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Abstract. In continuous parametrized models with i.i.d. observations we con-
sider finite quantizations. We study asymptotic properties of the estimators
minimizing disparity between the observed and expected frequencies in the
quantization cells, and asymptotic properties of the goodness of fit tests re-
jecting the hypotheses when the disparity is large. The disparity is measured
by an appropriately generalized f-divergence of probability distributions so
that, by the choice of function f, one can control the properties of estimators
and tests. For bounded functions f these procedures are robust. We show that
the ine‰ciency of the estimators and tests can be measured by the decrease of
the Fisher information due to the quantization. We investigate theoretically
and numerically the convergence of the Fisher informations. The results indi-
cate that, in the common families, the quantizations into 10–20 cells guaran-
tees ‘‘practical e‰ciency’’ of the quantization-based procedures. These proce-
dures can at the same time be robust and numerically considerably simpler
than similar procedures using the unreduced data.

Key words: Quantization, Fisher information in quantized models, conver-
gence of Fisher information, optimal quantization, e‰cient estimation, e‰-
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1 Introduction and basic concepts

The common model of statistical inference on a univariate parameter y con-
siders empirical data X1; . . . ;Xn, where Xi are mutually independent observa-
tions distributed by Fðx; yÞ from a family
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ðF ðx; yÞ : y A YÞ; YHR open; ð1Þ

of mutually di¤erent absolutely continuous distribution functions on the real
line R. The data define, for sample sizes n ¼ 1; 2; . . . ; the empirical distribution
functions

FnðxÞ ¼ 1

n

Xn

i¼1

I½Xi ;yÞðxÞ

on R. Almost all statistical methods are based, directly or indirectly, on dis-
tances DðFnð�Þ;Fð� ; yÞÞ between the empirical and theoretical distributions
(they need not necessarily be metrics). In particular, the point estimators yn
(sequences of measurable mappings Rn ! Y) are assumed to satisfy the con-
dition

DðFnð�Þ;F ð� ; ynÞÞ ¼ inf
y AY

DðFnð�Þ;F ð� ; yÞÞ ð2Þ

(eventually with the equality replaced by an approximate equality, see e.g.
Millar (1984), Vajda (1995) or Vajda and Janžura (1997)). Similarly, the sta-
tistical tests of

H : Fð� ; y0Þ versus An : Gnð�Þ ¼ 1� 1ffiffiffi
n

p
� �

F ð� ; y0Þ þ 1ffiffiffi
n

p Fð� ; yÞ ð3Þ

for y0 y0 are assumed to reject H if

DðFnð�Þ;F ð� ; y0ÞÞ > cD;n ð4Þ

for some critical values cD;n > 0.
Contiguous alternatives, introduced in (3) are usually employed in the

asymptotic statistics in order to analyze the behaviour of tests for the sample
sizes n ! y.

The interest of the statistical theory is focused on the asymptotically e‰-
cient estimators (briefly, AE estimators, see e. g. Section 4.1 in Serfling (1980)),
defined by the condition

lim
n!y

ffiffiffi
n

p ðyn � y0Þ ¼ Nð0; 1=Iðy0ÞÞ P-weakly ð5Þ

for the Fisher information function

IðyÞ ¼
ð _ff 2ðx; yÞ

f ðx; yÞ dx; y A Y; ð6Þ

where _ff ðx; yÞ ¼ df ðx; yÞ=dy are derivatives of the densities f ðx; yÞ ¼
dFðx; yÞ=dx and it is assumed 0 < IðyÞ < y. Further, the interest is focused
on the asymptotically e‰cient tests (briefly AE tests, cf. Section 10.1 in Serfling
(1980)) which, for every asymptotic size a A ð0; 1Þ satisfying the condition
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a ¼ lim sup
n!y

PðDðFnð�Þ;Fð� ; y0ÞÞ > cD;nÞ; ð7Þ

maximize the asymptotic power

b ¼ bðy; y0jaÞ ¼ lim inf
n!y

QnðDðFnð�Þ;Fð� ; y0ÞÞ > cD;nÞ ð8Þ

at the local alternatives An defined in (3), for y from the neighborhood of y0.
Note that in (5), (7) and (8), and everywhere in the sequel, P denotes the prob-
ability measure under H and Qn the probability measure under An, and the
maximization of the asymptotic power (8) extends over a given class of tests
(distances D).

Notice that the e‰ciency condition (5) does not depend on the class of dis-
tances taken into account, so that the AE of estimators is an absolute concept,
while the maximization of (8) extends over a given class of distances so that
the AE of tests is a relative concept.

Obviously, if for appropriate norming constants aD;n > 0

lim
n!y

aD;nDðFnð�Þ;F ð� ; y0ÞÞ ¼ X2
k P-weakly; ð9Þ

where X2
k is the chi-square distributed random variable, then (7) holds with

limsup replaced by lim for cD;n ¼ X2
k;1�a=aD;n, where X2

k;1�a denotes the
ð1� aÞ-fractile of X2

k .
The distances under consideration are usually from the class of f-

divergences, defined by the formula

DðFnð�Þ;F ð� ; yÞÞ ¼ DfðpnðyÞ; pðyjyÞÞ; ð10Þ

where the right-hand side is, for an appropriate function fðtÞ, t > 0, the f-
disparity of the discrete empirical and theoretical distributions obtained by
means of a partition P of R into 1 < m < y intervals A1; . . . ;Am defined by
increasing coordinates of a given ðm� 1Þ-vector y ¼ ðy1; . . . ; ym�1Þ, that is,

pnðyÞ ¼ ðpn1ðyÞ; . . . ; pnmðyÞÞ where pnjðyÞ ¼ FnðyjÞ � Fnðyj�1Þ ð11Þ

and

pðyjyÞ ¼ ðp1ðyjyÞ; . . . ; pmðyjyÞÞ where pjðyjyÞ ¼ F ðyj; yÞ � Fðyj�1; yÞ
ð12Þ

for y0 ¼ �y, ym ¼ y.
The f-disparity of discrete distributions p and q has been defined in

Menéndez et al. (1998, 2001b) by the same formula as the f-divergence of
Csiszár (see Csiszár (1963, 1967), Liese and Vajda (1987), Read and Cressie
(1988) or Vajda (1989)),

Dfðp; qÞ ¼
Xm
j¼1

qjf
pj

qj

� �
; ð13Þ
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but assuming that the function fðtÞ in (13) is strictly convex only in the neigh-
borhood of t ¼ 1 (where it is assumed to be twice continuously di¤erentiable
with fð1Þ ¼ f 0ð1Þ ¼ 0 and f 00ð1Þ > 0) and monotone on the intervals ð0; 1Þ and
ð1;yÞ.

Note that the convex functions f assumed in the definition of f-divergences
(10), and satisfying the condition fð1Þ ¼ f 0ð1Þ ¼ 0, are automatically mono-
tone in the stated sense. But these functions cannot be bounded on ð0;yÞ. The
extension of f-divergences to the f-disparities has been motivated by results of
Lindsay (1994), Basu and Sarkar (1994a, b) and Park et al. (1995), who have
shown that a robust estimation and testing is possible only when the f func-
tion figuring in (10) and (13) is bounded on ð0;yÞ. Convex functions fðtÞ with
fð1Þ ¼ f 0ð1Þ ¼ 0 and f 00ð1Þ > 0 cannot satisfy this condition.

The most common f-disparities are some f-divergences, namely the infor-
mation divergence (briefly ID), Iðp; qÞ, obtained by using fðtÞ ¼ t ln t in (13)
and leading in (2) to the maximum likelihood estimator; the reversed ID,
Iðq; pÞ, obtained from fðtÞ ¼ �ln t and leading in (2) to another classical es-
timator introduced by Rao (1961); the Pearson divergence (PD), w2ðp; qÞ, ob-
tained for fðtÞ ¼ ðt� 1Þ2 and leading in (4) to the Pearson test; and the re-
versed PD (or Neyman divergence), w2ðq; pÞ, obtained for fðtÞ ¼ ðt� 1Þ2=t
and leading in (8) to the Neyman w2-test, cf. Read and Cressie (1988). In the
latter reference one can find also the authors who introduced the ID-tests
(known also as the likelihood ratio tests), the reversed ID-tests, and the Pear-
son and Neyman divergence estimators.

More generally, the functions fðtÞ ¼ kt� 1ka=ta�1 with ab 1 define f-
divergences and fðtÞ ¼ kt� 1ka=ta with ab 0, or kt� 1k=ta with 0 < a < 1,
define f-disparities.

In Section 2 we argue, by using the results of Lindsay (1994) and
Menéndez et al. (2001a), that all f-disparity estimators yf;y

m;n defined by (2) for
the distances (10) are asymptotically e‰cient (best asymptotically normal) in
the discrete statistical models

ðpðyjyÞ : y A YÞ ð14Þ

when the models satisfy the standard regularity imposed on discrete models in
the asymptotic statistics (see e. g. Birch (1964)). In other words, this regularity
implies

lim
n!y

ffiffiffi
n

p ðyf;y
m;n � y0Þ ¼ Nð0; 1=Imðyjy0ÞÞ P-weakly ð15Þ

where

ImðyjyÞ ¼
Xm
j¼1

_pp2j ðyjyÞ
pjðyjyÞ ; y A Y; for _ppjðyjyÞ ¼

dpjðyjyÞ
dy

ð16Þ

is the Fisher information function in the model (14). This property has been
established for the MLE by Birch (1964), for the most common f-divergence
estimators by Read and Cressie (1988) and for all f-divergence estimators by
Morales et al. (1995).
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Every yf;y
m;n with given m; y and f is one possible specification of the above

considered estimator yn in the model (1). Therefore one can ask whether it is
e‰cient, or how much ine‰cient it is in this model. It follows from (5) and
(15) that

Dmðy0jyÞ ¼ Iðy0Þ � Imðy0jyÞ ð17Þ
is a measure of asymptotic ine‰ciency of all estimators yf;y

m;n in the continuous
model (1). In particular, yf;y

m;n is e‰cient in the continuous model (1) if and
only if the Fisher information function ImðyjyÞ in the discrete model (14) co-
incides with the Fisher information function (6) in the continuous one (1). Note
that the nonnegativity in (17) follows e. g. from Theorem 3 in Vajda (1973).

Similarly we argue, with a reference to Menéndez et al. (1998), that the
convergence condition for tests based on distances in (9) holds for the class of
f-divergences (10) and for aD;n ¼ af;n ¼ 2n=f 00ð1Þ and k ¼ m� 1. Therefore,
the test in (4) with the disparity distance (10) and the critical values cD;n ¼ cf;n
given by the formula

cf;n ¼
f 00ð1ÞX2

m�1;1�a

2n
; ð18Þ

defines a f-disparity test satisfying relation (7) for all a A ð0; 1Þ, but with limsup
replaced by lim. Further, we argue, with a reference to the recent paper of
Menéndez et al. (2001b), that Dmðy0jyÞ, defined in (17), is a measure of asym-
ptotic ine‰ciency of all f-disparity tests.

Moreover, it is easy to prove by using Theorem 4 in Vajda (1973) that, for
every y0 A Y and y ¼ y�ðy0Þ defined by

Imðy0 j y�ðy0ÞÞ ¼ max
y

Imðy0jyÞ ð19Þ

(and thus depending on m), it holds that

Dmðy0 j y�ðy0ÞÞ ¼ oð1Þ as m ! y: ð20Þ
Main implication of (20) is that, under quantizations y�ðy0Þ, the f-disparity

estimators and tests defined by (2) and (4) respectively, using the class of f-
divergences (10) for the discrete probability distribution defined by (12) for
y ¼ y�ðy0Þ, are for m ! y asymptotically e‰cient in the continuous model
(1).

Unfortunately, the computationally simple and at the same time robust and
asymptotically e‰cient methods for the family (1), resulting from the quanti-
zation of R by the m� 1 components of y�ðy0Þ, and the subsequent applica-
tion of the f-disparity with bounded f, are not practically applicable because
of the dependence of y�ðy0Þ on the unknown y0. Some authors found the way
out of this unpleasant situation by considering the infinite uniform partitions
by

yðkÞy ¼ 2 jG 1

2k
: j ¼ 0;G1; . . . ; k ¼ 1; 2; . . .

� �

for which Theorem 3 of Vajda (2001) implies
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Dyðy0jyðkÞy Þ ¼ oð1Þ as k ! y

for every y0 A Y with Iðy0Þ < y, e. g. Ghurye and Johnson (1981), Zogra-
fos et al. (1986) and Tsaridis et al. (1997). But such infinite quantizations
eliminate one of the main advantages, namely the computational simplicity of
subsequent inference procedures and the e¤ective use of all cells, which are
hardly possible when there is a large number of sparsely frequented cells, typi-
cal for partitions of the type y

ðkÞ
y in case of heavier-tailed distributions.

A di¤erent more appropriate way out of this situation can be based on the
fact that for the suboptimal partition vector consisting of the j=m-fractiles of
F ðx; y0Þ

yðy0Þ ¼ ðy1ðy0Þ; . . . ; ym�1ðy0ÞÞ with F ðyjðy0Þ; y0Þ ¼ j

m
ð21Þ

an analogue of (20) holds, namely

Dmðy0 j yðy0ÞÞ ¼ oð1Þ as m ! y ð22Þ

by the arguments in Vajda (2001).
The second, more interesting step, follows from the results of Menéndez

et al. (1998, 2001a), where it is proved that the f-disparity estimators with the
random partitions defined by the j=m-fractiles of the empirical distribution
FnðxÞ, i. e. by

yn ¼ ðyn1; . . . ; ynmÞ with ynj ¼ F�1
n ð j=mÞ; ð23Þ

achieve the asymptotic ine‰ciency Dmðy0 j yðy0ÞÞ, i. e. the same asymptotic
ine‰ciency as the corresponding estimators and tests using the partition yðy0Þ.
One can say that they adapt automatically to the unknown partition yðy0Þ
which is suboptimal, but still good enough.

In Section 3 we are interested in the models of location F ðx; yÞ ¼ F ðx� yÞ
for y A Y ¼ R in (1), where

IðyÞ ¼ Ið0Þ; ImðyjyÞ ¼ Imð0jyÞ; y�ðyÞ ¼ y�ð0Þ þ y; yðyÞ ¼ yð0Þ þ y: ð24Þ

We considerably extend the results of Pötzelberger and Felsenstein (1993) and
Tsaridis et al. (1997), who computed Imð0 j yð0ÞÞ for the most common loca-
tion families and m ¼ 2; 3 and 4. We present these values for 2ama 20 in
the logistic, normal, Cauchy and double exponential location families. We
show that the ine‰ciency Dmðy j yðyÞÞ ¼ Dmð0 j yð0ÞÞ is practically negligible
in these families for 10ama 20. Further, we show that if IðyÞ < y then
Dmð0 j yð0ÞÞ ¼ oð1Þ as m ! y, and that in some cases

Dmð0 j yð0ÞÞ ¼ Oð1=m2Þ as m ! y: ð25Þ

2 Fisher information and e‰ciency of estimation

Menéndez et al. (2001a, b) considered discrete models (14) satisfying the fol-
lowing variants of the regularity assumptions of Birch (1964):
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(B1) All coordinates of pðy0jyÞ are positive.
(B2) In the neighborhood of y0, the vector of derivatives _ppðyjyÞ ¼

ð _pp1ðyjyÞ; . . . ; _ppmðyjyÞÞ considered in (16) exists and is continuous.
(B3) The vector _ppðy0jyÞ is non-zero.
(B4) The mapping y 7! pðyjyÞ is one-one on Y.

The condition (B2) has the equivalent formulation:

(B2) In the neighborhood of y0 the vector _FFðyjyÞ ¼ d=dyF ðyjyÞ exists and is
continuous, where

Fðy; yÞ ¼ ðFðy1; yÞ; . . . ;Fðym; yÞÞ: ð26Þ

The condition (B4) was shown to have an equivalent formulation in terms of
F ðy; yÞ, namely

(B4) The mapping y 7! F ðy; yÞ is one-one on Y.

In particular, the cited papers studied the f-divergence and f-disparity es-
timators yf;y

m;n minimizing on Y the f-disparity functions

DfðpnðyÞ; pðyjyÞÞ ¼
Xm
j¼1

pjðyjyÞf pnjðyÞ
pjðyjyÞ

� �
; y A Y; ð27Þ

for the empirical discrete distributions

pnðyÞ ¼ ðpnjðyÞ ¼6 FnðyjÞ � Fnðyj�1Þ : 1a jamÞ; ð28Þ

and the theoretical discrete distributions pðyjyÞ. Of course, each f-disparity
estimator can be interpreted as an estimator of the true parameter y0 in the
original continuous model (1). Theorem 4.1 in Menéndez et al. (2001a) stated
that under (B1)–(B4) all f-disparity estimators yy;y

m;n satisfy (15) for the Fisher
information given by (16).

Results of this type, and also deeper results about the higher order e‰ciency
of f-disparity estimators can be deduced from Lindsay (1994), who also ar-
gued that the f-disparity estimators are robust in the case where fðtÞ, t > 0, is
bounded.

Our attention will be paid to the particular case pðy0jyÞ ¼ q where q de-
notes from now on the uniform distribution,

q ¼ 1

m
;
1

m
; . . . ;

1

m

� �
; ð29Þ

i.e. to the case where y quantizes the observation space R into statistically
equivalent blocks. It is useful to consider the following assumption:

(A0) For every 1a jam� 1 there exists y0j A R such that F ðy0j; y0Þ ¼ j=m
and F ðx; y0Þ is increasing in the neighborhood of x ¼ y0j.
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Menéndez et al. (2001b) studied this particular case and, in addition, they
considered the following assumptions:

(A1)1(B1) for y ¼ y0 ¼ ðy01; . . . ; y0m�1Þ figuring in (A0).
(A2) In the neighborhood of ðy0; y0Þ A Rm�1 � R ¼ Rm, Fðy; yÞ given by (26)

is continuous and the vector of derivatives _FFðyjyÞ figuring in the second
version of (B2) exists and is continuous.

(A3)1(B3) for y ¼ y0 figuring in (A0).
(A4) (B3) holds for all y A Rm�1 from the neighborhood of y0.

Thus (A0)–(A4) hold if (B1)–(B4) hold for y ¼ y0 and, moreover, (B2),
(B4) hold also for y from the neighborhood of y0. Therefore (A1)–(A4) are
slightly stronger than (B1)–(B4) taken at y ¼ y0 given in (A0).

Menéndez et al. (2001a) studied also the f-disparity estimators yf;y
m;n for the

empirical quantization vectors y ¼ yn given by (23). We put for brevity

yf;yn
m;n ¼ ~yyf

m;n; ð30Þ

and in (27) we replace pnðynÞ for simplicity by q. (As follows from (28), the
di¤erence pnðynÞ � q is asymptotically negligible.) Therefore the empirical f-

disparity estimator ~yy f
m;n minimizes on Y the random function

Dfðq; pðyjynÞÞ ¼
Xm
j¼1

pjðyjynÞf
1

mpjðyjynÞ
� �

; y A Y:

For the reversed f-disparities with ~ffðtÞ ¼ tfð1=tÞ, the formula for the mini-
mized function simplifies as follows

D~ff ðq; pðyjynÞÞ ¼ DfðpðyjynÞ; qÞ ¼
1

m

Xm
j¼1

fðmpjðyjynÞÞ: ð31Þ

In Theorem 5.1 of the cited paper it is proved that if (A0)–(A4) hold then
~yy f
m;n is asymptotically normal in the sense of (15), with the Fisher information

Imðy0jyÞ ¼ Imðy0jy0Þ.
The vector y0 depends on the true parameter y0, i. e. y0 ¼ y0ðy0Þ. In order

to simplify notation, we put in the sequel y0 ¼ yðy0Þ, i. e. we define

yðy0Þ ¼ ðyjðy0Þ ¼6 F�1ð j=m; y0Þ : 1a jamÞ; ð32Þ

where t 7! F�1ðt; y0Þ is inverse to x 7! Fðx; y0Þ. Notice that under (A0) the
inverse function F�1ðt; y0Þ is well defined and continuous in the neighbor-
hoods of all points t ¼ j=m, 1a jam.

The empirical f-disparity estimator ~yy f
m;n is one of the possible estimators

in the continuous model (1), similarly as yf;y
m;n. The ine‰ciencies of these two

estimators in this model are given respectively by Dmðy0 j yðy0ÞÞ and Dmðy0jyÞ,
defined in (17). The minimum ine‰ciency under the quantization of size
m is achieved by y ¼ y�ðy0Þ defined in (19), so that 0aDmðy0 j y�ðy0ÞÞa
Dmðy0 j yðy0ÞÞ or, equivalently,

8 A. M. Mayoral et al.



Imðy0 j yðy0ÞÞa Imðy0 j y�ðy0ÞÞa Iðy0Þ ðcf : ð17ÞÞ:
Unfortunately, the least ine‰cient estimation procedure cannot be practically
used because y�ðy0Þ depends on the true y0 which is to be estimated. However,
as said above, the ine‰ciency Dðy0 j yðy0ÞÞ is achieved by the empirical f-
disparity estimators under consideration, under the regularity of model (1)
summarized in (A0)–(A4). Moreover, as follows from Lindsay (1994) and
other authors cited in Section 1, these estimators are robust with respect to
contaminations of the original data X1; . . . ;Xn, when the function f consid-
ered in (31) is bounded. This is also seen directly from (31), where the e¤ect
of arbitrary deviations of the random quantization yn on the minimized f-
disparity function is clearly limited when f is bounded. This motivates the
practical statistical interest in the following definition.

The empirical f-disparity estimators ~yy f
m;n are e‰cient in the model (1)

asymptotically for m ! y if yðy0Þ satisfies (20), i. e. if
Iðy0Þ � Imðy0 j yðy0ÞÞ ¼ oð1Þ as m ! y: ð33Þ

The problem of asymptotic e‰ciency of this kind is solved by the next result
which follows from the arguments in Example 4 of Vajda (2001).

Theorem 1. Let the densities f ðx; yÞ of distributions considered in (1) be a.e.
di¤erentiable in y, satisfying the conditions Iðy0Þ < y and

d

dy

ð b

a

f ðx; yÞ dx ¼
ð b

a

d

dy
f ðx; yÞ dx for all ya a < bay:

Then (33) holds.

3 Fisher information and e‰ciency of testing

The Fisher informations Iðy0Þ, Imðy0jyÞ and Imðy0 j y�ðy0ÞÞ play a similar role
in the testing of statistical hypotheses as in the statistical point estimation. The
goodness of fit tests (4) with the f-disparity distance (10) were among the tests
studied by Menéndez et al. (1998) under the assumption that the vector
pðy0jyÞ has all coordinates positive. In Theorem 4.1 ibid., the corresponding
test statistics were shown to be asymptotically X2

k-distributed in the sense of
(9) with k ¼ m� 1 for the norming constants af;n ¼ 2n=f 00ð1Þ. (This result
was proved also in part I of Theorem 3.1 of Inglot et al. (1991) for fðtÞ three
times continuously di¤erentiable in the neighborhood of t ¼ 1). Therefore the
corresponding tests of asymptotic size a A ð0; 1Þ (cf. (7)) are of the form

2n
Xm
j¼1

pjðy0jyÞf pnjðyÞ
pjðy0jyÞ

� �
> f 00ð1ÞX2

m�1;1�a: ð34Þ

The question is how ine‰cient these tests are, or which of them are e‰cient
in the sense outlined in Section 1. To find an answer, take first into account
that one can vary in these tests the used distance D, i.e. the convex functions f
and the quantization y. Thus it is natural to consider for all a A ð0; 1Þ and
m > 1 the e‰ciency in the classes Ta;m of the tests (34).
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By the definition of Section 1, we need to maximize the power bðy; y0jaÞ
given by (8) over the tests from Ta;m, locally in the neighborhood of y ¼ y0.
The next result considerably simplifies evaluation of the powers bðy; y0jaÞ for
the tests from Ta;m at local alternatives An ¼ AnðyÞ defined in (3) for y A Y,
y0 y0. In this result, and in the sequel, FkðxjlÞ denotes the distribution func-
tion of the noncentral chi-square distributed random variable X2

kðlÞ with k

degrees of freedom and a noncentrality parameter lb 0, and FkðxÞ ¼6 Fkðxj0Þ.
Hence in particular, F�1

k ð1� aÞ ¼ X2
k;1�a in the notation introduced in Section

1 after formula (9).

Lemma 1. For all tests (34) belonging to Ta;m, the asymptotic power at any
local alternative AnðyÞ, y A Y, is given by the formula

bðy; y0jaÞ ¼ 1� Fm�1ðgjdÞ ¼ PðX2
m�1ðdÞ > gÞ ð35Þ

for

g ¼ gmðaÞ ¼6 F�1
m�1ð1� aÞ and d ¼ dmðy; y0jyÞ ¼6 w2ðpðyjyÞ; pðy0jyÞÞ:

ð36Þ

Proof. Let us consider an arbitrary test (34) from Ta;m. As said above,

a ¼ 1� Fm�1ðgÞ for g given by ð36Þ ð37Þ

is its asymptotic size. By Corollary 3.1 in Menéndez et al. (2001b), it follows
from here that (35) with g and d given by (36) is the asymptotic power of this
test at the alternative y0 y0.

Lemma 1 reduces the problem under consideration to the maximization
over y ¼ ðy1; . . . ; ym�1Þ of

pmðy; y0ja; yÞ ¼6 1� Fm�1ðgmðaÞ j dmðy; y0jyÞÞ ð38Þ

for y from the close neighborhood of y0. If y ¼ y0 then the chi-square diver-
gence dmðy0; y0jyÞ is zero so that (37) implies

pmðy0; y0ja; yÞ ¼ 1� Fm�1ðgmðaÞ j 0Þ ¼ a

for all y under consideration. It is easy to see that under the regularity as-
sumed in Theorem 1,

dmðy; y0jyÞ ¼ Imðy0jyÞðy� y0Þ2 þ oððy� y0Þ2Þ for y ! y0; ð39Þ

where ImðyjyÞ is the Fisher information (16). Since for every gmðaÞ > 0 the
function Fm�1ðgmðaÞ j dÞ is twice di¤erentiable in the domain d > 0, one can
expect the existence of a constant cmðaÞ such that

pmðy; y0ja; yÞ ¼ aþ cmðaÞImðy0jyÞðy� y0Þ2

þ oððy� y0Þ2Þ for y ! y0: ð40Þ
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We see that if (40) is valid then Imðy0jyÞ characterizes the rate of conver-
gence of the asymptotic power pmðy; y0ja; yÞ to the asymptotic size a in the
class of tests Ta;m, and that cmðaÞImðy0jyÞ characterizes the same rate in the
united class

Ta ¼ 6
m>1

Ta;m:

Thus the e‰ciency in the class Ta;m or Ta is characterized by the maximal
asymptotic power ratio at y0, defined by

pa;mðy0Þ ¼ sup
y

lim
y!y0

½pmðy; y0ja; yÞ � a�
cmðaÞðy� y0Þ2

¼ sup
y

Imðy0jyÞ ð41Þ

or

paðy0Þ ¼ sup
m;y

lim
y!y0

½pmðy; y0ja; yÞ � a�
ðy� y0Þ2

¼ sup
m;y

cmðaÞImðy0jyÞ; ð42Þ

respectively. The right-hand side supremum (41) was denoted above by
Imðy0 j y�ðy0ÞÞ, i. e. the maximal power ratios are given by the formulas

pa;mðy0Þ ¼ Imðy0 j y�ðy0ÞÞ and paðy0Þ ¼ sup
m>1

cmðaÞImðy0 j y�ðy0ÞÞ: ð43Þ

We are thus interested in the validity of (40) and in evaluation of the constants
cmðaÞ figuring there. This problem is solved by the following theorem using
the next lemma.

Lemma 2. The distribution functions considered in Lemma 1 satisfy for all kb 1
and x > 0, l > 0 the relation

FkðxjlÞ � FkðxÞ ¼ l

2
½Fkþ2ðxÞ � FkðxÞ� þ Rkðx; lÞ ð44Þ

where

Rkð0; lÞ ¼ Rkðy; lÞ ¼ 0 and sup
x>0

jRkðx; lÞj < 1� e�l=2ð1þ l=2Þ:

Proof. We shall start with Ferguson (1996) who on p. 62 presents for
ffiffiffiffiffiffiffiffiffiffiffiffi
X2

kðlÞ
q

the density

gkðxjlÞ ¼ e�l=2
Xy
j¼0

ðl=2Þ j
j!

2xxkþ2 j�2e�x2=2

2k=2þjGðk=2þ jÞ :

Hence the density of X2
kðlÞ is

fkðxjlÞ ¼ e�l=2
Xy
j¼0

ðl=2Þ j
j!

xðkþ2 jÞ=2�1e�x=2

2ðkþ2 jÞ=2Gððk þ 2 jÞ=2Þ
;
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i.e. the distribution functions under consideration satisfy the relation

FkðxjlÞ ¼ e�l=2
Xy
j¼0

ðl=2Þ j
j!

Fkþ2 jðxÞ:

The formula (44) with

Rkðx; lÞ ¼ ðe�l=2 � 1þ l=2ÞFkðxÞ þ ðe�l=2 � 1Þðl=2ÞFkþ2ðxÞ

þ e�l=2
Xy
j¼2

ðl=2Þ j
j!

Fkþ2 jðxÞ

follows directly from this relation. Further, Rkðx; lÞ ¼ Rþ
k ðx; lÞ þ R�

k ðx; lÞ
where

Rþ
k ðx; lÞ ¼ e�l=2

Xy
j¼2

ðl=2Þ j
j!

Fkþ2 jðxÞ

and

R�
k ðx; lÞ ¼ �½ð1� l=2� e�l=2ÞFkðxÞ þ ð1� e�l=2Þðl=2ÞFkþ2ðxÞ�:

The rest is clear from the fact that both these functions are continuously
monotone with Rþ

k ð0; lÞ ¼ R�
k ð0; lÞ ¼ 0 and

0 < Rþ
k ðy; lÞ ¼ e�l=2ðel=2 � 1� l=2Þ ¼ 1� e�l=2ð1þ l=2Þ;

0 > R�
k ðy; lÞ ¼ �½1� l=2� e�l=2 þ ð1� e�l=2Þl=2� ¼ �Rþ

k ðy; lÞ;

so that jRkjamaxðRþ
k ; jR�

k jÞ.

Theorem 2. If the model is regular in the sense considered in Theorem 1 then the
asymptotic relation (40) with

cmðaÞ ¼ 1� a� Fmþ1ðgmðaÞÞ
2

ðcf : ð36ÞÞ ð45Þ

holds for every a, m and y considered there. The constants cmðaÞ are positive
and satisfy the inequality

cmðaÞb 1� a

mþ 1
: ð46Þ

Therefore the maximal power ratios pa;m or pa are well defined by the for-
mulas (41)–(43) with cmðaÞ given by (45) for all tests (34) from the classes Ta;m

or Ta, respectively.

Proof. Put g ¼ gmðaÞ. Lemma 2 implies that
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Fm�1ðgjdÞ � Fm�1ðgÞ ¼ d

2
½Fmþ1ðgÞ � Fm�1ðgÞ� þ oðdÞ as d ! 0;

where Fm�1ðgÞ ¼ 1� a by (37). Hence it follows from (38) and (44) that

pmðy; y0ja; yÞ � a ¼ 1� Fm�1ðg j dmðy; y0jyÞÞ � ½1� Fm�1ðgÞ�

¼ �½Fm�1ðg j dmðy; y0jyÞÞ � Fm�1ðgÞ�

¼ dmðy; y0jyÞ
2

½Fm�1ðgÞ � Fmþ1ðgÞ� þ oðdmðy; y0jyÞÞ

as dmðy; y0jyÞ ! 0. This together with (39) implies (40) with cmðaÞ given by
(45). It remains to prove the inequality (46). First, observe that

Fkþ2ðxÞ ¼ 1

k þ 2

ð x

0

tfkðtÞ dt

where fkðxÞ is the density of FkðxÞ. Thus the per partes rule gives for every
x > 0 and kb 1

xFkðxÞ ¼
ð x

0

FkðtÞ dtþ ðk þ 2ÞFkþ2ðxÞ:

In particular, for m > 1

Fmþ1ðxÞ ¼
xFm�1ðxÞ �

Ð x

0 Fm�1ðtÞ dt
mþ 1

so that

Fmþ1ðgÞ ¼
gð1� aÞ � Ð g

0 Fm�1ðtÞ dt
mþ 1

:

Now

gð1� aÞ �
ð g

0

Fm�1ðtÞ dt ¼
ð g

0

ð1� Fm�1ðtÞÞ dt� ag

¼
ðy
0

ð1� Fm�1ðtÞÞ dt� agþ
ðy
g

ð1� Fm�1ðtÞÞ dt
� �

a

ðy
0

ð1� Fm�1ðtÞÞ dt� a

ðy
0

ð1� Fm�1ðtÞÞ dt

¼ ð1� aÞ
ðy
0

ð1� Fm�1ðtÞÞ dt ¼ ð1� aÞðm� 1Þ;

where the inequality follows from the fact that
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agþ
ðy
g

ð1� Fm�1ðtÞ dtÞb a

ð g

0

1 � dtþ a

ðy
g

ð1� Fm�1ðtÞÞ dt

b a

ðy
0

ð1� Fm�1ðtÞÞ dt

and the last equality follows from the relation

ðy
0

ð1� Fm�1ðtÞÞ dt ¼
ðy
0

t dFm�1ðtÞ ¼ m� 1:

Therefore

cmðaÞ ¼ 1� a� Fmþ1ðgÞ
2

b
ð1� aÞ½1� ðm� 1Þ=ðmþ 1Þ�

2
¼ 1� a

mþ 1

which completes the proof.

By Theorem 2, in all models satisfying the standard regularity assumptions,
the information Imðy0jyÞ characterizes the sensitivity of the power pmðy; y0ja; yÞ
of the tests from Ta;m to small deviations of alternatives y from the hypothesis
y ¼ y0. The larger is the information Imðy0jyÞ the sharper is the increase of
power from the minimal possible level a achieved at y ¼ y0. By (17), the upper
bound on Imðy0jyÞ is Iðy0Þ and, by Theorem 1, this bound is achievable.
Therefore the nonnegative variable Iðy0Þ � Imðy0jyÞ can serve as a relative
measure of ine‰ciency in the class of tests Ta;m. The disadvantage of this
method is that even the most e‰cient test in the class Ta;m, defined by the
partition y�ðy0Þ which maximizes the information Imðy0jyÞ (see (19)), is often
characterized as ine‰cient, since Iðy0Þ � Imðy0 j y�ðy0ÞÞ is not negligible unless
m is large enough. Therefore a more appropriate ine‰ciency measure in the
class Ta;m seems to be the di¤erence between the maximal asymptotic power
ratio pa;mðy0Þ (see (43)) and the actual asymptotic power ratio Imðy0jyÞ, i.e.
the di¤erence D�

mðy0jyÞ ¼6 Imðy0 j y�ðy0ÞÞ � Imðy0jyÞ. Then a test (34) is rela-
tively e‰cient in Ta;m if and only if D�

mðy0jyÞ ¼ 0.
If the sequence cmðaÞ, m ¼ 1; 2; . . . ; was nondecreasing with a finite limit

cyðaÞ, then we could obtain from Theorem 1 the formula

pa ¼ cyðaÞIðy0Þ

for the maximal asymptotic power ratio (43), and the relative ine‰ciency in
the whole class Ta could be defined as the di¤erence

Daðy0Þ ¼ cyðaÞIðy0Þ � cmðaÞIðy0jyÞ:

Unfortunately, a more detailed analysis of cmðaÞ shows that this sequence is
decreasing to zero (with the rate m�1=2). The situation is thus not as simple as
one might expect. But the informations Imðy0 j y�ðy0ÞÞ considered in (43) are
increasing to Iðy0Þ in typical models with the rate higher than m1=2 so that one
can expect the existence of a unique integer m� ¼ m�ðy0jaÞ with the property
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paðy0Þ ¼ cm� ðaÞIm� ðy0 j y�ðy0ÞÞ:
The evaluation of m�ðy0jaÞ, and the possibility to investigate the ine‰ciency

cm� ðaÞIm� ðy0 j y�ðy0ÞÞ � cmðaÞImðy0jyÞ

of all tests (34) from the class Ta, are left as an interesting open problem.
We can conclude the second part of this section, dealing with the role of

Fisher informations in testing statistical hypotheses, by underlining the role
of Fisher informations Imðy0 j y�ðy0ÞÞ and Imðy0jyÞ in evaluating the relative
asymptotic ine‰ciencies of the estimators in classes Ta;m with fixed a A ð0; 1Þ
and m > 1. Note that the informations Imðy0 j yðy0ÞÞ are important too. This
follows from the fact that y�ðy0Þ cannot be expressed in a closed form even in
as common models as the normal or Cauchy model of location, and from the
fact observed in the previously cited papers of Menéndez et al. (1998, 2001b).
Namely, that the asymptotic distribution, asymptotic size and asymptotic
power of the tests (34) at the alternatives An defined in (3) remain to be pre-
served when the quantization yðy0Þ is replaced by the empirical quantization
y ¼ yn defined in (23). The preservation of the asymptotic distribution and
size was proved in Theorem 5.1 of Menéndez et al. (1998) and the preserva-
tion of the asymptotic power in Corollary 3.1 of Menéndez et al. (2001b). The
ine‰ciency of the empirical f-disparity tests tends to zero as m ! y by The-
orem 1. The asymptotic a-size versions of these tests are of the following form:

2n
Xm
j¼1

pjðy0jynÞf
1

mpjðy0jynÞ
� �

> f 00ð1ÞX2
m�1;1�a: ð47Þ

For some functions f, the test statistic can be simplified by using ~ffðtÞ ¼
tfð1=tÞ instead of fðtÞ, similarly as in (31).

Note also that the convergence (33) is important in the hypotheses testing
too. Namely, if Iðy0Þ � Im0

ðy0 j yðy0ÞÞ is negligible for some m0, then the non-
negative di¤erence

½Iðy0Þ � Imðy0jyÞ� � D�
mðy0jyÞ

¼ Iðy0Þ � Imðy0 j y�ðy0ÞÞa Iðy0Þ � Imðy0 j yðy0ÞÞ

is negligible for all m > m0. Therefore, in this case the upper bound Iðy0Þ �
Imðy0jyÞ on the ine‰ciency D�

mðy0jyÞ can be used as a relative measure of in-
e‰ciency of the tests (34) in all classes Ta;m with a A ð0; 1Þ and mbm0.

4 Fisher informations in location models

In this section we restrict ourselves to location families F ðx; yÞ ¼ F ðx� yÞ,
x; y A R and study the Fisher information measures

Imðy j yðyÞÞ ¼ Imð0 j yð0ÞÞ ¼6 Im and Imðy j y�ðyÞÞ ¼ Imð0 j y�ð0ÞÞ ¼6 I �m; ð48Þ

and the suboptimal and optimal quantizations
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yðyÞ ¼ y � 1þ yð0Þ and y�ðyÞ ¼ y � 1þ y�ð0Þ ð1 ¼ ð1; . . . ; 1Þ A RmÞ:
ð49Þ

In these families, for every quantization y we have

F ðy � 1þ y; yÞ ¼ FðyÞ ¼6 l ¼ ðl1; . . . ; lm�1Þ; ð50Þ

so that the quantization y � 1þ y consists of the m� 1 fractiles of the parent
distribution FðxÞ of orders l. In particular, yð0Þ consists of the fractiles of
F ðxÞ of the orders uniformly spaced on ð0; 1Þ (briefly, uniform fractile orders)
defined by

l0 ¼ ð1=m; 2=m; . . . ; ðm� 1Þ=mÞ: ð51Þ

We denote the vector of the fractile orders leading to the optimal partitions
y�ð0Þ by

l� ¼6 F ðy�ð0ÞÞ: ð52Þ

The components l�j of l� thus represent the optimal fractile orders.
Let us now consider the statistical procedures in the model (1) based on the

observations randomly quantized by the empirical fractiles of orders l,

yn ¼ ynj ¼6 F�1
n ðljÞ : 1a jam� 1

� �
: ð53Þ

Since in this case Fn tends to F ðx� y0Þ where y0 is the true parameter, the
fractiles (53) tend to

y0 � 1þ ðF�1ðljÞ : 1a jam� 1Þ ¼
	

yðy0Þ if l ¼ l0

y�ðy0Þ if l ¼ l�:

The theorems used above to argue that the inference based on data quan-
tized by the empirical fractiles of uniform orders is characterized by the inef-
ficiency Dðy0 j yðy0ÞÞ ¼ Iðy0Þ � Imðy0 j yðy0ÞÞ lead in the location models to a
stronger conclusion. Namely, that if the data are quantized by the empirical
quantiles of orders l, then this ine‰ciency is Dðy0jyÞ ¼ Iðy0Þ � Imðy0jyÞ for
y ¼ ðF�1ðljÞ : 1a jam� 1Þ. Thus, and this is one of the clues of this paper,
the minimal ine‰ciency Dðy0 j y�ðy0ÞÞ can be practically achieved in the loca-
tion models by using the random quantization by the empirical fractiles l� of
optimal orders which does not depend on the true location y0. This interesting
result can be extended to some other (but not all) models with equivariant
structure.

We shall therefore be interested not only in yð0Þ (or, equivalently, l0) but
also in l� (equivalently, y�ð0Þ) which are practically applicable in the statistical
inference about location models. Next, we use analytic as well as numerical
methods to evaluate these characteristics (and also the corresponding values of
Im and I �m defined in (48)) in the common location families: normal, logistic,
Cauchy and doubly exponential.
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We start with the formula

Imð0jyÞ ¼
Xm
j¼1

½ f ðyjÞ � f ðyj�1Þ�2
FðyjÞ � Fðyj�1Þ ð54Þ

easily deducible in the location models for every y A Rm�1 under considera-
tion from (12) and (16). This formula provides the desired values of Im ¼
Imð0 j yð0ÞÞ for yð0Þ, and is obtained by the application of the quantile function

F�1ðlÞ to the coordinates of l� 0. Namely,

Im ¼ m
Xm
j¼1

½ f ðF�1ð j=mÞÞ � f ðF�1ðð j � 1Þ=mÞÞ�2: ð55Þ

Evaluation of I �m ¼ Imð0 j y�ð0ÞÞ and y�ð0Þ means the maximization of the
expression (54) over y. This mathematical programming problem can in some
cases be solved analytically so that I �m and y�ð0Þ can be expressed in a closed
form. However, in most cases it will be necessary to solve this problem nu-
merically with the aid of computers. Next we discuss some known and some
new results in this area.

The following theorem sharpens Lemma 2.1 in Cheng (1973) and partly
also Proposition 1 in Pötzelberger and Felsenstein (1993) and the results in
Section 3 of Tsaridis et al. (1997).

Theorem 3. Let jðlÞ ¼ f ðF�1ðlÞÞ be twice di¤erentiable on ð0; 1Þ. Then l ¼
ðl1; . . . ; lm�1Þ with 0 < l1 < � � � < lm�1 < 1 is the vector of optimal fractile
orders only if it satisfies the equations

jðljþ1Þ � jðljÞ
ljþ1 � lj

þ jðljÞ � jðlj�1Þ
lj � lj�1

¼ 2 _jjðljÞ; 1a jam� 1; ð56Þ

where _jjðlÞ ¼ djðlÞ=dl and l0 ¼ 0, lm ¼ 1. If jðlÞ is strictly convex or strictly
concave on ð0; 1Þ with

jð0Þ ¼6 lim
l#0

jðlÞ ¼ jð1Þ ¼6 lim
l"1

jðlÞ ¼ 0 ð57Þ

then (56) has a unique solution l of the above considered properties and this
solution represents the optimal fractile orders.

Proof. By substituting yj ¼ F�1ðljÞ, 0a jam, in (54) and taking the partial
derivatives of (54) with respect to lj, 1a jam� 1, one obtains that (56) is
the stationarity condition which is necessary for the optimality of the above
considered l. Let us suppose that jðlÞ is strictly concave on ð0; 1Þ (otherwise
we can replace it by the strictly concave – jðlÞ). Under the stated assump-
tions, jðlÞ can be extended into a continuously di¤erentiable function on ½0; 1�
with the right- and left-hand derivatives _jjð0Þ A ð�y;y� and _jjð1Þ A ½�y;yÞ.
The functions
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_jjðlÞ and
jðlÞ � jðl0Þ

l� l0
; l0 A ½0; 1�;

of variable l are decreasing on ½0; 1� and ½0; 1� � fl0g, respectively. By the
mean value theorem, this implies that for all su‰ciently small lj A ðlj�1; 1Þ
there exists an increasing function cjðljÞ > lj with a range ðaj; 1�, where lj�1 <

aj < 1, such that the equality of (56) holds if and only if ljþ1 ¼ cjðljÞ. Let us
define for su‰ciently small l1 A ð0; 1Þ the numbers l2 ¼ c1ðl1Þ, l3 ¼ c2ðl2Þ ¼
c2ðc1ðl1ÞÞ; . . . ; lm ¼ cm�1ðlm�1Þ ¼ cm�1ðcm�2ð. . . ðc1ðl1ÞÞ . . .ÞÞ. Then there
exists a unique l1 A ð0; 1Þ leading to lm ¼ 1. This proves the uniqueness of
the solution of (56). The fact that this solution maximizes (54) follows from
Lemma 2.1 in Cheng (1973).

The following statement follows from the arguments on pp. 130–131 of
Pötzelberger and Felsenstein (1993).

Theorem 4. If c ¼ Ð ð f ðxÞ½ðln f ðxÞÞ00�2Þ1=3 dx is finite then the distribution func-
tion

GðxÞ ¼ c�1

ð x

�y
ð f ðtÞ½ðln f ðtÞÞ00�2Þ1=3 dt; x A R; ð58Þ

and the coordinates of the optimal partitions y�ð0Þ are mutually related by the
asymptotic formula

y�jð0Þ ! G�1ðlÞ for
j

m
! l A ð0; 1Þ;m ! y: ð59Þ

In other words, if m is large then y�ð0Þ is close to the uniform order fractiles of
the distribution GðxÞ or, equivalently,

GmðxÞ ¼6 1

m� 1

Xm�1

j¼1

I½y�j ;yÞðxÞ ! GðxÞ as m ! y; x A R:

Example 1 (Logistic model). A nice illustration for applicability of Theorems 3
and 4 is provided by the logistic location family, where

FðxÞ ¼ 1

1þ e�x
; F�1ðlÞ ¼ ln

l

1� l
;

f ðxÞ ¼ e�x

ð1� e�xÞ2 and jðlÞ ¼ lð1� lÞ:

For this model, the optimal and sub-optimal quantizations can be assessed
analytically.

As easy to verify, Ið0Þ ¼ 1=3. Further, the assumptions of Theorem 3 hold
and the optimal fractile orders are the m� 1 uniform fractile orders l0, which
are the unique solution of the equations (56). Therefore
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I �m ¼ Im ¼ m
Xm
j¼1

½jð j=mÞ � jðð j � 1Þ=mÞ�2 ðcf : ð55ÞÞ

¼ m
Xm
j¼1

j

m
�m� j

m
� j � 1

m
�m� j þ 1

m

� �2

¼ 1

m3

Xm
j¼1

½m� 2 j þ 1�2 ¼ 1

3
1� 1

m2

� �
; ð60Þ

where we used the formulas

Xm
i¼1

i ¼ mðmþ 1Þ
2

and
Xm
i¼1

i2 ¼ mðmþ 1Þð2mþ 1Þ
6

:

It follows from (60) that the asymptotic relation (33) can now be precised non-
asymptotically as follows: Ið0Þ � Im ¼ 1=ð3m2Þ. Also the relation (25) holds

nonasymptotically for all m > 1, with Oð1=m2Þ replaced by 1=ð3m2Þ. The
distribution function GðxÞ of Theorem 4 coincides in this case with F ðxÞ.
Therefore relation (59) of Theorem 4 holds in the stronger nonlimit form lead-
ing to the optimal quantization defined by

y�jð0Þ ¼ y0jð0Þ ¼ G�1ð j=mÞ ¼ ln
j

m� j
; 1a jam� 1:

Relative asymptotic ine‰ciencies (in %), hm ¼ 100½Ið0Þ � Im�=Ið0Þ ¼
100=m2 are presented in Table 1. We see that the relative asymptotic in-
e‰ciencies can be characterized as small for mb 10, and negligible when
mb 20.

Example 2 (Standard normal model). Let f ðxÞ and FðxÞ be the standard nor-
mal density and distribution function. Then F�1ðlÞ, and therefore jðlÞ,
cannot be presented in a closed form. However, it is easy to verify that _jjðlÞ ¼
�2F�1ðlÞ so that €jjðlÞ ¼ �2= f ðF�1ðlÞÞ is negative on ð0; 1Þ. Therefore The-
orem 3 is applicable. The evaluation of the coordinates yð0Þ, and of the cor-
responding values of Im, is only a minor numerical problem – to this end it
su‰ces to use a closed formula approximating the quantile function F�1ðlÞ
with a guaranteed accuracy in the domain of interest l ¼ j=m. A more serious
problem is the evaluation of the optimal partitions y�ð0Þ, leading easily to the
corresponding optimal fractile orders l� and Fisher informations I �m. By The-
orem 3, to this end it su‰ces to find the solution of equations (56). This can-

Table 1. Relative asymptotic ine‰ciencies hm for the lo-
gistic model (in %)

m 2 3 4 5 10 15 20

hm 25 11.11 6.25 4 2.78 0.44 0.25

On e‰ciency of estimation and testing with data quantized to fixed number of cells 19



not be done analytically, as in the previous example, but it is possible to do it
numerically, using the method presented in the proof of Theorem 3. Indeed,
the functions c1;c2; . . . ;cm�1 can be evaluated numerically at arbitrary ar-
guments so that it su‰ces to iterate l1 until lm ¼ 1 is achieved with a desired
accuracy. Nevertheless, in the present paper we used a di¤erent approach,
namely the gradient method for maximization of (54), starting with the initial
estimates

~yyð0Þ ¼ ð~yyjð0Þ ¼ G�1ð j=mÞ : 1a jam� 1Þ

obtained by means of GðxÞ specified in Theorem 4. This distribution function
can be explicitly evaluated for the standard normal FðxÞ, namely (cf. p. 144 in
Pötzelberger and Felsenstein (1993)),

GðxÞ ¼ Fðx=
ffiffiffi
3

p
Þ; x A R:

Therefore

~yyð0Þ ¼
ffiffiffi
3

p
yð0Þ:

We have used Powell’s quadratically convergent method of maximization
proposed by Powell (1964) to obtain the optimal partition y� that maximizes
(46). The basic idea of this method is that, starting at a point ~yy in the ðm� 1Þ-
dimensional space, we proceed in some vector direction, so that a given func-
tion of m� 1 variables can be minimized along the line in this direction by
the one-dimensional method given in Brent (1973). The tolerance of Brent’s
method was fixed at 10�12. As an initial value we used ~yy ¼ ~yyð0Þ. We tested the
final iterations y� by comparing them with what was obtained for the initial
values ~yy ¼ ~yyð0Þ. To calculate F ðxÞ;F�1ðxÞ and f ðxÞ we used the dcdflib library
of C functions written by Brown et al. (1994).

In Table 2 we present the coordinates of yð0Þ; ~yyð0Þ; y�ð0Þ and the corre-
sponding Fisher informations Im; ~IIm; I

�
m for m ¼ 2; 3; 4; 5; 10; 15 and 20. Since

the coordinates of yð0Þ and y�ð0Þ are symmetric around 0 (containing 0 when
m is even), we present only the positive ones. As can easily be verified, in the
standard normal location model under consideration Ið0Þ ¼ 1. Table 2 pre-
sents also the relative asymptotic ine‰ciencies (in %),

hm ¼ Ið0Þ � Im

Ið0Þ 100; ~hhm ¼ Ið0Þ � ~IIm
Ið0Þ 100 and h�

m ¼ Ið0Þ � I �m
Ið0Þ 100: ð61Þ

All presented values (except the percents) are rounded o¤ to three decimals.
Note that the values of Im for m ¼ 2; 3 and 4 were first published in Pöt-

zelberger and Felsenstein (1993), and those for m ¼ 5; 10; 15 and 20 have been
published in Menéndez et al. (2001b).

In Figure 1 we present the values of the Fisher information measures
Im; ~IIm; I

�
m and the corresponding relative asymptotic ine‰ciencies for the uni-

form and optimal partitions, hm and h�
m, assessed for all sizes m between m ¼ 1

and m ¼ 30. As can be seen from Figure 1 and Table 2, the relative asymp-
totic ine‰ciencies of the three quantizations coincide for m ¼ 2, but they di¤er
when mb 3. For m ¼ 10, the relative asymptotic ine‰ciency of the uniform
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quantization yð0Þ doubles that of the optimal one. We see that for all three
partitions yð0Þ, ~yyð0Þ and y�ð0Þ the relative asymptotic ine‰ciencies are rea-
sonably small for mb 10, and they are practically negligible for mb 20.

Example 3 (Standard Cauchy model). The standard Cauchy location family is
specified by

f ðxÞ ¼ 1

pð1þ x2Þ and FðxÞ ¼ 1

2
þ 1

p
arctg x; x A R:

Here

F�1ðlÞ ¼ tg½pðl� 1=2Þ� and jðlÞ ¼ 1

pð1þ tg2½pðl� 1=2Þ�Þ ; l A ð0; 1Þ:

Table 2. Fisher information measures Im; ~IIm; I
�
m in the normal model, and the corresponding rela-

tive asymptotic ine‰ciencies for the uniform and optimal partitions, hm and h�
m (in %), evaluated

for selected partition sizes m between m ¼ 2 and m ¼ 20

m yð0Þ Im hm ~yyð0Þ ~IIm ~hhm y�ð0Þ I �
m h�

m

2 0.000 0.637 36.34 0.000 0.637 36.34 0.000 0.637 36.34

3 0.431 0.793 20.68 0.714 0.801 19.92 0.612 0.809 19.02

4 0.000 0.861 13.94 0.000 0.876 12.44 0.000 0.883 11.75
0.674 1.168 0.982

5 0.281 0.897 10.30 0.476 0.914 8.59 0.381 0.920 7.99
0.841 1.458 1.244

10 0.000 0.959 4.06 0.000 0.973 2.71 0.000 0.977 2.29
0.320 0.555 0.405
0.641 1.110 0.834
0.961 1.665 1.325
1.282 2.220 1.968

15 0.115 0.976 2.38 0.200 0.986 1.38 0.137 0.989 1.07
0.346 0.600 0.414
0.577 1.000 0.703
0.808 1.400 1.013
1.039 1.800 1.360
1.270 2.200 1.776
1.501 2.600 2.344

20 0.000 0.985 1.63 0.000 0.992 0.86 0.000 0.994 0.62
0.183 0.317 0.208
0.366 0.633 0.420
0.548 0.950 0.638
0.731 1.266 0.866
0.914 1.583 1.111
1.097 1.899 1.381
1.279 2.216 1.690
1.462 2.532 2.068
1.645 2.849 2.593
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Further, Ið0Þ ¼ 1=2 and the norming constant of Theorem 4 is

c ¼
ð ðx2 � 1Þ2=3
ð1þ x2Þ5=3

dx ¼ 2

ð p=2

0

jsin2 t� cos2 tj2=3 dt

¼ 2

ð p=2

0

cos2=3 t dt:

Thus the G-function of Theorem 4 is of the form

GðxÞ ¼ 1

c

ð x

�y

ðy2 � 1Þ2=3
ð1þ y2Þ5=3

dy ¼ 1

2
1þ

Ð artg x
0 cos2=3 t dtÐ p=2

0 cos2=3 t dt

" #
:

Values of the quantile function G�1ðlÞ can be obtained by a numerical solu-
tion of the equation GðxÞ ¼ l. In this manner we obtained the coordinates of
~yyð0Þ ¼ ðG�1ð j=mÞ : 1a jam� 1Þ used in the calculations described below.
Finally,

_ff ðxÞ
f ðxÞ ¼ � 2x

1þ x2

Fig. 1. Fisher information measures and relative asymptotic ine‰ciencies for the uniform, asymp-
totic and optimal partitions, evaluated for m ¼ 1; . . . ; 30 in the normal location model.
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so that for a ¼ pðl� 1=2Þ

d

dl
f ðF�1ðlÞÞ ¼ � 2 tg a

1þ tg2 a
¼ �2 sin a cos a ¼ sin½pð2l� 1Þ�

which is not monotone on ð0; 1Þ. Therefore jðlÞ is neither convex nor concave
on ð0; 1Þ. This excludes similar application of Theorem 3 as above, and also
leads to the strange non-monotone behaviour of the Fisher information Im
and ~IIm for m ¼ 2; 3 and 4, visible in Figure 2 and Table 3 below. This behav-
ior was first observed without explanation on p. 141 in Pötzelberger and Fel-
senstein (1993). Even stranger appears to be that there are two di¤erent solu-
tions of the system (56) for m ¼ 4. Since the application of the algorithm
based on Theorem 3 and outlined in the previous example is impossible, we
had no choice but to apply the same gradient method for evaluation of the
optimal partitions y�ð0Þ as in that example, with the above specified initial
estimates ~yyð0Þ of y�ð0Þ. The same characteristics as considered in the previous
example are for the Cauchy family presented in Table 3.

As it can be seen in Figure 2, the Fisher informations Im; ~IIm and I �m di¤er
for the three quantizations when m is small. The di¤erences are reasonably
small for mb 10 and they are negligible when mb 20.

Example 4 (Double exponential model). We observe an even stranger behav-
iour of the informations Im and I �m than in the previous example in the double
exponential location family where

Fig. 2. Fisher information measures and relative asymptotic ine‰ciencies for the uniform, asymp-
totic and optimal partitions, evaluated for m ¼ 1; . . . ; 30 in the Cauchy location model.
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f ðxÞ ¼ 1

2
e�jxj for x A R and FðxÞ ¼ 1� 1

2 e
�x for xb 0

1
2 e

x for x < 0:




Here Ið0Þ ¼ 1 and

F�1ðlÞ ¼
ln

1

2ð1� lÞ for l A ½1=2; 1Þ

lnð2lÞ for l A ð0; 1=2Þ:

8><
>:

Therefore

Table 3. The same characteristics as in Table 2 for the Cauchy model. For m ¼ 4 the table pre-
sents all 3 coordinates of yð0Þ, ~yyð0Þ and y�ð0Þ because those of y�ð0Þ are in this case not sym-
metric about 0. In fact, there are two optimal partitions y�ð0Þ – the second is obtained by multi-
plying the coordinates of the first one by �1

m yð0Þ Im hm ~yyð0Þ ~IIm ~hhm y�ð0Þ I �
m h�

m

2 0.000 0.405 18.94 0.000 0.405 18.94 0.000 0.405 18.94

3 0.577 0.342 31.60 0.491 0.371 25.82 0.179 0.429 14.22

4 �1.000 �1.188 �1.157
0.000 0.405 18.94 0.000 0.407 18.64 0.239 0.450 10.08
1.000 1.888 3.285

5 0.325 0.438 12.48 0.234 0.458 8.36 0.214 0.470 6.08
1.376 1.851 3.334

10 0.000 0.484 3.24 0.000 0.487 2.56 0.000 0.491 1.78
0.325 0.234 0.199
0.727 0.706 0.444
1.376 1.851 2.250
3.0777 4.306 5.022

15 0.105 0.493 1.46 0.075 0.494 1.16 0.075 0.495 0.96
0.105 0.075 0.075
0.325 0.234 0.265
0.577 0.491 0.497
0.900 0.996 1.803
1.376 1.851 2.682
2.246 3.137 4.272
4.705 6.593 8.818

20 0.000 0.496 0.82 0.000 0.497 0.67 0.000 0.497 0.53
0.158 0.113 0.116
0.325 0.234 0.240
0.510 0.396 0.385
0.727 0.706 0.578
1.000 1.188 1.658
1.376 1.851 2.317
1.963 2.733 3.297
3.078 4.306 5.147
6.314 8.851 10.521

24 A. M. Mayoral et al.



jðlÞ ¼ 1� l for l A ½1=2; 1Þ
l for l A ð0; 1=2Þ:




We see that jðlÞ is in this case concave on ð0; 1Þ, but not strictly concave as
required by Theorem 3. Hence Theorem 3 is again not applicable in the same
manner as in Examples 1 and 2. As observed already on p. 135 of Pötzelberger
and Felsenstein (1993), there are infinitely many optimal vectors y�ð0Þ in this
case – one of them is that with all coordinates equal to 0. Therefore I �m ¼
Ið0Þ ¼ 1 for all m > 1. Moreover, Im ¼ Ið0Þ if m is even and Im ¼ 1=m if m is
odd.

However, these strange facts have a sound statistical explanation. Namely,
for the partition of R into the intervals ð�y; 0�, ð0;yÞ all minimum f-disparity
estimators of location y

f;y
2;n reduce to the sample median which is known to be

e‰cient in the original unreduced doubly exponential model. Similarly for the
empirical quantization of R by the sample median yn, all empirical f-disparity
estimators ~yy f

2;n reduce to yn (to see this, put m ¼ 2 in (31) and apply the defi-
nition of p1ðyjynÞ). Thus the conclusions of the theory do not contradict the
common sense.

5 Discussion

Asymptotic theory of point estimation is usually focused on asymptotically
e‰cient estimators. In Sections 2 and 4 it has been shown that this optimality
property is usually lost when data is quantized to m cells. However, if m in-
creases to infinity and the partition is selected in a convenient way, the opti-
mality is achievable by the estimators using quantized data. This fact follows
from the possibility to achieve a monotone convergence of the quantized Fisher
information to its counterpart in the continuous models. The larger Fisher’s
amount of information is, the more e‰cient the estimators are. Therefore, the
best partition should be selected by maximizing this information quantity.

Asymptotic theory of testing hypotheses usually concerns with maximiza-
tion of asymptotic power in contiguous alternatives. As shown in Sections 3
and 4, asymptotic power of the tests based on normalized f-disparities of the
discrete empirical and theoretical cell probability vectors can be considered as
an increasing function of Fisher’s amount of information. Selection of the best
partition is thus here the same problem as in the statistical estimation.

Examples in Section 4 clarify in a quantitative way the above recommen-
dation about selection of partitions. To be more precise, we see from the right-
hand columns of Tables 2 and 3, and from the explicit formulas in Examples 1
and 4, that the relative asymptotic ine‰ciencies achievable in the (empirically)
quantized continuous models are practically negligible already for mb 10.
The rate with which the ine‰ciency vanishes seems to be quadratic in the sense
of (25). The only exception was the doubly exponential model, with the lack of
regularity. There Oð1=m2Þ is replaced by 1=m for m odd and by 0 for m even.
From the middle columns of Tables 2 and 3 we see that the method of Theo-
rem 4 provides practically acceptable approximations to the optimal parti-
tions already for mb 10. From the left-hand columns one can see that the loss
of e‰ciency due to the use of simplified universal quantization by the fractiles
of equidistant orders is relatively small, especially for mb 10. Thus we can
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conclude that the computationally feasible and robust discrete methods of sta-
tistical inference are applicable in the continuous models without a noticeable
loss of e‰ciency.
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