
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4 Characterizations

Now we have the following characterizations of the MO-BP distribution.

Theorem 4.1. Let N be a geometric r.v. with parameter p such that
PfN ¼ ng ¼ pqn�1, n ¼ 1; 2; . . . ; 0 < p < 1; q ¼ 1� p. Consider a sequence
fðXi;YiÞ; i � 1g of independently and identically distributed random vectors
with common survival function �F(x,y), where N and ðXi;YiÞ are independent for
all i � 1. Let UN ¼ min

1�i�N
Xi and VN ¼ min

1�i�N
Yi. Then the random vectors

ðUN;VNÞ are distributed as MO-BSP if and only if ðXi;YiÞ have the bivariate
semi-Pareto distribution.

Proof. Consider

�S(x,y) ¼ P UN > x;VN > y½ �

¼
X1
n¼1

�F(x, y)½ �npqn�1

¼ p�F(x, y)= 1� ð1� pÞ�F(x, y)½ �:
Let �F(x, y) ¼ 1=f1þ w(x,y)g, which is the survival function of bivariate semi-
Pareto.

Substituting this in the above equation we have

�S(x, y) ¼ p=fpþ w(x, y)g ¼ �G(x, y); ð4:1Þ
which is the survival function of MO-BSP.

Conversely suppose that

�S(x, y) ¼ p=fpþ w(x,y)g:
Then

p�F(x, y)=½1� ð1� pÞ�F(x, y)� ¼ p=fpþ w(x, y)g
This yields

�F(x, y) ¼ 1=f1þ w(x,y)g:
Hence the proof is complete.

Now we shall establish another characterization of the MO-BSP distri-
bution.

Let fNk; k � 1g be a sequence of geometric random variables with
parameters pk, 0 � pk < 1.

Define

�Fk(x,y) ¼ P ðUNk�1 > x; VNk�1 > yÞ; k ¼ 2; 3 . . .

¼ pk�1�Fk�1(x,y)gÞ=f1� ð1� pk�1Þ�Fk�1(x,y)g
ð4:2Þ

Here we refer �Fk as the survival function of the geometric pk�1 minimum of
independent and identically distributed random vectors with �Fk�1 as the
common survival function.
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Theorem 4.2. Let fðXi;YiÞ; i � 1g be a sequence of independent and identically
distributed non-negative random vectors with common survival function �G(x,y).
Define �G1 ¼ �G and �Fk as the survival function of the geometric pk�1 minimum
of independent and identically distributed random vectors with common survival
function �Fk�1; k ¼ 2; 3 . . .. Then

�Fk(x, y) ¼ �G(x, y) ð4:3Þ
if and only if ðXi;YiÞ has MO-BSP distribution.

Proof. By definition, the survival function �Fk satisfies the equation (4.2). We
have

�G(x, y) ¼ 1

1þ 1
p w(x,y)

¼ 1

1þ /(x,y)
;

where /(x,y) is a monotonically increasing function in both x and y
ðx � 0; y � 0Þ and

lim
x!0

lim
y!0

/(x,y) ¼ 0 and lim
x!1

lim
y!1

/(x,y) ¼ 1:

Hence we can write, �Gk(x, y) ¼ 1

1þ/k(x,y)
; k ¼ 1; 2; . . .

Substituting this in (4.2), we get

/k(x,y) ¼
/k�1(x,y)

pk�1
; k ¼ 2; 3; 4 . . .

Recursively using this relation we have

/k(x,y) ¼
/1(x,y)

p1p2 . . . pk�1
; since G1 ¼ G implies that /1 ¼ /:

This implies that

/k(x,y) ¼
/1(x,y)

p1p2 . . . pk�1
ð4:4Þ

Hence

�Fk(x, y) ¼ �G(x, y)

This proves the sufficiency part.
Conversely assume that equation (5.3) is true. By the hypothesis of the

theorem equation (4.4) follows.
Thus equation (4.3) and equation (4.4) together lead to the equation

1þ 1

p1p2 . . . pk�1
/1½ðx; yÞ�

� 
�1
¼ �G(x,y)

¼ 1

1þ /ðx; yÞ
This implies that

/ðx; yÞ ¼ /1ðx; yÞ
p1p2 . . . pk�1

:

Hence the proof is complete. j
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5 Marshall-Olkin bivariate semi-Pareto AR (1) model

Now we construct a first order autoregressive time series model with MO-BSP
distribution as stationary marginal distribution.

Theorem 5.1. Consider a bivariate autoregressive minification process
fðXn;YnÞg having the structure

Xn ¼
Un w.p. p

minðXn�1;UnÞ w.p. 1� p

�

Yn ¼
Vn w.p p

minðYn�1;VnÞ w.p. 1� p

� ð5:1Þ

where fðUn;VnÞg are the innovations, which are independent of fðXn�k;Yn�kÞg
for k ¼ 1; 2; . . . ; n. Then fðXn;YnÞg has stationary marginal distribution as
MO-BSP if and only if fðUn;VnÞg is jointly distributed as bivariate semi-
Pareto distribution.

Proof. From (5.1) we have

�FXn;Yn(x,y) ¼ p �GUn;Vn(x,y)þ ð1� pÞ�FXn�1;Yn�1(x,y) � �GUn;Vn(x,y) ð5:2Þ
Under stationarity we get

�FX;Y(x,y) ¼ p �GU;V(x,y)=f1� ð1� pÞ �GU;V(x,y)g
If we take

�GU;V(x,y) ¼ 1=f1þ w(x,y)g;
then �FX;Y(x, y) ¼ p=fpþ w(x, y)g
which is the survival function of MO-BSP.

Conversely if we take

�FX;Y(x, y) ¼ p=fpþ w(x,y)g
it is easy to show that GU;V(x, y) is distributed as bivariate semi-Pareto dis-
tribution and the process is stationary. In order to establish stationarity we
proceed as follows.

Assume fðXn�1;Yn�1Þg¼
d
MO-BSP and fðUn;VnÞg¼

d
BSP.

Then from (5.2)

�FXn;Yn(x, y) ¼ p=fpþ w(x, y)g:
This establishes that fðXn;YnÞg is distributed as MO-BSP. Even if ðX0;Y0Þ is
arbitrary, it is easy to establish that fðXn;YnÞg is stationary and is asymp-
totically marginally distributed as MO-BSP. j

6 Generalisation to the k-th order Autoregressive Model

In this section we extend the results to develop a k-th order bivariate auto-
regressive model fðXn;YnÞg having the structure. This leads to the following
theorem.
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Theorem 6.1. Consider an AR(k) model with structure

Xn ¼

Un w.p. p0
minðXn�1;UnÞ w.p. p1
minðXn�2;UnÞ w.p. p2
minðXn�k;UnÞ w.p. pk

8>><
>>:

Yn ¼

Vn w.p. p0
minðYn�1;VnÞ w.p. p1
minðYn�2;VnÞ w.p. p2
minðYn�k;VnÞ w.p. pk

8>><
>>:

ð6:1Þ

where 0 < pi < 1,
Pk
i¼1

pi ¼ 1� p0. Then fðXn;YnÞg has stationary marginal

distribution as MO-BSP if and only if fðUn;VnÞg is jointly distributed as
bivariate semi-Pareto distribution.

Remark 6.1. Theorems 4.1, 4.2, 5.1 and 6.1 can be extended to Marshall-
Olkin bivariate Pareto distribution.
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