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Abstract. Characterization and construction of optimal designs using the
familiar optimality criteria, for example A-, D- and E-optimality are well
studied in the literature. However the study of the Distance Optimality (DS-)
criterion introduced by Sinha (1970) has very recently drawn attention of
researchers. In the present article, we consider the singularly estimable full
rank problem of estimating the full set of elementary treatment contrasts using
the DS optimality criterion in the set up of a one way ANOVA model. Using
a limit argument it turns out that a CRD in which di¤erence between any two
allocation numbers is at the most unity is uniquely DS-optimal.
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1 Introduction

The problem of characterization and construction of optimal designs
under both discrete and continuous set up using the well known A-, D- and
E-optimality criteria has been extensively studied in the literature. See for
example, Shah and Sinha (1989), Pukelsheim (1993). However, the study of
the distance optimality criterion put forward by Sinha (1970) has received
relatively less attention. Recently there has been a growing interest in this
direction (cf. Liski, Luoma, Mandal and Sinha (1998); Liski, Luoma and
Zaigraev (1999); Mandal, Shah and Sinha (2000)).

We start with a classical linear model

Y @NðXb; s2INÞ;



where the N � 1 response vector Y ¼ ðY1; . . . ;YNÞ0 follows a multivariate
normal distribution, X ¼ ðX1; . . . ;XNÞ0 is the N � k design matrix, and b ¼
ðb1; . . . ; bkÞ

0 is the k � 1 parameter vector. EðY Þ ¼ Xb, and DðYÞ ¼ s2IN are
respectively the expectation vector and the dispersion matrix of Y . Since s2 is
irrelevant to the results derived in this paper, for the sake of simplicity, in the
remaining part of the paper we assume that s2 ¼ 1.

Let hl�1 ¼ Ll�kbk�1 be the vector of the linear parametric functions of
interest to us. We confine only to the class C of the designs d (i.e. the so called
design matrix Xd ) under which all the components of h are estimable. Let the

Best Linear Unbiased Estimator (BLUE) of h using the design d be denoted
by ĥhd ,

ĥhd ¼ Lb̂bd ;

where b̂bd is a Least Squares Estimator (LSE) of b using the design d. We

are interested in characterizing an experimental design d� which maximises the
probability

Pe ¼ Pr½kĥhd � hk < e� Ee > 0 ð1:1Þ

over the class C of all competing designs d where kĥhd � hk ¼
½ð ĥhd � hÞ0ð ĥhd � hÞ�1=2, the Euclidian norm of ĥhd � h. As this criterion aims at

minimising the distance between the true parameter value and its estimate in a
stochastic sense, it is abbreviated as the DS-optimality criterion in the litera-
ture. A design d� is said to be DSðeÞ optimal for the LSE of h if for a given
e > 0, it maximizes the probability Pr½kĥhd � hk < e�. When d� is DSðeÞ optimal

for all e > 0, we say that d� is DS-optimal. Sinha (1970) introduced this crite-
rion for optimal allocation of observations with a given total in a CRD model:

Yij ¼ mþ ti þ eij; i ¼ 1; . . . ; v; j ¼ 1; . . . ; ni; ð1:2Þ

where t ¼ ðt1; . . . ; tvÞ0 is the vector of treatment e¤ects, the ith treatment
being allocated ni times, ni b 1, 1 a i a v,

Pv
i¼1 ni ¼ n. In that paper, the

parametric vector of interest is the mean vector h ¼ ðmþ t1; . . . ; mþ tvÞ0 and
the ‘symmetrical allocation’ with ni ¼ n=v, Ei is shown to be uniquely DS-
optimal when n is divisible by v. In this context, the general case when n is
not divisible by v is implicitly resolved in a recent work (Liski et al. (1998)). By
repeated application of Lemma 2 in that paper it can be shown that whenever
allocation numbers for a pair of treatments di¤er by more than 1, successively
reducing thier di¤erence by 2, but keeping the total fixed, a better design can
be obtained and finally, a most symmetrical allocation with jni � njja 1,
Ei0 j, turns out to be DS-optimal as is expected. Mandal, Shah and Sinha
(2000) considers the problem of comparison of one test treatment with a set
of v control treatments using this optimality criterion in both the CRD and
the Block design settings. All the problems considered so far are nonsingularly
estimable full rank problem. Our purpose in this paper is to take up the sin-
gularly estimable full rank problem of estimating the full set of elementary
treatment contrasts which is of practical interest in a one-way ANOVA model
and characterize a DS-optimal design. We organise our paper as follows.
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In Section 2 we elaborate the distance optimality criterion in the context of
the problem just mentioned and quote relevant results on majorization and
matrix theory which are useful in deriving the main result. In Section 3 DS-
optimal designs are characterized for all v.

2 Preliminaries

We assume the one way ANOVA model (1.2). The set of all elementary con-
trasts of the form ti � tj, i < j viz.

h 0 ¼ ðt1 � t2; . . . ; t1 � tv; . . . :tv�1 � tvÞ

is of interest to us. For a design d A C let ndi denote the allocation number
of the ith treatment, i ¼ 1; . . . ; v with

Pv
i¼1 ndi ¼ n. However, in the sequel,

we sometimes skip the su‰x d to avoid the notational complexity. Let yi: ¼Pndi

j¼1 yij=ndi stand for the mean of all observations receiving the ith treat-
ment, i ¼ 1; . . . ; v under the design d. Then ĥh 0d ¼ ðy1: � y2:; . . . ; y1: � yv:; . . . ;

yðv�1Þ: � yv:Þ is the BLUE of h 0 using the design d under the model (1.2).
Let P be a v� 1� v submatrix of an orthogonal v� v matrix such that

Pv�1�v P 0v�v�1 ¼ Iv�1; P 0P ¼ ðI � J=vÞ; ð2:1Þ

D ¼ Diagð1=nd1; . . . ; 1=ndvÞ;

and D1=2 ¼ Diagð1= ffiffiffiffiffiffiffi
nd1
p

; . . . ; 1=
ffiffiffiffiffiffi
ndv
p Þ:

ð2:2Þ

Writing h ¼ Lt, so that ĥhd ¼ Lt̂td , where t̂td ¼ ðy1:; . . . ; yv:Þ, we have from
(1.1)

Pe ¼ Pr½ð ĥhd � hÞ0ð ĥhd � hÞa e2�

¼ Pr½ðt̂td � tÞ0L 0Lðt̂td � tÞa e2�

¼ Pr½ðt̂td � tÞ0ðI � J=vÞðt̂td � tÞa e2=v�

¼ Pr½ðt̂td � tÞ0P 0Pðt̂td � tÞa e2=v�

¼ Pr½ðx 0xÞa e2=v�; ð2:3Þ

where x ¼ Pðt̂td � tÞ@Nv�1ð0;SÞ with S ¼ PDP 0.

It is not hard to verify that for any d A C, S ¼ PDP 0 is nonsingular.

Let ld ¼ ðld1; . . . ; ld; ðv�1ÞÞ0 denote the vector of ordered eigenvalues of PDP 0

where ld1 a ld2 a � � �a ld; ðv�1Þ. Let TLT 0 ¼ S be the spectral decomposition
of S, the dispersion matrix of x, where T is an orthogonal ðv� 1Þ � ðv� 1Þ
matrix and L¼Diagðld1; . . . ; ld; ðv�1ÞÞ is the diagonal matrix of the eigenvalues
of S, in other words of PDP 0. Define

Z ¼ L�1=2T 0x;
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so that

Z @Nv�1ð0; Iv�1Þ:

Then from (2.3),

Pr½kĥhd � hk < e� ¼ Pr½Z 0LZ a e2=v�

¼ Pr
X

ldiZ
2
i a d2

h i
ð2:4Þ

for d2 ¼ e2=v.
Thus Ed2 > 0, the DS(e) optimality criterion Pr½k bhdhd � hk < e� depend on

the design d with allocation numbers ndi, i ¼ 1; . . . ; v only through the eigen-
values ld1; . . . ; ld; ðv�1Þ of the matrix ðPDP 0Þ where D is as given in (2.2).

Remark 1. Instead of h 0 if we had considered the set of all contrasts of the
form ti � tj, i 0 j, the problem would have remained the same except that d2

in (2.4) would change to a scalar multiple of it, viz d2=2.
We define the DSðeÞ criterion function Ce or equivalently CdðldÞ as

CdðldÞ ¼ Pr
Xv�1

i¼1

ldiZ
2
i a d2

" #

: ð2:5Þ

A design d� A C is said to be DS-optimal if

Cdðld� Þb CdðldÞ; Ed > 0 and Ed A C: ð2:6Þ

In order to characterize a DS-optimal design in the case when n is a multiple
of v we make use of the following Lemma due to Okamoto (1970), proof of
which can be found in Marshall & Olkin (1979, p. 303).

Lemma 2.1. Let Z2
1 ; . . . ;Z2

p be independent random variables and suppose
that Z2

i has a w2 distribution with ni degrees freedom, i ¼ 1; . . . ; p. If li > 0,
i ¼ 1; . . . ; p then

Pr
X

liZ
2
i a d2

� �
a PrðlZ a d2Þ;

where l ¼ ð
Qp

i¼1 lni

i Þ
1=n

, n ¼
Pp

i¼1 ni and Z has a w2 distribution with n degrees
of freedom.

In the case when n is not divisible by v, the notion of majorization proves very
useful in the study of the function CdðldÞ. Majorization concerns the diversity
of the components of a vector (cf. Marshall & Olkin (1979, p. 5)). For a ready
reference we quote below the relevant definitions and results on majorization
used in this paper.

Let a ¼ ða1; . . . ; apÞ0, and b ¼ ðb1; . . . ; bpÞ0 be two p� 1 vectors and
að1Þa � � �a aðpÞ, bð1Þa � � �a bðpÞ be the ordered components.

118 R. SahaRay, S. K. Bhandari



Definition 2.2: For a; b A Rp, a is said to majorize b, written a � b if

Xk

i¼1

aðiÞa
Xk

i¼1

bðiÞ k ¼ 1; . . . ; p� 1;

Xp

i¼1

aðiÞ ¼
Xp

i¼1

bðiÞ:

9
>>>>>=

>>>>>;

ð2:7Þ

Definition 2.3: For a; b A Rp, a is said to weakly supermajorize b, written a w� b
if

Xk

i¼1

aðiÞa
Xk

i¼1

bðiÞ k ¼ 1; . . . ; p: ð2:8Þ

Definition 2.4: A function f ðxÞ : Rp ! R is said to be a Schur Concave func-
tion if for x; y A Rp the relation x � y implies f ðxÞa f ðyÞ. Thus the value of

f ðxÞ becomes greater when the components of x become less diverse.

Let l�1
d denote the vector of reciprocals of the elements of ld ¼

ðld1; . . . ; ld; ðv�1ÞÞ0. For any two designs d1 and d2 A C let a ¼ l�1
d1

and b ¼ l�1
d2

denote respectively the vectors of eigenvalues of ðPD1P 0Þ�1 and ðPD2P 0Þ�1.
Using Proposition 7.4.2 of Tong (1990), the following theorem regarding
Schur concavity of the DS-optimality criterion is proved in Liski, Luoma &
Zaigraev (1999).

Theorem 2.5. If a � b and Z @Nv�1ð0; Iv�1Þ, then

Pr
X Z2

i

ai

a d2

� �

a Pr
X Z2

i

bi

a d2

� �

Ed > 0:

The following result (Marshall & Olkin p. 11) plays a crucial role in the
determination of main results of this paper.

Theorem 2.6. If a w� b, then there exists a vector a0 such that a0 b a and
a0 � b.

The next theorem is an immediate consequence of the above two theorems.

Theorem 2.7. If a w� b and Z @Nv�1ð0; Iv�1Þ

Pr
X Z2

i

ai

a d2

� �

a Pr
X Z2

i

bi

a d2

� �

Ed > 0:

Proof:

Pr
X Z2

i

ai

a d2

� �

a Pr
X Z2

i

a0i

a d2

� �

a Pr
X Z2

i

bi

a d2

� �

Ed > 0:
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The first inequality follows from the fact that the event

E1 : Z :
P Z2

i

ai
a d2

n o
implies the event E2 : Z :

P Z2
i

a0i
a d2

n o
as aoi b ai,

Ei ¼ 1; . . . ; v� 1. The last inequality now follows from Theorem 2.5.

The following result involving the eigenvalues of a matrix will be used in
the course of derivation of main results.

Result 2.1. If A is an m� n matrix and B is an n�m matrix where m a n,
then the n eigenvalues of BA are the m eigenvalues of AB together with n�m
zeros.

The proof of the following theorem on the comparisons of eigenvalues can
be found in Marshall Olkin (1979, p. 245).

Theorem 2.8. If A and B are m�m complex matrices such that aAþ bB has
real eigenvalues for all a; b A R then

ðl1ðAþ BÞ; . . . ; lmðAþ BÞÞ � ðl1ðAÞ þ l1ðBÞ; . . . ; lmðAÞ þ lmðBÞÞ:

In particular, for any real number 0 < a < 1,

ðl1ðaAþ ð1� aÞBÞ; . . . ; lmðaAþ ð1� aÞBÞÞ

� ðal1ðAÞ þ ð1� aÞl1ðBÞ; . . . ; almðAÞ þ ð1� aÞlmðBÞÞ:

Using the fact that the eigenvalues depend continuously on the entries of a
matrix, the following theorem is immediate.

Theorem 2.9. For any two m�m positive semidefinite matrices A and B

lim
y!0

liðAþ yBÞ ¼ liðAÞ Ei ¼ 1; . . . ;m:

3 Main results

In this section we present main results concerning the characterization of a
DS-optimal design for estimation of h in a one way ANOVA model.

It is interesting to note that for any design d A C, the positive eigenvalues
of ðPDP 0Þ, denoted by ldi, i ¼ 1; . . . ; v� 1 do not depend on the choice of the
P matrix where P 0P ¼ I � J=v and PP 0 ¼ Iv�1. Define A ¼ PD1=2 and B¼ A 0.
Noting that AB ¼ PDP 0 is nonsingular but BA is singular, the following the-
orem is immediate as an application of Result 2.1.

Theorem 3.1. The þve eigenvalues of PDP 0 and D1=2ðI � J=vÞD1=2 are equal.

Furthermore, using Lemma 2.2 of Bischo¤ (1995) it directly follows that
jPDP 0j ¼ jDj: 1

v
1 0D�11

�
�

�
�, and hence the next theorem.
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Theorem 3.2. jPDP 0j ¼
Qv�1

i¼1

ldi ¼ n

v
Qv

i¼1

ndi

.

In the sequel, we first deal with the case when n is divisible by v.

Theorem 3.3. When n is divisible by v, the CRD d� A C with symmetrical allo-
cation viz. nd�i ¼ n=v, Ei ¼ 1; . . . v is DS-optimal for estimating h, the vector of
elementary contrasts of treatment e¤ects.

Proof: For any design d A C, from (2.4) using Lemma 2.1 and Theorem 3.2 we
get

Pr
Xv�1

i¼1

ldiZ
2
i a d2

 !

a Pr
Yv�1

i¼1

ldi

 !1=ðv�1Þ

w2
v�1 a d2

2

4

3

5

¼ Pr n

�

v
Yv

i¼1

ndi

 ! !1=v�1

w2
v�1 a d2

2

4

3

5:

Let d� A C correspond to the design with nd�i ¼ n=v, Ei ¼ 1; . . . v. Then the
eigenvalues of PD�P

0 ¼ v
n

I are all equal. Now using the condition that
Pv

i¼1

ndi ¼ n and the well known inequality between the Arithmetic Mean (A.M)

and the Geometric Mean (G.M) of a set of positive quantities, viz A:M bG:M
we get

Y
ndi a

X
ndi=v

� �v

¼ ðn=vÞv ¼
Y

nd�i

� �
:

So

Pr
Xv�1

i¼1

ldiZ
2
i a d2

 !

a Pr n

�

v
Yv

i¼1

ndi

 ! !1=v�1

w2
v�1 a d2

2

4

3

5

a Pr n

�

v
Yv

i¼1

nd�i

 ! !1=v�1

w2
v�1 a d2

2

4

3

5

ðfollows by implication of eventsÞ

¼ Pr
Yv�1

i¼1

ld�i

 !1=ðv�1Þ

w2
v�1 a d2

2

4

3

5

¼ Pr
Xv�1

i¼1

ld�iZ
2
i a d2

 !

ðas ld�i’s are all equalÞ:
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Thus whenever n is divisible by v, the design d� with symmetrical allocation
turns out to be DS-optimal.

The case when n is not divisible by v is dealt below. From now onwards
we assume that n ¼ vk þ t, t b 1, where k ¼ ½n=v� denotes the greatest integer
less than or equal to n=v. In this case, it needs a close argument to reveal
that a most symmetrical allocation viz. the design d� A C with nd� ¼
ðk; . . . ; k; k þ 1; . . . ; k þ 1Þ0, k occuring v� t times is DS-optimal.

Let

D� ¼ Diagð1=k; . . . ; 1=k;
|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}

v�t times

1=ðk þ 1Þ; . . . ; 1=ðk þ 1Þ
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

t times

Þ;

and A ¼ P 0P ¼ ðI � J=vÞ:

We start with the comparison of the vector of eigenvalues of D�1ðAþ e�IÞ and
D�1
� ðAþ e�IÞ where e� A R, e�0 0 and �1.

Theorem 3.4. lðD�1ðAþ e�IÞÞ � lðD�1
� ðAþ e�IÞÞ, Ee� A R; e�0 0 and �1.

Proof: We first note that, for any e A R; e0 0 and �1; Aþ eI is a nonsingular
matrix. Writing D�1=2 ¼ Diagð ffiffiffiffiffiffiffind1

p
; . . . ;

ffiffiffiffiffiffi
ndv
p Þ, as an application of Result

2.1, we observe that the eigenvalues of D�1=2ðAþ eIÞD�1=2 and D�1ðAþ eIÞ
are identical. It is clear that for any design d ð0d�Þ A C, there exists at least
one pair of treatment symbols i 0 and j 0 such that ðndi 0 � ndj 0 Þb 2 and

P
ndi ¼ n.

We permute i 0 and j 0 treatment symbols, keeping others fixed and obtain
~dd A C as

n ~ddi ¼ ndi Ei0 i 0; j 0

n ~ddi 0 ¼ ndj 0

n ~ddj 0 ¼ ndi 0

and hence ~DD�1 ¼ QD�1Q 0, where Q represents the corresponding permutation
matrix. In view of the relation Q 0Q ¼ QQ 0 ¼ I , and QðAþ e�IÞQ 0 ¼ Aþ e�I ,

lð ~DD�1ðAþ e�IÞÞ ¼ lðD�1ðAþ e�IÞÞ

as

~DD�1ðAþ e�IÞ ¼ QD�1Q 0ðAþ e�IÞ ¼ QD�1Q 0QðAþ e�IÞQ 0

¼ QD�1ðAþ e�IÞQ 0: ð3:1Þ

Now it is easy to see that for some 0 < a < 1, ðndi 0 � 1; ndj 0 þ 1Þ can be repre-

sented as a convex combination of ðndi 0 ; ndj 0 Þ and ðndj 0 ; ndi 0 Þ. Choosing this a, it
follows that
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lðD�1ðAþ e�IÞÞ ¼ alðD�1ðAþ e�IÞÞ þ ð1� aÞlðQD�1ðAþ e�IÞQ 0Þ

¼ alðD�1ðAþ e�IÞÞ þ ð1� aÞlð ~DD�1ðAþ e�IÞÞ

� lðaD�1ðAþ e�IÞ þ ð1� aÞ ~DD�1ðAþ e�IÞÞ

ðusing Theorem 2:8Þ

¼ lððaD�1 þ ð1� aÞ ~DD�1ÞðAþ e�IÞÞ

¼ lðD�1
0 ðAþ e�IÞÞ; ð3:2Þ

where

D�1
0 ¼ aD�1 þ ð1� aÞ ~DD�1

¼ Diagðnd1; . . . ; ndði 0�1Þ; ndi 0 � 1; ndði 0þ1Þ; . . . ; ndð j 0�1Þ; ndj 0 þ 1; ndð j 0þ1Þ . . . ; ndvÞ:

Thus when the pair of allocation numbers ðndi 0 ; ndj 0 Þ is transferred to a
pair ðndi 0 � 1; ndj 0 þ 1Þ, reducing their mutual di¤erence by two, but keeping
the total fixed, we get the above result (3.2) on majorization of the eigenvalues
of D�1ðAþ e�IÞ. Note that starting from D�1 successive averaging by taking
convex combination of any two co-ordinates of n ¼ ðnd1; . . . ndvÞ0 in the above
sense, while keeping the rest of the co-ordinates fixed, we will eventually get
D�1
� or Q�D

�1
� Q 0� where Q� is a permutation matrix and similar successive steps

of majorization will yield

lðD�1ðAþ e�IÞÞ � lðD�1
0 ðAþ e�IÞÞ � � � � � lðD�1

� ðAþ e�IÞÞ: ð3:3Þ

Remark 3.1. The convex coe‰cient a may change at di¤erent steps.

Remark 3.2. The condition of Theorem 2.8 that for any two real numbers a
and b ðaD�1ðAþ e�IÞ þ b ~DD�1ðAþ e�IÞÞ has real eigenvalues is trivially satisfied
as the required matrix has the same set of eigenvalues as that of the real sym-
metric matrix ðð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1þ e�Þ

p
Aþ

ffiffiffiffi
e�
p

J=vÞðaD�1þ b ~DD�1Þðð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1þ e�Þ

p
Aþ

ffiffiffiffi
e�
p

J=vÞ.
In the remainig portion of the paper, using Theorem 3.4 we establish the

required result on weak supermajorization and characterize the DS-optimal
design whenever n is not a multiple of v.

Theorem 3.5. Let n ¼ vk þ t and d� A C be a CRD with nd� ¼
ðk; . . . ; k; k þ 1; . . . ; k þ 1Þ0, k occuring v� t times. Then d� is DS-optimal.

Proof: In order to establish d� to be DS-optimal, in view of (2.4) and Theorem
2.7, it su‰ces to show that

l�1
d

w� l�1
d�

where l�1
d and l�1

d�
denote respectively the vectors of eigenvalues of ðPDP 0Þ�1

and ðPD�P
0Þ�1. Not to obscure the essential steps, we first note that (3.3) yields

l�1ðDðAþ e�IÞ�1Þ � l�1ðD�ðAþ e�IÞ�1Þ: ð3:4Þ
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It is easy to check that as A ¼ I � J=v,

ðAþ e�IÞ�1 ¼ 1

1þ e�
Aþ 1þ e�

e�
J=v

� �

; e� A R; e�0 0 and �1: ð3:5Þ

Call 1þe�

e� ¼ y. Thus for any y > 0, (3.4) can be rewritten as

l�1ðDðAþ yJ=vÞÞ � l�1ðD�ðAþ yJ=vÞÞ: ð3:6Þ

Applying Theorem 2.9

lim
y!0

l1ðDðAþ yJ=vÞÞ ¼ 0;

and lim
y!0

liðDðAþ yJ=vÞÞ ¼ liðDAÞ; i 0 1:

Recalling A ¼ P 0P and Result 2.3, we note that liðDAÞ ¼ li�1ðPDP 0Þ, Ei ¼
2; . . . ; v. Thus from (3.6) using the first ðv� 1Þ inequalilties discussed in (2.7),
and taking limit we conclude that

l�1
d ¼ ð1=ld1; . . . ; 1=ldðv�1ÞÞ w�ð1=ld�1; . . . ; 1=ld�ðv�1ÞÞ ¼ l�1

d�
ð3:7Þ

and hence the theorem.

Remark 3.3. Using similar arguments as given in (3.1) lðD�1
� ðAþ e�IÞÞ ¼

lðQ�D�1
� Q 0�ðAþ e�IÞÞ and hence d� as well as any permutation of d� is DS-

optimal.

Remark 3.4. The design d� upto permutation, is uniquely DS-optimal since if
any other DS-optimal design d0� exists

E
X

Z2
i ld�i

� �
¼ E

X
Z2

i ld0�i

� �
:

But clearly

E
X

Z2
i ld�i

� �
¼
X

ld�i ¼ 1� 1

v

� �X 1

nd�i

< 1� 1

v

� �X 1

ndi

¼ E
X

Z2
i ldi

� �

for any other design d A C.
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