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A note on generalized aberration in factorial designs
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Abstract. In this paper we extend the wordlength pattern and minimum aber-
ration for non-regular factorials. The new concepts, the generalized wordlength
pattern and minimum generalized aberration, are proposed. Some connec-
tions between the generalized wordlength pattern and uniformity are given.
Some applications of the new concepts in the Blackett and Burman’s designs
are discussed.
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1. Introduction

Fractional factorial designs are the most popular experimental designs used
in various fields. There are many useful criteria for comparing fractional
factorial designs, such as resolution (Box, Hunter and Hunter (1978)), mini-
mum aberration (Fries and Hunter (1980)), estimation capacity (Cheng and
Mukerjee (1998)) and uniformity (Fang and Mukerjee (2000)). Among them
the minimum aberration (MA) is the most popular used measure. However,
the MA can compare only for regular factorials. There is no similar criterion
for non-regular designs. In this note we extend the concept of wordlength
pattern and minimum aberration criterion for non-regular factorials. The
generalized wordlength pattern and the minimum generalized aberration
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(MGA) are defined based on the code theory. Furthermore, we give an ana-
lytic formula that links the uniformity and the generalized wordlength pattern
of a factorial design with two or three levels. These results give an extension of
Fang and Mukerjee (2000) for non-regular factorial designs. The concepts and
basic knowledge in factorial experiments can refer to Dey and Mukerjee
(1999).

The generalized wordlength pattern and aberration are defined in Section
2. Their applications of the new criteria to the Plackett and Burman’s designs
Li>(2') and Lyy(2') are discussed in Section 3. Section 4 shows connections
between the generalized wordlength pattern and uniformity in the sense of
discrepancy. The last section gives discuss.

2. Generalized wordlength pattern and aberration

It is well known that the concept of aberration can be used in only regular
factorial designs. But sometimes we need to compare non-regular designs. The
geometric properties and hidden projections of a factorial can sometimes
provide a justification for comparisons of non-regular factorials (Lin and
Draper (1992) and Wang and Wu (1995)). However, these methods do not
provide a unified way for all non-regular factorials. Therefore, we in this sec-
tion propose the concepts of generalized wordlength pattern and generalized
aberration that can be used for both regular and non-regular factorials.

It is well known that the mathematical equivalence between fractional
factorial designs and linear codes (Cf, e.g., Suen, Chen and Wu (1997)). The
concepts proposed in this paper are based on this equivalence.

Let us review some basic knowledge in the coding theory. The reader can
refer to Roman (1992) for details. An [s, k] linear code C is a k-dimensional
linear subspace of V (s, ¢). The (s — k)-dimensional orthogonal subspace of C
is also a linear code [s,s — k], called the dual code of C and denoted by C*.
The elements of C are called codewords. The weight of a codeword of C is
defined as the number of nonzero components of the codeword and B;(C)
denotes the number of vectors in C with weight i. The sequence W,(C) =
(Bi1(C),...,Bs(C)) is called the weight distribution of the code. For any n-run
design D, let

E(D) = % #{(c,d)|c,d € D,dy(c,d) = i},

where dy(c,d) is the Hamming distance between two runs ¢ and d, which is
the number of places where they differ. The sequence (Ey(D),..., E (D)) is
called the distance distribution of D. The MacWilliams identities in coding
theory give a fundamental relationship between the weight (distance) distri-
bution of a linear code and its dual code.

Lemma 1 (MacWilliams). If C = V(s,q) is a [s,k| linear code and C* is its
dual, {B;(C)} and { B;(C*)} are the weight distribution, { E;(C)} and {E:(C*)}
are the distance distribution, respectively. Then
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Bi(CY)=q* ZS:Pf(j; 5)B;(C),
=0

N

E(CY) =q "> Pi(j;s)E(C), i=0,1,....5, (1)
j=0

where  Pi(j;s) = S o(=1) (g — 1) Jr f_i is the Krawtchouk
polynomial <<y> =0fory< Z).
z

A factorial design is full if its all level-combinations appear equally often.
The ¢* factorial design is a full design with n = ¢* runs. The ¢* factorial design
can be considered as an n-dimensional linear vector space over the Galois field
GF(q). A ¢*7* regular fractional factorial design D is an (s — k)-dimensional
linear subspace of ¢*. The k-dimensional orthogonal subspace, denoted by
D+, of D is the defining contrasts subgroup of D. The elements of D+ are called
words. A word and its nonzero multiples are considered to be the same in the
defining relations. The length of a word is the number of its nonzero compo-
nents. Let 4;(D) be the number of distinct words of length 7 in the defining
relation of D. Then the sequence W (D) = {A(D),...,A;(D)} is called the
word length pattern of D. A ¢*~* regular fractional factorial design D is also
an [s,s — k]-code. Its defining contrasts subgroup D+ of D is also an [s, k|-
code. Design D is the dual code of D* and vice-versa. And the word length
pattern of D and the weight distribution of D* have the relation,

B,(D*) = (¢ — 1)4;(D). (2)

In this paper all the designs we mentioned are of »n runs and s g-level
factors. By cording theory, for regular ¢*~* design D, the distance distribution
is the same as the weight distribution of D, i.e. E;(D) = B;(D). Therefore,
the wordlength pattern of D is the same as one-(¢q — 1)th weight distribution
of D+ and is the same as one-(¢ — 1)th distance distribution of D*. From
Lemma 1,

W(D) = (E((D"), ..., E(D"))/(g — 1)

= (%XY:PI(LS)E/(D)77%
J=0 A

J=0

@

Py(j; S)E_/(D)>/(q - 1. 3)

We can calculate the wordlength pattern of D by (3) without calculating dual
design of D. Obviously, non-regular design is not linear code and so has not
the wordlength pattern. Anyway, any design has the distance distribution and
so we also can obtain a vector by (3). The vector is the wordlength pattern for
regular design and defined as generalized wordlength pattern (Definition 1).

Definition 1. The generalized wordlength pattern of a design D is defined by
W4(D) = {A4](D),...,AY(D)}, where
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1

and P;(j;s)’s are the Krawtchouk polynomials. The resolution of D is the
smallest / with positive A7(D) in W9(D). Let D; and D, be two designs. Let
¢t be the smallest integer such that A7(D)) # AJ(D,) in their generalized
wordlength patterns. Then D, is said to have less generalized aberration than
D, if A}(Dy) < A}/(D,). A design D has minimum generalized aberration
(MGA) if no other g-level design has less generalized aberration than it.

The concepts defined above can for both regular or non-regular designs.
When the design is regular, the generalized wordlength pattern reduces to the
original wordlength pattern W (D) = {4,(D),---, A4(D)} from (3).

Theorem 1. For regular q*7P factorials, the generalized wordlength pattern
W9(D) reduces to their wordlength pattern W (D).

Two factorial designs are called isomorphic if one can be obtained from the
other by relabeling factors, reordering the runs, or switching the levels of fac-
tors. It is known that a design that is isomorphic with a regular design may
become non-regular one. The latter does not have the wordlength pattern in
the past. Obviously, two isomorphic designs have the same distance distribu-
tion. Therefore, we have the following theorem.

Theorem 2. Two isomorphic designs have the same generalized wordlength
pattern.

Let D be a design and r be the largest integer such that any subdesign of D
with r factors is full. We said that the design D has strength r. Obviously, a
design with strength » must be an orthogonal array of strength r. From Sec-
tion 5.5 and 7 of MacWilliams and Sloane (1977), we have

Theorem 3. The strength of a design D is t if and only if the resolution of D is
t+ 1.

3. Applications of the generalized aberration in factorials

For factorials, generally speaking, the less generalized aberration the design
is, the less confounding has it. The following examples studied by Lin and
Draper (1992) and Wang and Wu (1995) show the usefulness of the general-
ized aberration. The notation L,(g*) gives an orthogonal design of # runs with
s g-level factors.

Example 1. Suppose that there are 5 2-level factors in an experiment and the
experimenter wants to arrange this experiment by the Plackett and Burman
design L1»(2'"). We need to choose a subdesign of 5 columns from L;,(2'")
such that it has the best statistical property in a certain sense. Unfortunately,
the Plackett and Burman design is non-regular and we can not use the MA
criterion to choose such a design. Therefore, Lin and Draper (1992) sorted the
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12

5
5.1 and D12-5.2, respectively, one with a repeat-run pair and the other with-
out any repeat-run pair. From geometric viewpoint, they prefer the D12-5.1 as
it has one more degree of freedom than the D12-5.2. Wang and Wu (1995)
further found that D12-5.1 has a better estimable capacity than that of
D12-5.2. By definition 1, the generalize wordlength patterns of the designs
D12-5.1 and D12-5.2 are

= 462 subdesigns into two non-isomorphic subclass, denoted by D12-

(0,0,10/9,5/9,0) and (0,0,10/9,5/9,4/9),

respectively. Both the designs have the resolution III, but D12-5.1 has less
generalized aberration than D12-5.2. The new criterion gives an addi-
tional justification that D12-5.1 is better than D12-5.2. As there are only two
non-isomorphic L,(2%) (Draper (1985)), D12-5.1 has minimum generalized
aberration.

Example 2. Let us consider the 20-run Plackett and Burman (1946)’s design
which is a cyclic design with the first row (+ + - —++++— 4+ — 4+ — — —
— 4+ +—) and the final row of minus signs. The generalized wordlength pat-
terns of all 3876 4-dimensional subdesigns are sorted into three groups:

a. 2726 subdesigns have generalized wordlength pattern (0, 0,0.16,0.04).
b. 228 subdesigns have (0,0,0.16,0.36).
c. 912 subdesigns have (0,0,0.48,0.04).

The 3 class designs are denoted by D20-4.1, D20-4.2, D20-4.3, respectively.
Lin and Draper (1991) and Wang and Wu (1995) indicated that D20-4.1
is better than D20-4.2 and D20-4.2 is better than D20-4.3 in the sense of
geometric properties or estimable capacity. This is also true in the sense of
generalized aberration.

Obviously, from these two examples we can see that the generalized
wordlength pattern and MGA criterion can be applied to all regular and non-
regular factorials. This gives a unified criterion to compare all factorials.

Example 3. In this example, we construct two non-regular designs 2'4~7 and
21376 that have higher resolution than the respective MA designs.

A non-regular L256(216), denoted by Dy, has generalized word-length
pattern

(0,0,0,0,0,112,0,30,0,112,0,0,0,0,0,1)
and so has resolution VI (Roman (1992) p259, pp 263-264). Deleting the 128
rows of Dy with level 1 in the first column of Dy and then deleting the first

column of the remaining design, we obtain a design L;,3(2'%), denoted by D;.
It can be shown that D; has generalized wordlength pattern

0,0,0,0,42,70,15,15,70,42,0,0,0,0, 1]



90 C.-X. Ma, K.-T. Fang

and has resolution V. After deleting the last column of D; we obtain an
Li23(2'"), denoted by D,, with generalized wordlength pattern

0,0,0,0,28,42,8,7,28,14,0,0,0, 0]

and resolution V. It is known that the minimum aberration design 247, de-
noted by D5, has wordlength pattern

0,0,0,3,24,36,16,11,24,12,0, 1,0, 0]

and has resolution IV (Chen (1998)). Obviously, the design D, has a higher
resolution than of the MA design Dj.

Furthermore, an Liyg (213) is obtained by deleting the last two columns of
Dy and this design has

[0,0,0,0,18,24,4,3,10,4,0,0,0]

and resolution V. The minimum aberration 2'3~¢ has wordlength pattern
0,0,0,2,16,18,10,9,4,2,0,0]

and has only resolution IV (Chen (1998)).

From the above example, we can obtain non-regular designs that has
higher resolution or less generalized aberration than that of the corresponding
MA designs. Therefore, we should search MGA designs.

4. Connections between generalized aberration and uniformity

The uniformity is the most important criterion in designs of computer experi-
ments (Bates, et al. (1996)), especially in the uniform design (Fang and Wang
(1994)). Recently, Fang and Mukerjee (2000) obtained connections between
uniformity in sense of the centered L,-discrepancy and the original word-
length pattern in regular 2-level factorials. They obtained an analytic formula
to link the discrepancy and the wordlength pattern of a regular 2-level design.
In this section we extend their result to non-regular factorials.

Let 2 = {xy,...,x,} be a set of n points in the s-dimensional unit cube
C* =[0,1)". Many different measures of uniformity of 2 have been proposed
but many authors (cf. Fang and Wang (1994)). A good review for up-to-date
development can refer to Hickernell (1998a,b) who in these papers also pro-
posed several new measures such as symmetric L,-discrepancy (SD), centered
L,-discrepancy (CD) and wrap-around L,-discrepancy (WD). Their defini-
tions and computation formulas can refer to his papers. The following theo-
rem gives connections between the discrepancies WD, CD and SD and the
generalized wordlength pattern.

Theorem 4. Let D be a two-level factorial with n runs and s factors. Then its
following discrepancies can be expressed in terms of its generalized wordlength
pattern A9(D) as follows
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oo = ()4 (5)-(5) )
(cD(D)P =()<1+Z ) 2(3)+(5)- (©

and

soo) - (3)-2() + ()(1+Z ) )

For any three-level factorial D with n runs and s factors, we have
s (T3Y Sray o, 4\
[WD(D)]* = (54 1+2; )4/ 3) (8)

5. Conclusion and discussion

The generalized aberration defined in this note can be used for compare both
regular and non-regular factorials. There are close relationships between the
discrepancies WD, CD and SD and the generalized aberration of a fractional
with two-levels or three-levels. Therefore, the uniformity in the sense of WD,
CD or SD can be used as a criterion of comparing factorials with two-levels
and three-levels. It can be expected that the uniformity may be considered a
criterion for assessing factorials with high levels. This is an open problem. On
other hand, two factorial designs that have the same generalized aberration
may have different uniformity. Are there any differences in statistical inference
between these two designs? This is another open problem. The study on the
problems above may suggest an approach to construct MGA designs.

Appendix

Proof of Theorem 1. By cording theory, for regular ¢* 7 design D, the distance
distribution is the same as the weight distribution of D, i.e. E;(D) = B;(D).
From (4) and MacWilliams identities in Lemma 1, the 4;(D) is the weight
distribution of the dual of D and so is also wordlength pattern of D. The proof
is completed. O

The following analytical expression of the WD can be easily derived
(Hickernell (1998b)).

Lemma 2. For a set of points # = {xy,...,x,} its square WD is given by

(o) =~ (3) + ZZZH[ =l (1= b — )|, (9)

k=1 j=1 i=1

where X = (X1, - -« y Xks)-
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Proof of Theorem 4. We prove only (5) and others are similar. For any set of
points 2 = {xy,...,x,}, by the (9), we have 3 — |xi; — x;|(1 — |xx — x5 =
3/2, if x4 = xj;, otherwise 5/4 for k,j=1,...,n,i=1,...,s. Therefore

S

3
11 {2 = |xkr = 2| (1 = |oxs — xﬁl)}

i=1
3 s—dp (xy, xj) 5 dy (X, x;) 3 s 5 dy (X, x;)
-6 @ -06

From the definition of E;(D) and (9), the WD can be expressed as in terms of
the distance distribution {E;(D)}

oo -0 ()

It is well known that the weight distribution and distance distribution coincide
for regular fractional factorial designs. So

ooy G 500 ) ()

where B;(D) is the weight distribution of D. Let D* be the defining contrasts
subgroup and is also the dual of D. From MacWilliams identities in Lemma 1
and the relation of the weight distribution and word length pattern, we have

(UG Bi(DY) (4
“\8 /&1 3)
Jj=0

where the last two equality is from (2) and the last second equality follows
Lemma 3 below. The proof is completed. O
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Lemma 3. For any integer 5,0 <j < s, g > 1, and real a > 0, we have

iia'{—l)’(q—l)"’(i)(s_])=<a(q—1>+1>5‘f<1—a>’? (11)

i=0 r=0 L=

Proof. Expanding the right-hand side of (11) we have

g1 4170 =3 Jartg -0 () o

t=0

Its coefficient of a’ is S/ (~1)"(q — 1)”<]> (f_i) and the lemma

follows. 0
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