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Abstract. The ultimate goal of this paper is to determine a measure of the degree
of dependence between two interval-valued random sets, when the dependence
is intended in the sense of an a‰ne function relating these random elements.
For this purpose, a general study on the least squares fitting of an a‰ne func-
tion for interval-valued data is first carried out, where the least squares method
we will present considers that squared residuals are based on a generalized
metric on the space of nonempty compact intervals, and output and input ran-
dom mechanisms are modelled by means of convex compact random sets. For
the general case of nondegenerate convex compact random sets, solutions are
presented in an algorithmic way, and the few cases leading to nonunique solu-
tions are characterized. On the basis of this regression study we later introduce
and analyze a well-defined determination coe‰cient of two interval-valued ran-
dom sets, which will allow us to quantify the strength of association between
them, and an algorithm for the computation of the coe‰cient has been also de-
signed. Finally, a real-life example illustrates the study developed in the paper.

Key words: Aumann’s integral; convex compact random set; linear correlation;
linear regression; W-metric between compact intervals

1 Introduction

In many experimental problems, the variation in the measurements of a ran-
dom element is caused to a certain extent by other related random element.

1 The research in this paper has been partially supported by DGESIC Grants DGE-99-PB98-
1534 and DGE-98-PB97-1282 of the Spanish MEC. Their financial support is gratefully ac-
knowledged.



An interesting point for discussion is that of assessing the nature and strength
of the relationship between these two elements, and then use it to describe or
predict the random element of primary interest from observations on the other
one. Descriptive and inferential regression and correlation analyses focussed
on such a discussion have been widely studied in the statistical literature.

When random elements correspond to random sets, regression and corre-
lation analyses become more complex due to the interpretation of the relation-
ships and to the di‰culties in finding optimal solutions and measures of their
adequacy.

Diamond (see [4]) has studied the case in which the values the random ele-
ments take on are nonempty compact intervals, and he has established a su‰-
cient condition for nondegenerate elements to admit a unique optimal solution
when an a‰ne function is employed to model the relationship between them,
the optimality criterion being intended as an extension of the least squares
one. Interval-valued data arise in some real-life situations from di¤erent areas,
especially in Economics, Medicine, etc., where random elements quantifying
(economical, time, electric, and so on) ranges are frequently considered (see,
for instance, [4], [21], [12]).

The first analysis in this paper generalizes Diamond’s study in two ways,
namely, by extending the least squares method in terms of a generalized met-
ric on the space of nonempty compact intervals, and by finding all the optimal
solutions for the general case of nondegenerate interval-valued random sets
with the statement of the necessary and su‰cient conditions for the nonunique-
ness. On the basis of the conclusions from this general regression problem, we
will later introduce a well-defined extended determination coe‰cient for the
a‰ne connection between the two random sets.

Computations for the optimal solutions and the extended determination
coe‰cient will be presented in an algorithmic way, and the application of these
algorithms is illustrated by means of a real-life example.

Finally, some future directions related to the study developed in this paper
are commented.

2 Preliminaries

Random elements in this paper will be assumed to take on interval values, and
they will be modelled by means of certain convex compact random sets.

Let KcðRÞ be the class of nonempty compact intervals. KcðRÞ can be en-
dowed with a semilinear structure induced by the product by a scalar and the
Minkowski addition. The well-known Hausdor¤ metric can be defined on
KcðRÞ, leading in this case to the simple expression dHðA;BÞ ¼ maxfjsupA �
supBj; jinf A� inf Bjg for A;B A KcðRÞ.

Given a probability space ðW;A;PÞ, a mapping X : W ! KcðRÞ being
ðA;BdH Þ-measurable is said to be an interval-valued random set (or convex
compact random set of R) associated with ðW;A;PÞ, BdH denoting the s-field
generated by the topology induced by dH on KcðRÞ.

If X : W ! KcðRÞ is an interval-valued random set associated with
ðW;A;PÞ, and E½jX j jP
 < y (condition which is often referred to as the in-
tegrable boundedness of X ), with jX jðoÞ ¼ supfjxj j x A XðoÞg for all o A W,
then the expected value of X in Aumann’s sense [1] is defined as the set
EA½X jP
 ¼ fEð f jPÞ j f : W!R; f A L1ðW;A;PÞ; f A X a:s: ½P
g, which in the
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case of X being interval-valued is given by the compact interval EA½X jP
 ¼
½Eðinf X jPÞ;EðsupX jPÞ
.

Random sets are widely applicable in many areas (see, for instance, [15],
[4], [3], [16], [22], [21]).

To develop an extension of the classical least squares method to the case
in which we deal with interval-valued data, we will make use of a metric on
KcðRÞ extending the Euclidean one, and being easy to handle and interpret.
For this purpose, we will consider the W-distance on KcðRÞ which is defined
for A;B A KcðRÞ as follows:

dW ðA;BÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið
½0;1


½ fAðlÞ � fBðlÞ
2 dW ðlÞ
s

with fAðlÞ ¼ l supAþ ð1 � lÞ inf A for all l A ½0; 1
, and W being formalized
by means of a probability measure on the measurable space ð½0; 1
;B½0;1
Þ
associated with a nondegenerate symmetric probability distribution on ½0; 1

(B½0;1
 being the Borel s-field on ½0; 1
) .

The W-distance is a particularization of a metric recently introduced (al-
though in a more general space) by Körner and Näther [10]. On the basis of
Radström Theorem (see, for instance, [5]), any convex set A A KcðRÞ can be
embedded isometrically via its support function sA into a cone of a Hilbert
space of functions. As a consequence, an interval-valued random set can be
viewed as a random function which takes on values in a Hilbert space, and
any L2-distance between the support functions of two elements A;B A KcðRÞ
could be expressed as follows:

DKðsA; sBÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX
ðu; vÞ AS 0�S 0

ðsAðuÞ � sBðuÞÞðsAðvÞ � sBðvÞÞKðu; vÞ
s

for some K : S0 � S0 ! R (S0 being the unit sphere in R, i.e., S0 ¼ f�1; 1g)
where K represents a symmetric and positive definite kernel, that is, Kð1;1Þ> 0,
Kð1;�1Þ ¼ Kð�1; 1Þ andKð1; 1ÞKð�1;�1Þ > Kð1;�1ÞKð�1; 1Þ.

The square of the distance above could be expressed alternatively by

½DKðsA; sBÞ
2 ¼ ðKð1; 1Þ � Kð1;�1ÞÞ½supA� supB
2

þ ðKð�1;�1Þ � Kð1;�1ÞÞ½inf A� inf B
2

þ 4Kð1;�1Þ½midA� midB
2

with midA ¼ ½supAþ inf A
=2 denoting the centre of interval A. If we slightly
constrains the kernel K to assess the same ‘‘weight’’ to the squared Euclidean
distance between the suprema and the squared Euclidean distance between the
infima (i.e., Kð1; 1Þ ¼ Kð�1;�1Þ) and to assess a nonnegative ‘‘weight’’ to the
squared Euclidean distance between the mid-points (i.e., Kð1;�1Þb 0), then,
for A;B A KcðRÞ we have that DKðsA; sBÞ ¼ dW ðA;BÞ.

Remark 1. It should be remarked that the metric employed by Diamond cor-
responds to dW for Wð0Þ ¼ Wð1Þ ¼ :5. It is obvious that, in the conditions
assumed for K, the generalized distance dW is equivalent to the generalized
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metric dl by Bertoluzza, Corral, and Salas [2] (see also [13]), with l ¼ ðWð0Þ;
Wð:5Þ;Wð1ÞÞ, but frequently choosing W on ½0; 1
 is more intuitive and easier
in practice than choosing l. On the other hand, although the measure W has
no stochastic meaning, we can formally deal with it in a probabilistic context
and hence we can work if required with the probability space ðW� ½0; 1
;
AnB½0;1
;PnWÞ. The mapping f½0;1
 : W� ½0; 1
 ! R can be treated as a
real-valued random variable which is constant w.r.t. P, and s2

f½0; 1

¼ Var½ f½0;1
 j

PnW 
 ¼
Ð
½0;1
 l

2 dW ðlÞ � :25 > 0. We can easily prove for the arbitrary

A;B AKcðRÞ that, due to the symmetry assumed for W, ½dW ðA;BÞ2 ¼ ½midA �
midB
2þ4s2

f½0; 1

½sprA� sprB
2 (with the spread being given by sprA¼ ½supA �

inf A
=2), whence the greater s2
f½0; 1


the greater the influence of the Euclidean

distance between the spreads of A and B on dW ðA;BÞ, this influence being the
greatest possible one for the metric used by Diamond.

As we have just indicated, from now on we will consider the generalized
metric dW , since choosing W and the interpretation of dW are usually more
intuitive than assigning weigths to the extreme and mid-points of interval-
valued data (or, alternatively, assigning the value of s2

f½0; 1

).

3 Extended least squares method for interval-valued random sets

Suppose that X and Y are two nondegenerate interval-valued random sets as-
sociated with a probability space ðW;A;PÞ. If an interval XðoÞ is observed
and we want to ‘‘estimate’’ the corresponding interval value YðoÞ (that is, X is
an independent or predictor interval-valued random set, and Y is a dependent
or response interval-valued random set), we can try to approximate Y as an
a‰ne function of either X (or, more generally, of gðXÞ, g being a well-defined
measurable function). Figure 1 shows the graphical representation of the esti-

Fig. 1. Graphical representation of aXðoÞ þ B
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mate aX ðoÞ þ B, þ denoting the Minkowski addition on KcðRÞ and aXðoÞ
meaning the product of the interval XðoÞ by the scalar a.

In order to determine the best approximation of Y by an a‰ne function
of X, we are going to consider an extension of the least squares method based
on the W-distance in Section 2. Thus, the sum (or, more generally, the mean)
of squares of residuals is now extended by the sum (or the mean) of the W-
distances between the observed and the estimated values of Y by the a‰ne
function.

Therefore, the aim is to minimize the objective function f : R �KcðRÞ !
½0;þyÞ such that fða;BÞ ¼ Eð½dW ðY ; aX þ BÞ
2 jPÞ for a A R, B A KcðRÞ.

3.1 Objective function of the problem

In virtue of the definition of the product of elements in KcðRÞ by a scalar, the
minimization of function f is equivalent to the minimization of an alternative
objective function defined in terms of expected values over the probability space
ðW� ½0; 1
;AnB½0;1
;PnWÞ. This alternative function is given by the map-
ping c : R � ½0;þyÞ � R ! ½0;þyÞ such that

cða; b; cÞ ¼
E½ð fY � afX � bf½0;1
 � cÞ2 jPnW 
 if ab 0

E½ð fY � a~ffX � bf½0;1
 � cÞ2 jPnW 
 if aa 0

(

with ~ffAðlÞ ¼ fAð1� lÞ for all l A ½0; 1
, b¼ 2 sprB A ½0;þyÞ, and c¼ inf B A R.
In particular, if we consider a random sample of n pairs of interval-valued

data, ðX1;Y1Þ; . . . ; ðXn;YnÞ, then

cða; b; cÞ ¼

1

n

Xn
i¼1

ð
½0;1


ð fYi
ðlÞ � afXi

ðlÞ � bl� cÞ2
dW ðlÞ if ab 0

1

n

Xn
i¼1

ð
½0;1


ð fYi
ðlÞ � afXi

ð1 � lÞ � bl� cÞ2
dW ðlÞ if aa 0.

8>>>>><
>>>>>:

As a consequence, the problem we want to solve can be viewed as a mix-
ture of two (according to the sign of the ‘‘slope’’ a) multiple linear regression
problems, each of them involving three (real-valued) random variables asso-
ciated with ðW� ½0; 1
;AnB½0;1
;PnWÞ. These variables are fX ; fY and

f½0;1
 if ab 0, and ~ffX ; fY and f½0;1
 if a < 0, with the constraint bb 0.

Note that there is an essential di¤erence between cða; b; cÞ in the theoreti-
cal and sample cases. Thus, the first one corresponds to a criterion for ap-
proximating a theoretical function Y and trying to find a proper mathematical
solution, whereas the second one is a data-analytic fitting problem which al-
ways can be solved by suitable numerical procedures.

Remark 2. The problem above could be also presented by considering an
approach involving a second alternative objective function defined (but for the
moment s2

f½0; 1

which only depends on W ) in terms of expected values over the

probability space ðW;A;PÞ, and involving the real-valued random variables
midX , midY , sprX , and sprY , as follows:
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jða; b; cÞ ¼ E½ðmidY � amidX � cÞ2

þ 4s2
f½0; 1


ðsprY � jaj sprX � bÞ2
��P


with a A R, b ¼ sprB A ½0;þyÞ, and c ¼ midB A R. The minimization of j
over R � ½0;þyÞ � R can be solved by fitting two parallel lines twice: once
for ðmidX ;midYÞ and ð2sf½0; 1
 sprX ; 2sf½0; 1
 sprY Þ (which will be valid when-
ever the slope a is nonnegative), and then for ðmidX ; midYÞ and ð2sf½0; 1
 
½�sprX 
; 2sf½0; 1
 sprY Þ (which will be valid whenever the slope a is negative).
In this approach to the problem, we would make use of standard linear alge-
bra studies to get the solutions, to compute the residual sums of squares, and
to give the conditions leading to nonunique optimal solutions.

3.2 Notations and preliminary computations

Before analyzing the solutions of the problem subject to the mixture and con-
straint pointed out above, we are going to describe some notations to be used in
such an analysis, as well as to indicate that (as already commented in Remark
2) all the values employed to formalize the solutions can be expressed in terms
of moments of the random variables midX , midY , sprX , and sprY . To bet-
ter distinguish these moments over the probability space ðW;A;PÞ, we will
make use of the standard linear model notation when we deal with these four
variables. An additional reason to do it is that in statistical applications (like
in the example below) we will consider the sample analogue estimates instead
of the theoretical parameters. Thus,

mf½0; 1

¼ E½ f½0;1
 jPnW 
 ¼ :5;

mfX ¼ E½ fX jPnW 
 ¼ E½ ~ffX jPnW 
 ¼ EðmidX jPÞ ¼ midEA½X jP
;

s2
fX

¼ Var½ fX jPnW 
 ¼ Var½ ~ffX jPnW 


¼ 4s2
f½0; 1


EððsprXÞ2 jPÞ þ VarðmidX jPÞ;

rfX fY ¼ sfX fYffiffiffiffiffiffiffiffiffiffiffiffiffi
s2
fX
s2
fY

q ¼ Cov½ fX ; fY jPnW 
ffiffiffiffiffiffiffiffiffiffiffiffiffi
s2
fX
s2
fY

q

¼
CovðmidX ;midY jPÞ þ 4s2

f½0; 1

EðsprX  sprY jPÞffiffiffiffiffiffiffiffiffiffiffiffiffi

s2
fX
s2
fY

q ;

r ~ffX fY
¼

CovðmidX ;midY jPÞ � 4s2
f½0; 1


EðsprX  sprY jPÞffiffiffiffiffiffiffiffiffiffiffiffiffi
s2
fX
s2
fY

q a rfX fY ;

rfX f½0; 1

¼ �r~ffX f½0; 1


¼ 2

ffiffiffiffiffiffiffiffiffi
s2
f½0; 1


s2
fX

vuut EðsprX jPÞ:
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If X and Y are assumed to be nondegenerate, then s2
fX

> 0, s2
fY

> 0,
rfX f½0; 1


0 1, and rfY f½0; 1

0 1.

3.3 Optimal solutions and discussion on the uniqueness of the solution

In accordance with the first approach to the problem we are considering, to
look for ða�;B�Þ A R �KcðRÞ minimizing f is equivalent to looking for the
vectorial value ða�; b�; c�Þ A R � ½0;þyÞ � R minimizing c, which can be
proven to be given by

ða�; b�; c�Þ ¼

ða1; b1; c1Þ if CASE 1

ða2; b2; c2Þ if CASE 2

ða 01; 0; c 01Þ if CASE 3

ða 02; 0; c 02Þ if CASE 4

ð0; b 00; c 00Þ if CASE 5;

8>>>>>><
>>>>>>:

that is, f is minimized for ða�;B�Þ A R �KcðRÞ such that

ða�;B�Þ ¼

ða1; ½c1; c1 þ b1
Þ if CASE 1

ða2; ½c2; c2 þ b2
Þ if CASE 2

ða 01; fc 01gÞ if CASE 3

ða 02; fc 02gÞ if CASE 4

ð0;EA½X jP
Þ if CASE 5;

8>>>>>><
>>>>>>:

where

– CASE 1 holds i¤ either a1 > 0, a2 b 0, b1 > 0, or a2
1 b a2

2 , a1 > 0, a2 < 0,
b1 > 0, b2 > 0, or a2

1 ½1 � r2
fX f½0; 1



b a 02
2 � s2

fY
r2
fY f½0; 1


=s2
fX

, a1 > 0, a2 < 0,
b1 > 0, b2 a 0,

– CASE 2 holds i¤ either a1 a 0, a2 < 0, b2 > 0, or a2
1 a a2

2 , a1 > 0, a2 < 0,
b1 > 0, b2 > 0, or a2

2 ½1 � r2
fX f½0; 1



b a 01
2 � s2

fY
r2
fY f½0; 1


=s2
fX

, a1 > 0, a2 < 0,
b1 a 0, b2 a 0,

– CASE 3 holds i¤ either a1 > 0, a2 b 0, b1 a 0, or a 01
2
b a 02

2, a1 > 0, a2 < 0,

b1 a 0, b2 > 0, or a2
2 ½1 � r2

fX f½0; 1


a a 01

2 � s2
fY
r2
fY f½0; 1


=s2
fX

, a1 > 0, a2 < 0,
b1 a 0, b2 a 0,

– CASE 4 holds i¤ either a1 a 0, a2 < 0, b2 a 0, or a 01
2
a a 02

2, a1 > 0, a2 < 0,

b1 a 0, b2 > 0, or a2
1 ½1 � r2

fX f½0; 1


a a 02

2 � s2
fY
r2
fY f½0; 1


=s2
fX

, a1 > 0, a2 < 0,
b1 > 0, b2 a 0,

– CASE 5 holds i¤ a1 a 0 a a2,

and with

a1 ¼

ffiffiffiffiffiffiffi
s2
fY

s2
fX

vuut 
rfX fY � rfX f½0; 1


rfY f½0; 1


1 � r2
fX f½0; 1


;
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a2 ¼

ffiffiffiffiffiffiffi
s2
fY

s2
fX

vuut 
r~ffX fY

þ rfX f½0; 1

rfY f½0; 1


1 � r2
fX f½0; 1


;

b1 ¼

ffiffiffiffiffiffiffiffiffi
s2
fY

s2
f½0; 1


vuut 
rfY f½0; 1


� rfX f½0; 1

rfX fY

1 � r2
fX f½0; 1


;

b2 ¼

ffiffiffiffiffiffiffiffiffi
s2
fY

s2
f½0; 1


vuut 
rfY f½0; 1


þ rfX f½0; 1

r~ffX fY

1 � r2
fX f½0; 1


;

c1 ¼ mfY � a1mfX � :5b1; c2 ¼ mfY � a2mfX � :5b2;

a 01 ¼

ffiffiffiffiffiffiffi
s2
fY

s2
fX

vuut  rfX fY ; a 02 ¼

ffiffiffiffiffiffiffi
s2
fY

s2
fX

vuut  r~ffX fY
;

c 01 ¼ mfY � a 01mfX ; c 02 ¼ mfY � a 02mfX ;

b 00 ¼

ffiffiffiffiffiffiffiffiffi
s2
fY

s2
f½0; 1


vuut  rfY f½0; 1

; c 00 ¼ mfY � :5b 00:

Obviously, in case a1 > 0 > a2, the solution is not necessarily unique, but
for the cases of nonunique solution (in fact, for obtaining two possible solu-
tions, one in the cone corresponding to a > 0 and the other one in the cone for
a < 0) the following conditions are necessary and su‰cient:

– if a1 > 0; b1 > 0 and a2 < 0; b2 > 0, then the optimal solution is nonunique
if, and only if, a1 þ a2 ¼ 0, b1 ¼ b2, c2 ¼ c1 þ 2a1mfX ;

– if a1 > 0, b1 a 0 and a2 < 0; b2 a 0, then the optimal solution is nonunique
if, and only if, a 01 þ a 02 ¼ 0, c 02 ¼ c 01 þ 2a 01mfX (in such a case we have that
b 01 ¼ b 02 ¼ 0);

– if a1 > 0, b1 > 0 and a2 < 0, b2 a 0, then the optimal solution is nonunique

if, and only if, a 02
2 � a2

1 ½1 � r2
fX f½0; 1



 ¼
s2
fY

s2
fX

r2
fY f½0; 1


;

– if a1 > 0, b1 a 0 and a2 < 0, b2 > 0, then the optimal solution is nonunique

if, and only if, a 01
2 � a2

2 ½1 � r2
fX f½0; 1



 ¼
s2
fY

s2
fX

r2
fY f½0; 1


.

Remark 3. In accordance with the notations we are using in this section, the
cases Diamond (see [4]) has formally examined and for which the uniqueness
of the optimal solution has been proven (which are referred to as situations
involving coherent interval-valued data) correspond to a1 b a2 b 0 and a1 a

a2 a 0. As indicated by Diamond [4], nonuniqueness of the optimal solution
would be undesirable, and we would, therefore, want to fit another type of
function.
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3.4 Algorithm for the optimal solution

Step 1. Compute the values a1; a2; a
0
1; a

0
2; b1; b2; mfX ; mfY and the Aumann ex-

pected value EA½Y jP
 ¼ ½c 00; c 00 þ b 00
, and go to Step 2.
Step 2. IF a1 a 0 THEN go to Step 3, ELSE go to Step 5.
Step 3. IF a2 b 0 THEN the optimal solution is the one for CASE 5, ELSE

go to Step 4.
Step 4. IF b2 > 0 THEN the optimal solution is the one for CASE 2, ELSE

the optimal solution is the one for CASE 4.
Step 5. IF a2 b 0 THEN go to Step 6, ELSE go to Step 7.
Step 6. IF b1 > 0 THEN the optimal solution is the one for CASE 1, ELSE

the optimal solution is the one for CASE 3.
Step 7. IF b1 > 0 THEN go to Step 8, ELSE go to Step 11.
Step 8. IF b2 > 0 THEN go to Step 9, ELSE go to Step 10.
Step 9. IF a2

1 > a2
2 THEN the optimal solution is the one for CASE 1, ELSE

IF a2
1 < a2

2 THEN the optimal solution is the one for CASE 2,
ELSE there are two optimal solutions, namely, those for CASE 1
and CASE 2.

Step 10. IF a2
1 ½1 � r2

fX f½0; 1


 > a 02

2 �
s2
fY

s2
fX

r2
fY f½0; 1


THEN the optimal solution the

one for CASE 1, ELSE

IF a2
1 ½1 � r2

fX f½0; 1


 < a 02

2 �
s2
fY

s2
fX

r2
fY f½0; 1


THEN the optimal solution is

the one for CASE 4,
ELSE there are two optimal solutions, namely, those for CASE 1
and CASE 4.

Step 11. IF b2 > 0 THEN go to Step 12, ELSE go to Step 13.
Step 12. IF a 01

2 > a 02
2 THEN the optimal solution is the oNe for CASE 3,

ELSE
IF a 01

2 < a 02
2 THEN the optimal solution is the one for CASE 4,

ELSE there are two optimal solutions, namely, those for CASE 3
and CASE 4.

Step 13. IF a2
2 ½1 � r2

fX f½0; 1


 > a 01

2 �
s2
fY

s2
fX

r2
fY f½0; 1


THEN the optimal solution is

the one for CASE 2, ELSE

IF a2
2 ½1 � r2

fX f½0; 1


 < a 01

2 �
s2
fY

s2
fX

r2
fY f½0; 1


THEN the optimal solution is

the one for CASE 3,
ELSE there are two optimal solutions, namely, those for CASE 2
and CASE 3.

Remark 4. Since a1 b 0 implies that a 01 b 0, a1 > 0 implies that a 01 > 0, a2 a 0
implies that a 02 a 0, and a2 < 0 implies that a 02 < 0, we can conclude that
a� ¼ 0 (and, consequently, that the optimal solution corresponds to the a‰ne
function Y ¼ EA½Y jP
) can only happen in cases in which the optimal solu-
tion is unique. In fact, the ‘‘a‰ne independence’’, intended to occur whenever
a� ¼ 0, will happen if, and only if, a1 a 0 and a2 b 0. In particular, when X
and Y are independent random sets, then midX and midY are independent
random variables, and also sprX and sprY are independent random varia-
bles, whence a1 ¼ a2 ¼ 0, and hence a� ¼ 0.
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4 Linear correlation analysis

In this section we are confronted with the ultimate goal of this paper, which is
that of quantiying how well the optimal a‰ne function of the interval-valued
random set X explains the variation in the dependent interval-valued random
set Y.

As we have just seen in Remark 4, the optimal ‘‘slope’’ a� equals 0 in a few
situations, in all of which the optimal a‰ne function being Y ¼ EA½Y jP
. In
these situations, the unexplained W-variation equals the highest possible one,
s2
fY
½1 � r2

fY f½0; 1


, that is, the total W-variation. Following the ideas in the real-

valued case, we now introduce the extended determination coe‰cient of X and
Y, which is defined by means of the quotient

R2
XY ¼ Total variation � Unexplained variation

Total variation
¼ 1 � fða�;B�Þ

s2
fY
½1 � r2

fY f½0; 1




¼

a2
1s

2
fX
½1 � r2

fX f½0; 1




s2
fY
½1 � r2

fY f½0; 1




if CASE 1

a2
2s

2
fX
½1 � r2

fX f½0; 1




s2
fY
½1 � r2

fY f½0; 1




if CASE 2

r2
fX fY

� r2
fY f½0; 1


1 � r2
fY f½0; 1


if CASE 3

r2
~ffX fY

� r2
fY f½0; 1


1 � r2
fY f½0; 1


if CASE 4

0 if CASE 5.

8>>>>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>>>>:

R2
XY is a well-defined dimensionless coe‰cient, whose algorithmic compu-

tation is gathered in Subsection 4.2.

4.1 Discussing the strength of association in terms of the extended
determination coe‰cient

Since 0 a fða�;B�Þa s2
fY
½1 � r2

fY f½0; 1


½1 � R2

XY 
, then, R2
XY is a symmetric mea-

sure varying from 0 to 1, and the smaller R2
XY the greater the unexplained

variation. In other words, R2
XY is a measure of the portion of the total varia-

tion Eð½dW ðY ;EA½Y jP
Þ
2 jPÞ ¼ s2
fY
½1 � r2

fY f½0; 1


 of random set Y that is ex-

plained by the optimal a‰ne relation with X.

Obviously, R2
XY ¼ 0 is equivalent to the ‘‘a‰ne independence’’ of X and Y

(i.e., it corresponds to the case in which a� ¼ 0), and the optimal relation Y ¼
EA½Y jP
 does not depend on X. Consequently, the independence of X and Y
entails the ‘‘a‰ne independence’’ of Y with respect to X.
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On the other hand, R2
XY ¼ 1 if, and only if, fða�;B�Þ ¼ 0, that is, there

exist a� A R and B� A KcðRÞ such that dW ðY ; a�X þ B�Þ ¼ 0 a:s: ½P
, which
is equivalent to Y ¼ a�X þ B� a:s: ½P
. Furthermore, since Y is nondegenerate,
then R2

XY ¼ 1 entails that a� 0 0.

4.2 Algorithm for computing the determination coe‰cient

Step 1. Compute values a1; a2; b1; b2; s
2
fX
; s2

fY
; r2

fX f½0; 1

; r2

fY f½0; 1

; r2

fX fY
and r2

~ffX f½0; 1

,

and go to Step 2.
Step 2. IF a1 a 0 THEN go to Step 3, ELSE go to Step 5.
Step 3. IF a2 b 0 THEN the extended determination coe‰cient is the one for

CASE 5, ELSE go to Step 4.
Step 4. IF b2 > 0 THEN the extended determination coe‰cient is the one for

CASE 2, ELSE the extended determination coe‰cient is the one for
CASE 4.

Step 5. IF a2 b 0 THEN go to Step 6, ELSE go to Step 7.
Step 6. IF b1 > 0 THEN the extended determination coe‰cient is the one for

CASE 1, ELSE the extended determination coe‰cient is the one for
CASE 3.

Step 7. IF b1 > 0 THEN go to Step 8, ELSE go to Step 9.
Step 8. IF b2 > 0 THEN the extended determination coe‰cient is given by

the maximum of the values of R2
XY for CASE 1 and CASE 2, ELSE

the extended determination coe‰cient is given by the maximum of the
values of R2

XY for CASE 1 and CASE 4.
Step 9. IF b2 > 0 THEN the extended determination coe‰cient is given by

the maximum of the values of R2
XY for CASE 2 and CASE 3, ELSE

the extended determination coe‰cient is given by the maximum of the
values of R2

XY for CASE 3 and CASE 4.

5 Illustrative example

The following example illustrates the application of the studies above by means
of a real-life case. Data have been supplied by the Servicio de Nefrologı́a of
the Hospital Valle del Nalón in Langreo (Asturias, Spain).

Example 1. The paired data in Table 1 correspond to the ‘‘values’’ (observed
on a population W of 59 patients who are hospitalized) for the interval-valued
random sets X ¼ ‘‘range of systolic blood pressure over a day’’ and Y ¼ ‘‘range
of diastolic blood pressure over the same day’’.

If we want to look for the optimal a‰ne relation between Y and X, in which
the first one is expressed as an a‰ne function of the second one, and we use
the results in Section 3 by choosing as the measure W the Lebesgue measure
on ½0; 1
, then the optimal relation is given by

Y ¼ :4384X þ ½9:6436; 27:5856
;

and the extended linear determination coe‰cient of X and Y is given by R2
XY ¼

:3699. Figure 2 shows the scatter diagram and the corresponding optimal solu-
tion.
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6 Concluding remarks and open problems

The study of approximating X by an a‰ne function of Y would lead also to
unique optimal solutions for, and only for, the cases in Subsection 3.3. Actu-
ally, if in accordance with the optimal a‰ne relation of Y w.r.t. X the ‘‘slope’’
is positive, negative or null, the same happens for the ‘‘slope’’ of the optimal
a‰ne relation of X w.r.t. Y.

If, in particular, Y is almost surely real-valued and X is interval-valued, the
optimal a‰ne function of Y w.r.t. X is always unique and it is given by

Y � mfY ¼ sfX fY
s2
fX

ðX � mfX Þ;

Table 1. Data on the ranges of the systolic (x) and diastolic (y) blood
pressure

X Y X Y X Y

118–173 63–102 119–212 47–93 98–160 47–108

104–161 71–108 122–178 73–105 97–154 60–107

131–186 58–113 127–189 74–125 87–150 47–86

105–157 62–118 113–213 52–112 141–256 77–158

120–179 59–94 141–205 69–133 108–147 62–107

101–194 48–116 99–169 53–109 115–196 65–117

109–174 60–119 126–197 60–98 99–172 42–86

128–210 76–125 99–201 55–121 113–176 57–95

94–145 47–104 88–221 37–94 114–186 46–103

148–201 88–130 113–183 55–85 145–210 100–136

111–192 52–96 94–176 56–121 120–180 59–90

116–201 74–133 102–156 50–94 100–161 54–104

102–167 39–84 103–159 52–95 159–214 99–127

104–161 55–98 102–185 63–118 138–221 70–118

106–167 45–95 111–199 57–113 87–152 50–95

112–162 62–116 130–180 64–121 120–188 53–105

136–201 67–122 103–161 55–97 95–166 54–100

90–177 52–104 125–192 59–101 92–173 45–107

116–168 58–109 97–182 54–104 83–140 45–91

98–157 50–111 127–226 57–101
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that is, the ‘‘slope’’ and ‘‘intercept’’ coincides with those for the optimal linear
relation of fY w.r.t. fX .

As Diamond [4] has indicated, if Y is interval-valued and X is almost surely
real-valued, then a more natural and convenient relation will be that given by
the a‰ne function Y ¼ AX þ B with A;B A KcðRÞ, for which some interesting
discussions have been developed by Diamond.

The studies in this paper should be complemented with inferential proce-
dures for testing/estimating the real- or interval-valued parameters in the a‰ne
function, as well as the determination coe‰cient. Since the optimal solutions
and determination coe‰cient in the study in this paper depend basically on
moments of the real-valued random variables midX , midY , sprX , and sprY ,
then the computation of these terms will become quite simple in practice. On
the other hand, and due to such a dependence, inferential analyses could be
certainly based either on the normality of the random vector ðmidX ;midY ;
sprX ; sprY Þ (in particular, a first study could be that based on normal ran-
dom sets [14]), or on Large Sample Theory techniques applied for this random
vector (a first approach in this sense would be obtained by following ideas
similar to those by Körner [8] and Montenegro et al. [17]).

Although the assumption that W is symmetric looks quite natural in the
context in this paper, the problem in which this assumption is removed can
also be solved by considering, for instance, the approach in Remark 2, where
the objective function would be now given by

jða; b; cÞ ¼ E½ððmidY � amidX � cÞ

þ ð2mf½0; 1

� 1ÞðsprY � jaj sprX � bÞÞ2

þ 4s2
f½0; 1


ðsprY � jaj sprX � bÞ2
��P


with a A R, b ¼ sprB A ½0;þyÞ, and c ¼ midB A R, and the solution can be
obtained by using traditional techniques for linear regression/correlation prob-
lems.

Fig. 2. Scatter diagram of rectangular-valued data in Example 1
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The study in this paper could be extended to more complex situations like
multiple regression of the type Y ¼ a1X1 þ    þ akXk þ B, with a1; . . . ; ak A R
and B A KcðRÞ, where X1; . . . ;Xk are assumed to be the independent interval-
valued random sets. In this case, the discussion on the optimal solution and
the associated degree of strength would require to consider 2k cones, whence
the complexity of the problem will increase extremely.

It would be interesting to extend the conclusions in this paper to the case in
which interval-valued random sets are replaced by the so-called fuzzy random
variables or random fuzzy sets in accordance with Puri and Ralescu ([19], [20])
(see also, [11] for some statistical studies concerning these random elements).
Several studies have been already carried out in this respect (see, for instance,
the recent review [6] and [18], [9], [10]).

Finally, it should be emphasized that the regression study and conclusions
in this paper generalize those by Gil et al. [7], whence given two interval-
valued random sets X and Y, the unexplained variation for the relation in this
paper is lower than or equal to that for the relation in [7]. However, for an
arbitrary reponse random set Y, the supremum (actually, the maximum) of
the unexplained variation of the relation considered in this paper equals
s2
fY
½1 � r2

fY f½0; 1


, whereas the supremum of the unexplained variation of the re-

lation considered in the previous one is s2
fY

. Consequently, the correlation
analysis in this paper does not represent a real generalization of that in [7].
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