
Abstract. Expressions for marginal distribution functions of sequential order
statistics and generalized order statistics are presented without any restric-
tions imposed on the model parameters. The results are related to the rele-
vation transform, to the distribution of the product of Beta distributed
random variables, and to Meijer’s G-functions. Some selected applications in
the areas of moments, conditional distributions, recurrence relations, and
reliability properties are shown.
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rence relations; Reliability properties

1 Introduction

Sequential order statistics have been introduced in Kamps (1995a) as an
extension of (ordinary) order statistics. They serve as a model for k-out-of-n
structures, which takes into account effects of failures of components on the
remaining working units. These influences may be due to damages caused by
failures or to an increased stress on the active components. In contrast to the
commonly used model of (ordinary) order statistics, this approach enables a
more flexible description of such effects, since the lifetime distribution of the
remaining components may change after the failure of some component.

In order to illustrate the notion of sequential order statistics we introduce
them first intuitively by means of a triangular scheme of random variables. In
line r we consider n� r þ 1 random variables indicating that r � 1 compo-
nents previously failed. A formal definition of sequential order statistics is
given in Section 2.
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Let F1; . . . ; Fn be continuous distribution functions and let

zð1Þ1;n � zð2Þ1;n�1 � � � � � zðn�1Þ1;2 be real numbers. Consider a triangular scheme

ðZðiÞj Þ1�i�n;1�j�n�iþ1 of random variables. The i-th failure time is modelled by

the minimum

X ðiÞ� ¼ minfZðiÞ1 ; . . . ; ZðiÞn�iþ1g; 1 � i � n;

where ZðiÞ1 ; . . . ; ZðiÞn�iþ1 are assumed to be conditionally independent given the
previous failure time X ði�1Þ� ¼ zði�1Þ1;n�iþ2.

ZðiÞ1 ; . . . ; ZðiÞn�iþ1 are supposed to be distributed according to the left trun-
cated distribution function

Fið�Þ � Fiðzði�1Þ1;n�iþ2Þ
1� Fiðzði�1Þ1;n�iþ2Þ

; 1 � i � n; zð0Þ1;nþ1 ¼ �1;

which is given by Fi truncated at the occurrence time zði�1Þ1;n�iþ2 of the ði� 1Þ-th
failure in the system.

Ordinary order statistics describing (ordinary) k-out-of-n systems are
contained in the model of sequential order statistics by the specific choice
F1 ¼ . . . ¼ Fn. In this sense ordinary k-out-of-n systems can be viewed as
particular sequential k-out-of-n systems. For more details we refer to Kamps
(1995a, Chap. I.1) and Cramer and Kamps (1996, 2001b).

The model of sequential order statistics is closely connected to several
other models of ordered random variables (see Table 1.1). In its general form
the model coincides with Pfeifer’s record model (cf. Pfeifer 1982a, b) in the
distribution theoretical sense [cf. Kamps (1995a), p. 29]. The specific choice of
distribution functions

FiðtÞ ¼ 1� ð1� F ðtÞÞai ; t 2 R; 1 � i � n;

with a distribution function F and positive real numbers a1; . . . ; an, leads to
the model of generalized order statistics with parameters cr ¼ ðn� r þ 1Þar,

Table 1.1. Models of ordered random variables and their correspondence (for details see Cramer
and Kamps 2001b).

cn ¼ k cr mr

ð1 � r � n� 1Þ ð1 � r � n� 1Þ
sequential order
statistics

an ðn� r þ 1Þar ðn� r þ 1Þar � ðn� rÞarþ1 � 1

generalized order
statistics

k k þ n� r þ
Pn�1

j¼r
mj mr

ordinary order
statistics

1 n� r þ 1 0

progressive type II

censored order
statistics

Rn þ 1 N � r þ 1�
Pr�1

i¼1
Ri

¼ n� r þ 1þ
Pn

i¼r
Ri

Rr ð2 N0Þ

record values 1 1 �1
Pfeifer’s record
values

bn br br � brþ1 � 1
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1 � r � n. They serve as a unified approach to a variety of models of ordered
random variables (see Kamps, 1995a,b, 1999), such as ordinary order sta-
tistics, order statistics with nonintegral sample size (i.e., fractional order
statistics, cf. Stigler 1977, Rohatgi and Saleh 1988), progressively type II
censored order statistics (cf. Balakrishnan and Aggarwala 2000), record
values (cf. Arnold et al. 1998), kth record values (cf. Dziubdziela and Kop-
ociński 1976), and kn records from nonidentical distributions.

The concept of generalized order statistics enables a common approach to
structural similarities and analogies. Known results in submodels can be sub-
sumed, generalized, and integrated within a general framework. Well-known
distributional and inferential properties of ordinary order statistics and record
values turn out to remain valid for generalized order statistics (cf.Kamps 1995a,
Cramer and Kamps 2001b). Thus, the concept of generalized order statistics
provides a large class of models with many interesting and useful properties for
both the description and the analysis of practical problems.

Due to this reason, the question arises whether the distribution theory of
sequential order statistics as well as their properties can be obtained by
analogy with ordinary order statistics, which have been extensively investi-
gated in the literature (cf. David 1981; Arnold et al. 1992, Balakrishnan and
Rao, 1998a,b, Goldie and Maller 1999).

Although some work has been done in this area, representations for the
marginal distributions of generalized order statistics (and of sequential order
statistics) are only available in particular cases. For instance, results for or-
dinary order statistics and record values are well-known. Moreover, Nasri-
Roudsari (1996) proved that the marginal distribution of fractional order
statistics can be written in terms of the incomplete Beta function ratio. In
terms of generalized order statistics we may choose the positive parameters ci,
1 � i � n, according to ci � ciþ1 � 1 ¼ mi with m1 ¼ � � � ¼ mr�1 w.r.t. the r-th
marginal distribution to obtain useful results (see Kamps 1995a). Supposing
that the parameters cr ¼ ðn� r þ 1Þar, 1 � r � n, are pairwise different, i.e.,

ci 6¼ cj for all 1 � i; j � n; i 6¼ j; ð1Þ
Kamps and Cramer (2001) present explicit expressions. They can be applied,
e.g., in the model of progressive type II censoring.

In this paper, we present in Section 2 a simple iterative, modified defini-
tion of sequential order statistics. This leads to expressions for marginal
distributions of sequential order statistics in terms of the so-called relevation
transform (cf. Krakowski, 1973). In Section 3, these results are applied to
derive marginal distributions of generalized order statistics. It turns out that
generalized order statistics are related to the product of independent Beta
random variables. This observation enables us to obtain a representation of
the distribution function in terms of a so-called Meijer’s G-function. Section 4
contains applications of the results in the areas of recurrence relations,
bounds on moments, and reliability properties.

2 Sequential order statistics

Let F be a distribution function and let its quantile function F �1 : ½0; 1� ! R
be defined by
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F �1ðyÞ ¼ inffx : F ðxÞ � yg; y 2 ð0; 1Þ;
and F �1ð0Þ ¼ limy!0þ F �1ðyÞ, F �1ð1Þ ¼ limy!1� F �1ðyÞ.

Sequential order statistics have been introduced as follows (cf. Kamps,
1995a, Chap. I.1):

Definition. 2.1 Let F1; . . . ; Fn be distribution functions with F �11 ð1Þ � � � �
� F�1n ð1Þ, and let ðY ðrÞj Þ1�r�n;1�j�n�rþ1 be independent random variables with
Y ðrÞj � Fr, 1 � j � n� r þ 1, 1 � r � n.

Let X ð1Þj ¼ Y ð1Þj , 1 � j � n, X ð1Þ� ¼ minfX ð1Þ1 ; . . . ;X ð1Þn g, and, for 2 � r � n,
let

X ðrÞj ¼ F �1r fFrðY ðrÞj Þ½1� FrðX ðr�1Þ� Þ� þ FrðX ðr�1Þ� Þg;
X ðrÞ� ¼ min

1�j�n�rþ1
X ðrÞj :

Then, the random variables X ð1Þ� ; . . . ;X ðnÞ� are called sequential order statistics
(based on F1; . . . ; Fn).

Formally, there is no necessity of imposing further assumptions on
F1; . . . ; Fn. However, in view of interpretation and handling, continuity of the
distribution functions is useful.

The definition of sequential order statistics simplifies due to the fact that
the function Fr and its quantile function F �1r are increasing. Let
F
�1
r ¼ F �1r ð1� �Þ and F r ¼ 1� Fr be the survival function of the distribution

function Fr. For r � 2, we obtain

X ðrÞ� ¼ min
1�j�n�rþ1

F �1r fFrðY ðrÞj Þ½1� FrðX ðr�1Þ� Þ� þ FrðX ðr�1Þ� Þg

¼ F �1r fFrð min
1�j�n�rþ1

Y ðrÞj Þ½1� FrðX ðr�1Þ� Þ� þ FrðX ðr�1Þ� Þg

¼ F �1r fFrðZðrÞÞ½1� FrðX ðr�1Þ� Þ� þ FrðX ðr�1Þ� Þg
¼ F �1r f1� F rðZðrÞÞF rðX ðr�1Þ� Þg

¼ F
�1
r fF rðZðrÞÞF rðX ðr�1Þ� Þg;

where ZðrÞ ¼ min
1�j�n�rþ1

Y ðrÞj . The distribution function of ZðrÞ is given by

1� F
n�rþ1
r and, if Fr is continuous, FrðZðrÞÞ is distributed as U1;n�rþ1 which is

the minimum of n� r þ 1 iid random variables with a standard uniform
distribution. Hence, F rðZðrÞÞ is distributed as Un�rþ1;n�rþ1 which is Beta dis-
tributed with parameters n� r þ 1 and 1.

Defining X ðrÞ� via

X ðrÞ� ¼ F
�1
r fVrF rðX ðr�1Þ� Þg; Vr � Betaðn� rþ 1; 1Þ; 2 � r � n; ð2Þ

one may drop the continuity assumption to obtain a modified definition of
sequential order statistics. In the case of continuity of F1; . . . ; Fn, it coincides
with Definition 2.1.

Definition 2.2. Let F1; . . . ; Fn be distribution functions with F �11 ð1Þ � � � �
� F�1n ð1Þ, and let V1; . . . ; Vn be independent random variables with
Vr � Betaðn� rþ 1; 1Þ, 1 � r � n.

296 E. Cramer, U. Kamps



Then the random variables

X ðrÞ� ¼ F �1r ðX ðrÞÞ with X ðrÞ ¼ 1�VrF rðX ðr�1Þ� Þ; 1� r� n; X ð0Þ� ¼�1;
are called sequential order statistics (based on F1; . . . ; Fn).

Other classes of random variables may be introduced by applying the
defining equation of Definition 2.2 to random variables V1; . . . ; Vn with other
distributions.

The preceding recursion can be visualized as in Figure 1, where Fr is
assumed to be strictly increasing and continuous such that F �1r ð1� �Þ is the
inverse function of F r (F

�1
r is just a notation otherwise).

By the recursive definition of sequential order statistics it is directly seen
that X ð1Þ� ; . . . ;X ðnÞ� form a Markov chain with transition probabilities ðr � 2)

P ðX ðrÞ� � tjX ðr�1Þ� ¼ xÞ ¼ 1� F rðtÞ
F rðxÞ

� �n�rþ1

; x � t; FrðxÞ < 1

(cf. Kamps, 1995a, p. 29).
This knowledge enables us to establish a formula for the joint distribution

of the first r sequential order statistics.

Theorem 2.3. Let X ð1Þ� ; . . . ;X ðnÞ� be sequential order statistics based on abso-
lutely continuous distribution functions F1; . . . ; Fn with density functions
f1; . . . ; fn.

Then, the joint density of the r first sequential order statistics X ð1Þ� ; . . . ;X ðrÞ�
is given by

Fig. 1. Recursive construction of sequential order statistics.
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fX ð1Þ� ;...;X ðrÞ�
ðx1;...;xrÞ

¼ n!

ðn�rÞ!f1ðx1ÞF
n�1
1 ðx1Þ

Yr

j¼2

fjðxjÞ
F jðxj�1Þ

� F jðxjÞ
F jðxj�1Þ

� �n�j
" #

; x1< ���<xr; 1�r�n;

where
Q1

j¼2½� � �� ¼ 1.

Proof. Let r � 2. From the Markov chain property we conclude by an
induction argument and the definition of X ð1Þ� that

fX ð1Þ� ;...;X ðrÞ�
ðx1;...;xrÞ ¼ fX ð1Þ� ;...;X ðr�1Þ�

ðx1;...;xr�1ÞfX ðrÞ� jX
ðr�1Þ
�
ðxrjxr�1Þ

¼ f
X ð1Þ� ;...;X ðr�1Þ�

ðx1;...;xr�1Þ�
frðxrÞ

F rðxr�1Þ
�ðn�rþ1Þ F rðxrÞ

F rðxr�1Þ

� �n�r

:

n

By choosing F1 ¼ � � � ¼ Fr ¼ F , say, we obtain the joint density of ordinary
order statistics X1;n; . . . ;Xr;n based on F :

2.1 Representations of marginal distribution functions

Applying Definition 2.2 we obtain the following recursion formula for the
marginal distribution functions F�;1; . . . ; F�;n of the sequential order statistics
X ð1Þ� ; . . . ;X ðnÞ� .

Lemma 2.4.

F�;1ðtÞ¼1�ð1�F1ðtÞÞn;

F�;rðtÞ¼
F�;r�1ðtÞ�F

n�rþ1
r ðtÞ

R t
�1

1

F
n�rþ1
r ðzÞ

dF�;r�1ðzÞ; if FrðtÞ<1;

1; if FrðtÞ¼1;

8
<

:
2�r�n:

Proof. The representation of F�;1 is obvious. The derivation of the distribu-
tion functions for r � 2 proceeds as follows. Let t 2 R with F rðtÞ > 0 such
that F rðzÞ > 0 for z < t.

F�;rðtÞ ¼ P ðX ðrÞ� � tÞ

¼ P ðVrF rðX ðr�1Þ� Þ � F rðtÞÞ

¼
Z 1

�1
PðVrF rðX ðr�1Þ� Þ � F rðtÞjX ðr�1Þ� ¼ zÞ d F�;r�1ðzÞ

¼
Z 1

�1
PðVrF rðzÞ � F rðtÞÞ d F�;r�1ðzÞ

¼
Z t

�1
P Vr �

F rðtÞ
F rðzÞ

� �

d F�;r�1ðzÞ
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¼
Z t

�1
1� F rðtÞ

F rðzÞ

� �n�rþ1( )

d F�;r�1ðzÞ

¼ F�;r�1ðtÞ � F
n�rþ1
r ðtÞ

Z t

�1

1

F
n�rþ1
r ðzÞ

d F�;r�1ðzÞ:

For F rðtÞ ¼ 0 we obtain F�;rðtÞ ¼ P ðF rðX ðrÞ� Þ � 0Þ ¼ 1: n

Remark 2.5. From the preceding lemma we conclude that the corresponding
distribution functions of sequential order statistics can be viewed as relevation
transforms which were introduced by Krakowski (1973). The relevation
transform F #G of survival functions F and G is defined by the Lebesgue-
Stieltjes integral

ðF #GÞðtÞ ¼ F ðtÞ �
Z t

�1

GðtÞ
GðuÞ

dF ðuÞ; t 2 R;

(cf. Lau and Prakasa Rao 1990). In view of Lemma 2.4, we obtain the repre-
sentation

F �;rðtÞ ¼ F �;r�1ðtÞ �
Z t

�1

F
n�rþ1
r ðtÞ

F
n�rþ1
r ðzÞ

dF �;r�1ðzÞ; t 2 R:

Hence, we can write the survival function of the r-th sequential order statistic
as relevation transform

F �;r ¼ F �;r�1#F
n�rþ1
r : ð3Þ

Lemma 2.4. leads to a simple representation of the density function of the
r-th sequential order statistic.

Corollary 2.6. Let Fr be an absolutely continuous distribution function with
density function fr: The distribution function of the ðr � 1Þ-th sequential order
statistic F�;r�1 is assumed to be absolutely continuous with density function
f�;r�1:

Then, the density function of the r-th sequential order statistic is given by

f�;rðtÞ ¼ ðn� r þ 1Þ frðtÞ
F rðtÞ

fF �;rðtÞ � F �;r�1ðtÞg; t 2 R: ð4Þ

The above relation is well known in the case of ordinary order statistics (see
David and Shu, 1978).

3 Generalized order statistics

In this section we consider a particular choice of the distribution functions Fr.
Namely, let

FrðtÞ ¼ 1� ð1� F ðtÞÞcr=ðn�rþ1Þ; r ¼ 1; . . . ; n; ð5Þ
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with a continuous distribution function F and positive numbers c1; . . . ; cn. In
this specific setup sequential order statistics can be viewed as generalized order
statistics and vice versa (cf. Kamps, 1995a, p. 56). Many well known models of
ordered random variables are included (see Table 1.1) Let ~ccr ¼ cr=ðn� r þ 1Þ.
Then the quantile function F �1r of Fr can be written in terms of F �1 as

F �1r ðzÞ ¼ F �1ð1� ð1� zÞ1=~ccrÞ:
In the situation of the preceding definition and by using the representation for
F �1r , sequential order statistics based on distribution functions (5) are defined
as follows (r � 2):

X ðrÞ� ¼ F �1r ½1� VrF rðX ðr�1Þ� Þ�

¼ F �1r ½1� VrF
~ccrðX ðr�1Þ� Þ�

¼ F �1½1� V 1=~ccr
r F ðX ðr�1Þ� Þ�

¼ F
�1½V 1=~ccr

r F ðX ðr�1Þ� Þ�:
Hence, sequential order statistics based on a distribution function F and
numbers c1; . . . ; cn are iteratively defined by (r � 2)

X ðrÞ� ¼ F
�1½V 1=~ccr

r F ðX ðr�1Þ� Þ�: ð6Þ
In terms of the relevation transform we obtain the recurrence relation

F �;1 ¼ F
c1 ; F �;r ¼ F �;r�1#F

n�rþ1
r ¼ F �;r�1#F

cr ; r � 2: ð7Þ
for the marginal distribution functions of generalized order statistics. If we
choose cj ¼ 1, j ¼ 1; . . . ; n, the recursion reads F �;r ¼ F �;r�1#F . This result is
well-known in the setting of record values. In the case of ordinary order
statistics, the parameters are given by cr ¼ n� r þ 1, 1 � r � n, so that
F �;r ¼ F �;r�1#F

n�rþ1
. Hence, the survival function F r;n of an ordinary order

statistic can be viewed as a relevation transform, too.
In case of an underlying exponential distribution F ðtÞ ¼ 1� expð�tÞ,

t � 0, we obtain the representation

X ðrÞ� ¼
Xr

j¼1
ZðjÞ

of sequential order statistics (cf. Cramer and Kamps, 2001a), where
Zð1Þ; . . . ; ZðrÞ are independent and ZðjÞ has an exponential distribution with
parameter cj, 1 � j � r. Hence, generalized order statistics from exponential
distributions are sums of independent random variables with possibly non-
identical exponential distributions. The distribution of ðZð1Þ; Zð1Þþ
Zð2Þ; . . . ;

Pn
j¼1 ZðjÞÞ is the same as that of order statistics from a Weinman

multivariate exponential distribution (cf. Cramer and Kamps, 1997).
Applying recursion (6), we obtain the following theorem.

Theorem 3.1. Let X ð1Þ� ; . . . ;X ðnÞ� be sequential order statistics based on a
continuous distribution function F and positive numbers c1; . . . ; cn. Let

W1 ¼ V 1=eccr
1 and, for r � 2, Wr ¼ V 1=~ccr

r F ðX ðr�1Þ� Þ with eccr ¼ c1=ðn� r þ 1Þ and Vr

as in (2) and (6).
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Then, Wr ¼
Qr

j¼1
Bj, r � 1, X ð0Þ� ¼ �1, and

X ðrÞ� ¼ F
�1 Yr

j¼1
Bj

 !

; ð8Þ

where Br ¼ V 1=~ccr
r , 1 � r � n, are independent power-function distributed ran-

dom variables with parameters c1; . . . ; cn and 1.

Proof. Since Vr � Betaðn� r þ 1; 1Þ the random variable Br is power-func-
tion distributed with parameter cr, 1 � r � n.

With the notations of the theorem, relation (6) yields X ðrÞ� ¼ F
�1ðWrÞ.

Since F is supposed to be continuous we obtain directly from (6)

Wr ¼ BrWr�1; r � 1; W0 ¼ 1;

with Br ¼ V 1=~ccr
r � Betaðcr; 1Þ. This leads directly to the representation

Wr ¼
Yr

j¼1
Bj; r � 1: n

Remark 3.2. Theorem 3.1 in combination with (7) shows that the distribution of
the product of Beta random variables can be seen as relevation transform.
Moreover, this product representation illustrates that the distribution of X ðrÞ� does
not depend on the ordering of the parameters c1; . . . ; cr (see also (8)). This can
also be deduced from a result for the relevation transform given by Krakowski
(1973, p. 110), stating that F #G ¼ G#F iff G ¼ F

a
for some positive number a.

Theorem 3.1 allows us to derive directly a result concerning the behaviour
of normalized spacings from generalized order statistics if the underlying
distribution is an exponential one. From (8) we obtain the equation
X ðrÞ� ¼

Pr
j¼1ð� lnBjÞ leading to

crðX ðrÞ� � X ðr�1Þ� Þ ¼ �cr lnBr � Expð1Þ
(see Kamps, 1995a, Theorem 3.3.5). References in particular cases, e.g., or-
dinary order statistics and record values, are provided by Kamps (1995a,
p. 80/1) and Sukhatme (1937) (cf. Rényi, 1953).

Example 3.3. Subsequently, we consider two particular cases of Theorem 3.1.

1. In the case cj ¼ k, j ¼ 1; . . . ; n, generalized order statistics coincide in the
distribution theoretical sense with k-records introduced by Dziubdziela
and Kopociński (1976) (see also Kamps, 1995a, p. 52). If we assume that
F belongs to a standard uniform distribution, the preceding theorem
yields that

1� X ðrÞ� ¼
Yr

j¼1
Bj with Bj � Betaðk; 1Þ:

This result is similar to the one derived byRider (1955) andRahman (1964).
They illustrate that the probability density function of the product X ðkÞ1 � � �
X ðkÞr of r independent random variables which aremaxima of k independent
and standard uniformly distributed random variables is given by
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fkðtÞ ¼
kr

CðrÞ t
k�1ð� ln tÞr�1; t 2 ð0; 1Þ;

(see also David, 1981, p. 27). Hence, a simple linear transformation of
sequential order statistics from rectangular distributions, i.e., 1� X ðrÞ� ,
can be seen as such a product. The density function of the r-th k-record
from a rectangular distribution is given by

effkðtÞ ¼
kr

CðrÞ ð1� tÞk�1ð� lnð1� tÞÞr�1; t 2 ð0; 1Þ:

Applying the quantile transformation, we arrive at the result of
Dziubdziela and Kopociński (1976).

2. Nasri-Roudsari (1996) presents a representation for the distribution
function of the r-th generalized order statistic X ðrÞ� , 1 � r � n, when the
numbers c1; . . . ; cn have a specific structure, i.e., cj ¼ k þ ðn� jÞðmþ 1Þ,
k > 0, m > �1, j ¼ 1; . . . ; n. In order to prove this result Nasri-Roudsari
(1996) makes use of some identities of hypergeometric functions. We
obtain the result directly from Theorem 3.1 which yields in this particular
setting

Wr ¼
Yr

j¼1
Bj; Bj � Betaðk þ ðn� jÞðmþ 1Þ; 1Þ:

Introducing the notations j ¼ k=ðmþ 1Þ and Cj ¼ Bmþ1
j , we obtain

Wr ¼
Yr

j¼1
Cj

" #1=ðmþ1Þ

; Cj � Betaðjþ n� j; 1Þ:

Using a result of Rao (1949) (see also Jambunathan 1954, Kotlarski 1962,
Fan 1991, and Johnson et al. 1995, p. 257) we getQr

j¼1 Cj � Betaðjþ n� r; rÞ. Hence, the distribution function of Wr is
given by the incomplete Beta function ratio
FWrðtÞ ¼ Itmþ1ðjþ n� r; rÞ ¼ 1� I1�tmþ1ðr; jþ n� rÞ

¼ 1

Bðr; jþ n� rÞ

Z 1

1�tmþ1
zr�1ð1� zÞjþn�r�1dz; t 2 ð0; 1Þ:

Applying the quantile transformation F �1 to 1� Wr, we obtain the repre-
sentation derived in Nasri-Roudsari (1996).

Mathai and Saxena (1973, Section 5.2 and Chapter VI) point out the
appearance of products of independent Beta variates in a number of statis-
tical problems. The respective density function can be expressed in terms of a
particular Meijer’s G-function (see also Mathai, 1993, Section 2.3.4).

Thus, Theorem 3.1 allows us to derive the distribution function of the r-th
generalized order statistic via some Meijer’s G-function which is defined by
the Mellin-Barnes type integral

Gm;n
p;q s

a1; . . . ;ap

b1; . . . ;bq

�
�
�
�

� �

¼ 1

2pi

Z

L

Qm
j¼1Cðbj� zÞ

Qn
j¼1Cð1�ajþ zÞ

Qq
j¼mþ1Cð1�bjþ zÞ

Qp
j¼nþ1Cðaj� zÞs

zdz; jsj< 1:

ð9Þ
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where L is an appropriately chosen integration path. For detailed accounts on
Meijer’s G-functions, we refer to Erdélyi et al. (1953, Chapters 5.3–5.6), Luke
(1969, Chapters V/VI), Mathai and Saxena (1973) and Mathai (1993). The
relation to products of Beta distributed random variables is discussed in
Springer (1979) and Mathai (1993). In our setup, the integrand of the Meijer’s
G-function cancels down and we obtain

Gr;0
r;r s

c1; . . . ; cr
c1 � 1; . . . ; cr � 1

�
�
�
�

� �

¼ 1

2pi

Z

L

sz
Qr

j¼1ðcj � 1� zÞ dz: ð10Þ

Since gðzÞ ¼ sz, z 2 C, is a holomorphic function on the complex plane the
preceding integral can be evaluated by summing up the residues at cj � 1,
j ¼ 1; . . . ; r, where two or more of these values may coincide.

From these results and relation 8, an integral representation of the dis-
tribution function F�;r results

F�;rðtÞ ¼ 1�
Yr

j¼1
cj

 !Z F ðtÞ

0

Gr;0
r;r s

c1; . . . ; cr
c1 � 1; . . . ; cr � 1

�
�
�
�

� �

d s; t 2 R: ð11Þ

If the underlying distribution function F is absolutely continuous the density
function of the r-th generalized order statistic is given by

f�;rðtÞ ¼
Yr

j¼1
cj

 !

Gr;0
r;r F ðtÞ c1; . . . ; cr

c1 � 1; . . . ; cr � 1

�
�
�
�

� �

f ðtÞ; t 2 R:

Although the preceding representation is useful to derive some properties of the
distribution function F�;r (see next section), it contains complex integrationwith
respect to an integration path. Applying (11), a closed form representation for
the distribution function of the r-th generalized order statistic can be derived.
The proof is carried out similar to the one given in Springer and Thompson
(1970) for Beta distributions with integral parameters aj and bj, and is therefore
omitted. In order to simplify the notation let, without loss of generality,

c1¼ � � � ¼ cd1< cd1þ1¼ � � � ¼ cd1þd2< � � �<cd1þd2þ���þd‘�1þ1¼ � � � ¼cd1þd2þ���þd‘

with an integer ‘ 2 f1; . . . ; rg and dj ¼ cd1þd2þ���þdj
, j ¼ 1; . . . ; ‘. Then,

d1 < � � � < d‘ and di denotes the multiplicity of di in the sequence ðc1; . . . ; crÞ.

Theorem 3.4 1. Let ‘ ¼ 1, i.e., c1 ¼ � � � ¼ cr.

Then,

F�;rðtÞ ¼ 1� 1

ðr � 1Þ! C r;�c1 ln F ðtÞ
� �

;

where

Cðr; zÞ ¼
Z 1

z
yr�1 expð�yÞd y

denotes the incomplete gamma function.
2. Let ‘ � 2. The distribution function F�;r of the r-th generalized order

statistic is given by
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F�;rðtÞ ¼ 1�
Yr

j¼1
cj

 !
X‘

v¼1

Xdv�1

j¼0

Kvj

ddv�j
v ðdv � 1� jÞ!j!

Cðdv � j;�dv ln F ðtÞÞ;

where Kv0 ¼
Q‘

q¼1;q6¼vðdq � dvÞ�dq ,

Kvj ¼
Xj�1

p¼0

X‘

q¼1;q 6¼v

ð�1Þpþ1 j� 1
p

� �
p!dq

ðdq � dvÞpþ1
Kv;j�1�p; j � 1: ð12Þ

Remark 3.5. 1. Considering the transformation � lnWr, we obtain that

� lnWr ¼ � ln
Yr

j¼1
Bj ¼

Xr

j¼1
ð� lnBjÞ

is the sum of independent and exponentially distributed random variables
with parameters c1; . . . ; cr > 0. Supposing that all parameters c1; . . . ; cr are
different, the following representation of the distribution function of
X ðrÞ� ¼ F

�1ðWrÞ holds:

F�;rðtÞ ¼ 1� ð�1Þr�1
Yr

j¼1
cj

 !
Xr

j¼1
c�1j

Yr

v¼1;v 6¼j

ðcj � cvÞ�1
 !

F
cjðtÞ; t 2 R

(cf. Likeš, 1967; Kamps, 1990; Kamps and Cramer, 2001). This type of
distribution is called hyperexponential distribution. A review on this topic
including various applications of hyperexponential distributions is provided
by Botta et al. (1987). If some of the c0s are equal, the distribution of
)lnWr can be found in Scheuer (1988) who proves the result by Laplace
transforms.

2. Similar distributional problems arise in the study of the likelihood ratio
criterion for testing regression coefficients under a normal distribution
assumption (cf. Anderson, 1984, pp. 298–308).

3. Representations for the distribution of the product of independent Beta
random variables were derived by Lomnicki (1969). For recent results on
closed form expressions of the cumulative distribution function as well as the
density function for general parameters we refer to Dennis III (1994).

4 Applications

Some selected applications of the above theory are shown in this section. The
results are well known in particular submodels of generalized order statistics.

4.1 Moments and conditional distributions of generalized order statistics

The first result is an immediate consequence of Theorem 3.1. It can be utilized
to obtain lower (upper) bounds for the expectation of the r-th generalized
order statistic (cf. Cramer et al., 2002a, b).

Theorem 4.1. The moments of order a of the r-th generalized order statistic are
given by
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EðX ðrÞ� Þ
a ¼

Yr

j¼1
cj

 !Z 1

0

ðF �1ðsÞÞaGr;0
r;r 1� s

c1; . . . ; cr
c1 � 1; . . . ; cr � 1

�
�
�
�

� �

d s;

where ðF �1ðsÞÞa, s 2 ð0; 1Þ, is assumed to be well defined.
The following theorem extends and simplifies a result for generalized order

statistics given by Kamps (1995a, p. 159). In case of ordinary order statistics,
the result is given in Blom (1958, p. 68) and Arnold and Balakrishnan (1989,
p. 58). The result for progressively type II censored order statistics can be
found in Balakrishnan et al. (2001).

Theorem 4.2. Let a > 0, F
�1ð0Þ � 0, and ðF �1Þa be convex (concave) on

ð0; 1Þ. Then, the lower (upper) bound

EðX ðrÞ� Þ
a �
ð�Þ

F
�1 Yr

j¼1

cj

cj þ 1

 !" #a

holds.

Proof. From (8), we obtain by Jensen’s inequality

EðX ðrÞ� Þ
a ¼ E F

�1 Yr

j¼1
Bj

 !" #a

�
ð�Þ

F
�1

E
Yr

j¼1
Bj

 ! !" #a

:

Since the random variables Bj, 1 � j � r, are independent and Betaðcj; 1Þ-
distributed the right hand side simplifies to Eð

Qr
j¼1 BjÞ ¼

Qr
j¼1 EðBjÞ

¼
Qr

j¼1
cj

cjþ1
.

Another application of Theorem 3.1 leads to a generalization of a result
which is well known for ordinary order statistics (cf. Arnold et al., 1992,
Theorem 2.4.1, p. 23).

Theorem 4.3 Let x 2 R, 1 � s < r and let X ðrÞ� , X ðsÞ� be generalized order sta-
tistics based on a continuous distribution function F and parameters c1; . . . ; cr.

Then, the distribution P X ðrÞ� jX
ðsÞ
� ¼x coincides with the distribution of a gener-

alized order statistic based on a distribution function Fx and parameters
csþ1; . . . ; cr. The distribution function Fx is obtained from F by truncation on the
left at x, i.e.,

FxðtÞ ¼ 1� F ðtÞ
F ðxÞ

� �

1½x;1ÞðtÞ; t 2 R:

4.2 Recurrence relations for distribution functions of generalized order statistics

First we deduce a recurrence relation for distribution functions of generalized
order statistics, and, thus, for density functions and for moments as well. In
the particular case of order statistics ðcj ¼ n� jþ 1, 1 � j � nÞ the relation is
well-known and is nothing but a recurrence relation for the incomplete Beta
function (cf. David 1981, p. 46/7). For specific choices of the parameters, we
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refer to Kamps (1995a, Chap. I.3) and to Kamps and Cramer (2001). For-
mulae for the derivative of a G-function (Mathai, 1993, Properties 2.14 and
2.15, p. 94) together with a formula on dimension reduction (Mathai 1993,
Property 2.2) imply

ðcr � c1ÞGr;0
r;r z

c1; . . . ; cr

c1 � 1; . . . ; cr � 1

�
�
�
�

� �

¼ Gr�1;0
r�1;r�1 z

c1; . . . ; cr�1

c1 � 1; . . . ; cr�1 � 1

�
�
�
�

� �

� Gr�1;0
r�1;r�1 z

c2; . . . ; cr

c2 � 1; . . . ; cr � 1

�
�
�
�

� �

:

Applying (11), we obtain

Theorem 4.4 Let F ðc1;...;csÞ�;s denote the distribution function of a generalized or-
der statistic based on a continuous distribution function F and positive param-
eters c1; . . . ; cs.

Then,

ðcr � c1ÞF ðc1;...;crÞ
�;r ðtÞ ¼ crF

ðc1;...;cr�1Þ
�;r�1 ðtÞ � c1F

ðc2;...;crÞ
�;r�1 ðtÞ; t 2 R:

4.3 Reliability properties of generalized order statistics

A well-known result for ordinary order statistics states that the IFR-property
(increasing failure rate) is preserved under the ordering operation (cf. Barlow
and Proschan, 1965, p. 38). We extend this result to the case of generalized
order statistics.

Let F be a distribution function with F ð0Þ ¼ 0. Then, F is said to have the
IFR-property iff the ratio

F ðt þ xÞ � F ðtÞ
F ðtÞ

is increasing in t for x > 0, t � 0 such that F ðtÞ < 1.
It should be mentioned that IFR distribution functions are absolutely

continuous and, thus, continuous on the set ft 2 R : F ðtÞ < 1 (cf. Barlow and
Proschan, 1975, p. 77). If the right endpoint xðF Þ of the support of F is finite
then the distribution function F may have a jump at xðF Þ.

Theorem 4.5. Let F be an IFR-distribution function and let F�;r be the distri-
bution function of the r-th generalized order statistic based on F and parameters
c1; . . . ; cr.

Then, F�;r is an IFR-distribution.

Proof. Let F ðrÞ denote the distribution function of the convolution of r
independent, exponentially distributed random variables with parameters
c1; . . . ; cr > 0. The exponential distribution has the IFR-property, and, thus,
F ðrÞ is IFR (cf. Barlow and Proschan, 1965, p. 36). From (8), we obtain

F�;r ¼ F ðrÞ � ð� ln F Þ:
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According to Theorem 4.1 of Barlow and Proschan (1965, p. 25), F�;r is an
IFR distribution iff ln F �;r is concave on T ¼ ft � 0 : F�;rðtÞ < 1g.

A Meijer’s G-function is a nonnegative analytic function (cf. Erdélyi et al.,
1953, p. 208), and, thus, it is a continuous function. Equation (11) and the
continuity yield F�;rðtÞ < 1 provided that F ðtÞ < 1. Hence, T ¼ ft � 0 :
F ðtÞ < 1g.

By assumption, F is IFR so that ln F is concave on T , i.e., H ¼ � ln F is
convex on T . Moreover, Hr ¼ � ln F

ðrÞ
is convex and increasing. Summing

up, Hr � H is a convex function on T (see Rockafellar, 1970, Theorem 5.1,
p. 32). Therefore, �Hr � H ¼ ðln F

ðrÞÞ � ð� ln F Þ ¼ ln F �;r is concave on T ,
proving that F�;r is an IFR-distribution. n

Remark 4.6. As mentioned before, the result of Theorem 4.5 has been proved
by Barlow and Proschan (1965) in the case of ordinary order statistics. Gupta
and Kirmani (1988) establish the result for record values. Kamps (1995a,
Remark 1.6, p. 172) points out that the result remains true for generalized
order statistics with a certain restriction imposed on the parameters c1; c2; . . .

The IFR-property is often given in terms of the hazard rate

kðtÞ ¼ gðtÞ
GðtÞ

with some distribution function G and its density function g, i.e., k is an
increasing function in t.

Remark 4.7. The hazard rate k�;r of the r-th generalized order statistic X ðrÞ�
based on an absolutely continuous distribution function F with density function f
is given by

k�;rðtÞ ¼ kðtÞhrðF ðtÞÞ; t 2 R;

where kðtÞ ¼ f ðtÞ
F ðtÞ denotes the hazard rate function of F. hr is defined by

hrðzÞ ¼
zGr;0

r;r z
c1; . . . ; cr

c1 � 1; . . . ; cr � 1

�
�
�
�

� �

R z
0 Gr;0

r;r s
c1; . . . ; cr

c1 � 1; . . . ; cr � 1

�
�
�
�

� �

d s
; z 2 ð0; 1Þ:

From Theorem 4.5 we know that the r-th generalized order statistic is IFR if the
underlying distribution is a standard exponential one. In this setting, we have
kðtÞ ¼ 1 and k�;rðtÞ ¼ hrðe�tÞ which is increasing in t because of the IFR-
property. Hence, hrðzÞ is decreasing in z.

The next theorem proves that the hazard rates of the r-th and the ðr � 1Þ-
th generalized order statistics are ordered according to k�;r�1ðtÞ � k�;rðtÞ. It
extends a result of Baxter (1982, p. 326) who has considered record values in
terms of the relevation transform.

Theorem 4.8. Let X ðrÞ� and X ðr�1Þ� be generalized order statistics based on an
absolutely continuous distribution function F with density function f and
parameters c1; . . . ; cr.
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The hazard rates of the r-th and the ðr � 1Þ-th generalized order statistics
are ordered according to k�;r�1ðtÞ � k�;rðtÞ, 0 � t < F �1ð1Þ.

Proof. By applying relation (4) and noticing that F rðtÞ ¼ F
cr=ðn�rþ1ÞðtÞ, we

find

k�;rðtÞ ¼
f�;rðtÞ
F �;rðtÞ

¼ ðn� r þ 1Þ frðtÞ
F rðtÞ

1� F �;r�1ðtÞ
F �;rðtÞ

� �

¼ kðtÞ cr �

R F ðtÞ
0 Gr�1;0

r�1;r�1 s
c1; . . . ; cr�1

c1 � 1; . . . ; cr�1 � 1

�
�
�
�

� �

d s

R F ðtÞ
0 Gr;0

r;r s
c1; . . . ; cr

c1 � 1; . . . ; cr � 1

�
�
�
�

� �

d s

0

B
B
B
@

1

C
C
C
A
:

On the other hand, we have the relation k�;rðtÞ ¼ kðtÞhrðF ðtÞÞ. Moreover, hr is
a decreasing function such that h0rðzÞ � 0, z 2 ð0; 1Þ. Hence, we conclude from
the above alternative representation of hr that

Gr�1;0
r�1;r�1 z

c1; . . . ; cr�1
c1 � 1; . . . ; cr�1 � 1

�
�
�
�

� � Z z

0

Gr;0
r;r s

c1; . . . ; cr
c1 � 1; . . . ; cr � 1

�
�
�
�

� �

d s

�Gr;0
r;r z

c1; . . . ; cr
c1 � 1; . . . ; cr � 1

�
�
�
�

� � Z z

0

Gr�1;0
r�1;r�1 s

c1; . . . ; cr�1
c1 � 1; . . . ; cr�1 � 1

�
�
�
�

� �

d s � 0

or, equivalently, hr�1ðzÞ � hrðzÞ. Subsuming the preceding results, we obtain

k�;rðtÞ ¼ kðtÞhrðF ðtÞÞ � kðtÞhr�1ðF ðtÞÞ ¼ k�;r�1ðtÞ: n
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Balakrishnan N, Cramer E, Kamps U (2001) Bounds for means and variances of progressive type

II censored order statistics. Statist. Probab. Lett. 54:301–315
Balakrishnan N, Rao CR (eds) (1998a) Order Statistics: Applications. Handbook of Statistics Vol

17. Elsevier, Amsterdam
Balakrishnan N, Rao CR (eds) (1998b) Order Statistics: Theory & Methods. Handbook of

Statistics vol. 16. Elsevier, Amsterdam
Barlow RE, Proschan F (1965) Mathematical Theory of Reliability. Wiley, New York
Barlow RE, Proschan F (1975) Statistical Theory of Reliability and Life Testing, Probability

Models. Holt-Rinehart and Winston, New York
Baxter LA (1982) Reliability applications of the relevation transform. Naval Res. Logist. Quart.

29:323–330
Blom G (1958) Statistical Estimates and Transformed Beta-Variables. Almqvist & Wiksell,

Stockholm
Botta RF, Harris CM, Marchal WG (1987) Characterizations of generalized hyperexponential

distribution functions. Comm. Statist. Stochastic Models 3:115–148

308 E. Cramer, U. Kamps



Cramer E, Kamps U (1996) Sequential order statistics and k-out-of-n systems with sequentially
adjusted failure rates. Ann. Inst. Statist. Math. 48:535–549

Cramer E, Kamps U (1997) The UMVUE of PðX < Y Þ based on Type-II censored samples from
Weinman multivariate exponential distributions. Metrika 46:93–121

Cramer E, Kamps U (2001a) Estimation with sequential order statistics from exponential
distributions. Ann. Inst. Statist. Math. 53:307–324

Cramer E, Kamps U (2001b) Sequential k-out-of-n systems. In: Balakrishnan N, Rao CR (eds)
Handbook of Statistics: Advances in Reliability Vol. 20, chap. 12, 301–372. Elsevier,
Amsterdam

Cramer E, Kamps U, Rychlik T (2002a) Evaluations of expected generalized order statistics in
various scale units. Appl. Math. 29:285–295

Cramer E, Kamps U, Rychlik T (2002b) On the existence of moments of generalized order
statistics. Statist. Probab. Lett. 59:397–404

David HA (1981) Order Statistics 2nd ed. Wiley, New York
David HA, Shu VS (1978) Robustness of location estimators in the presence of an outlier. In:

David HA (ed) Contributions to Survey Sampling and Applied Statistics, 235–250. Academic
Press, New York

Dennis III SY (1994) On the distribution of independent beta variables. Comm. Statist. Theory
Methods 23:1895–1913
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