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Abstract. A non-parametric method for the analysis of blocked factorial ex-
periments, based on ranking within blocks, is proposed and shown to be
equivalent to partitioning Friedman's test statistic into a set of contrasts re-
¯ecting polynomial components of the main e¨ects and interaction. A slightly
modi®ed version of the procedure is suggested to partially overcome the
problem of loss of power to detect one component when the model includes
other components. This alternative procedure is shown to be equivalent to
applying a standard normal theory analysis of variance to the ranks. The null
distributions and power comparisons are investigated using simulation meth-
ods, and it is shown that the non-parametric methods are almost as powerful
as the analysis of variance.
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1 Introduction

Factorial experiments in plant research are often arranged in blocks such that
a full, or fractional, replicate is contained within each block. Recently, a
problem arose in a cereal crop context, which involved measuring the amount
of disease that developed on the leaves of plants given di¨erent amounts of
nitrate fertilizer and subjected to di¨erent concentrations of carbon dioxide.
The experiment was a 6� 2 factorial design arranged in blocks, to take ac-
count of the position in the greenhouse. However, the blocks were of su½cient
size to allow one plant in each block to be subjected to each of the 12 fertil-
izer-carbon dioxide treatment combinations. One of the major problems with
experiments of this kind is that it is di½cult and time consuming to measure
the absolute amount of disease on each plant. However, ranking the plants



within each block is simple, but this requires an appropriate rank-based anal-
ysis capable of assessing the main e¨ects of the factors and their interaction.
The method should also be able to investigate the linear and quadratic com-
ponents of the main e¨ects and the interactions using only the ranks within
the blocks.

The analyses of one-way and two-way layouts using the Kruskal-Wallis
and Friedman test procedures are well established, but extensions to these
tests to other situations are limited. For the one-way layout involving a single
factor at several di¨erent levels, the general alternative hypothesis of at least
one location parameter being di¨erent from the rest might not be of primary
interest. A researcher might be more interested in detecting a linear trend in
the location parameters over the levels of the factor. Terpstra (1953) and
Jonckheere (1954) independently proposed a test for the ordered alternative
based on the pairwise Mann-Whitney-Wilcoxon statistics. A weighted linear
combination of such pairwise statistics was considered by Tyron and Hett-
mansperger (1974), see also Barlow et al. (1972) for a review of inferences
under order restrictions.

For the two-way layout, an analogue of the test proposed by Jonckheere
and Terpstra has been studied by Skillings and Wolfe (1978), for the prob-
lem of detecting a trend in the location parameters of one factor, with a
blocking factor taken into account. This test is again based on pairwise
Mann-Whitney-Wilcoxon statistics, but in this case applied within each block.
An alternative, studied by Hollander (1967) and Puri and Sen (1968), relies on
the sum of a series of Wilcoxon signed rank tests computed on the ith and jth
paired samples.

The application of ranking methods to data obtained from completely
randomised factorial designs was considered by Scheirer et al. (1976). They
presented a method based on the Kruskal-Wallis test applied to a ranking of
the entire data set consisting of an equal number of observations for each
treatment combination. Simulated null distributions were produced for test
statistics de®ned to re¯ect main e¨ects and interactions of the factors. Iman
(1974) and Conover and Iman (1976) used empirical methods to investigated
the use of the rank transform to detect main e¨ects and interactions in the
two-factor case; see also Lemmer (1980). Scheirer et al. (1976) partitioned the
Kruskal-Wallis test statistic into components for main e¨ects and interactions.
Further investigation of the rank transform, see for example, Brummer and
Neumann (1986), Blair et al. (1987), Sawilowsky et al. (1989) and Akritas
(1990), suggested that, because of the non-linear nature of the rank transform,
spurious indications of signi®cant e¨ects could occur when other e¨ects are
presence. An alternative ranking method for factorial experiments, in which
observations are ranked for the levels of one factor within the levels of the
other factor, was considered by Shirley (1987). Details of other procedures
using ordered categorical data from factorial experiments, may be found in
Thomas and Kiwanga (1993).

In our practical problem, we do not have numerical data, simply the ranks
within blocks, so it is not possible to obtain the overall rank transform or to
rank the data over the di¨erent levels of the factors. We do, however, have a
series of replications of the factorial experiment over the blocks and a set of
ranks for each of these replications. In the following section, we consider a
simple extension of the Friedman test statistic, which involves partitioning it
into components for trends in the main e¨ects and interactions and we inves-
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tigate the properties of these components. Because of certain limitations of
this extended Friedman test, a modi®ed form of the test procedure is consid-
ered, and a power comparison is used to indicate its performance relative to
the analysis of variance.

2 The underlying model and orthogonal contrasts

Suppose that we have a two-factor experiment with factors U and V having I
and J levels respectively. We restrict attention to the case where the levels of
the two factors are equally spaced on a linear or some transformed scale, but
the basic ideas may be extended to the more general case of more than two
factors and unequally spaced levels. The experiment is conducted in a random-
ised block design with M blocks, each block containing a full replicate of IJ
treatment combinations. The response variable is yijm for the ith level of factor

U, the jth level of factor V within the mth block, where i � 1; . . . ; I ; j � 1; . . . ;
J and m � 1; . . . ;M. If yijm were a continuous response variable, then a suit-
able model would be

yijm � m� ai � bj � �ab�ij � gm � eijm �1�
where m is a mean level, ai, i � 1; . . . ; I , is the ®xed e¨ect of level i of factor U,
bj, j � 1; . . . ; J, is the ®xed e¨ect of level j of factor V, �ab�ij, i � 1; . . . ; I and
j � 1; . . . ; J, is the interaction between level i of factor U and level j of factor
V, gm, m � 1; . . . ;M, is the ®xed or random e¨ect of block m and eijm is an
error, independent of any other error, with an assumed distribution, typically
N�0;s2�.

An appropriate analysis for this situation is an analysis of variance
(ANOVA), in which the main e¨ects and interaction are examined using F-
tests with I ÿ 1, J ÿ 1 and �I ÿ 1��J ÿ 1� degrees of freedom respectively.
These sums of squares could be divided into orthogonal components to in-
vestigate any linear or quadratic trends in the main e¨ects or any linear by
linear trends, etc in the interaction. The signi®cance of these orthogonal
components is assessed by comparison with an error component from which
the block component has been removed. The ANOVA procedure is based on
a set of orthogonal contrasts of the form

T �
XK

k�1

ck y�k �2�

where ck are suitable coe½cients used to identify linear, quadratic etc trends,
y�k is the sum of the responses for the kth treatment combination over the M
blocks and k � 1; . . . ;K with K � IJ. For this T to represent a normalized

contrast, we must also have that
PK
k�1

ck � 0 and
PK
k�1

c2
k � 1. (Note that the

coe½cients should be scaled by an additional factor
p

M since they are ap-
plied to sums over M blocks. However, it is more convenient to de®ne the

coe½cients using
PK
k�1

c2
k � 1 as these may be found in standard tables of

orthogonal polynomial coe½cients.)
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When individual responses are not available, or are di½cult to obtain, and
ranks are used instead, it is still of interest to investigate trends in the main
e¨ects and interactions of the factors. Since the ranking is carried out within
blocks, the ranks range from 1 to K, and y�k, for k � 1; . . . ;K , in the de®ni-
tion of the contrast T can be replaced by the sum of the ranks for each treat-
ment combination over the M blocks. The structure of the two-way layout
with ranks replacing the responses is illustrated in Table 1.

In the table, Rmk is the rank of the kth treatment combination in the mth
block so that

XK

k�1

Rmk � K�K � 1�
2

for m � 1; . . . ;M �3�

and R�k �
PM

m�1

Rmk, k � 1; . . . ;K, is the sum of the ranks for the kth

treatment combination. A contrast T may now be de®ned as T � PK
k�1

ckR�k,

where the coe½cients ck, k � 1; . . . ;K , as before, are suitably chosen to re¯ect
the speci®c linear, quadratic and other components of the main e¨ects or the
linear by linear, linear by quadratic and other components of the interaction.
Since the main e¨ects and interaction have a total of �I ÿ 1� � �J ÿ 1��
�I ÿ 1��J ÿ 1� � IJ ÿ 1 � K ÿ 1 degrees of freedom, there will be K ÿ 1
contrasts into which the main e¨ects and interaction can be partitioned. This
complete set of contrasts is de®ned as

Tl �
XK

k�1

clkR�k for l � 1; . . . ;K ÿ 1 �4�

where clk, l � 1; . . . ;K ÿ 1, and k � 1; . . . ;K , are such that
PK
k�1

clk � 0,PK
k�1

c2
lk � 1 and

PK
k�1

cl1kcl2k � 0 for l1 0 l2 and l1; l2 � 1; . . . ;K ÿ 1.

Table 1. Ranked data for the treatment combinations in a randomised block design

Treatment combinations

Blocks 1 2 3 � � � K

1 R11 R12 R13 � � � R1K

2 R21 R22 R23 � � � R2K

3 R31 R32 R33 � � � R3K

� � � � � � � �
� � � � � � � �
� � � � � � � �
M RM1 RM2 RM3 � � � RMK

Totals R�1 R�2 R�3 � � � R�K
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2.1 Expectations, variances and covariances of the contrasts

Theorem 1. Under the null hypothesis of no main e¨ects and interaction, ie
under H0 given by

H0 : ai � 0; bj � 0 and �ab�ij � 0 for all i; j;

the mean and variance of the contrasts are given by E�Tl� � 0 and Var�Tl� �
MK�K � 1�=12, for l � 1; . . . ;K ÿ 1, and the covariance between any pair of
contrasts is Cov�Tl1 ;Tl2� � 0.

Proof. Let R 0 � �R�1; . . . ;R�K� be the vector of rank sums and let c 0l � fclkg
be the vector of contrast coe½cients clk for l � 1; . . . ;K ÿ 1 and k � 1; . . . ;K ,

and let 1K be the vector of K 1's. Then Tl � c 0l R, where E�R� �MK�K�1�=2
and V�R� �MK�K � 1�=12fIK ÿ 1K 1 0K=Kg. Thus, E�Tl� � c 0l E�R� �
MK�K � 1�=2c 0l 1k � 0, and the covariance of any two contrasts is
Cov�Tl1 ;Tl2� �MK�K � 1�=12c 0l1fIKÿ1K 1 0K=Kgcl2 which equals zero if l1 0
l2, but equals MK�K � 1�=12 if l1 � l2.

Note that even though the ranks within a block are not independent of
each other, the orthogonality condition implies that the contrasts Tl for
l � 1; . . . ; K ÿ 1 involving the rank sums are uncorrelated.

2.2 Relationship with Friedman's statistic

The Friedman statistic for testing for di¨erences between the location param-
eters of the di¨erent treatment combinations based on the rankings shown in
Table 1 is given by

F � 12

MK�K � 1�
XK

k�1

R2
�k ÿ 3M�K � 1�: �5�

Values of F larger than the upper a percentile of the chi-squared distribution
with K ÿ 1 degrees of freedom would lead to rejection of the null hypothesis
of equality of the location parameters.

Theorem 2. For the set of contrasts de®ned in equation (4), Friedman's test
statistic may be expressed as

F � 12

MK�K � 1�
XKÿ1

l�1

T 2
l : �6�

Proof. Let TK �
PK
k�1

cKkR�k with cKk � 1=
p

K for k � 1; . . . ;K , thenPK
k�1

c2
Kk � 1 and

PK
k�1

cKkclk � 0 for l � 1; . . . ;K ÿ 1. Let T 0 � �T1; . . . ;TK� be

the augmented vector of contrasts and C � fclkg be the K � K matrix of
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contrast coe½cients clk for l � 1; . . . ;K and k � 1; . . . ;K. Then T � CR and

C 0C � I, so that
PK
l�1

T 2
l � T 0T � R 0C 0CR � R 0R � PK

k�1

R2
�k.

Now TK �
PK
k�1

R�k=
����
K
p �MK�K � 1�

2
����
K
p so that T 2

K �
M 2K�K � 1�2

4
and

therefore
12

MK�K � 1�T
2
K � 3M�K � 1�.

But F � 12

MK�K � 1�
PK
k�1

R2
�k ÿ 3M�K � 1� � 12

MK�K � 1�
PK
l�1

T 2
l ÿ

3M�K � 1� � 12

MK�K�1�
PKÿ1

l�1

T 2
l , which completes the proof.

Friedman's test statistic is asymptotically w2
Kÿ1 as M !y and is repre-

sented as the sum of squares of a set of uncorrelated contrasts Tl=
fVar�Tl�g1=2 each of which is asymptotically N�0; 1�. Speci®c contrasts may

be tested either using the normal distribution or by referring
12

MK�K � 1�T
2
l

to the percentage points of the chi-squared distribution with 1 degree of free-
dom for l � 1; . . . ;K ÿ 1.

3 Exact null distributions for small designs

In this section we examine the exact distributions of the test statistics Tl=

fVar�Tl�g1=2, for l � 1; . . . ;K ÿ 1, for some selected small designs with pa-
rameters �I ; J;M�. Within each of the M blocks, the ranks allocated are
1; 2; . . . ;K � IJ, assuming there are no ties. The total number of arrange-
ments of these ranks is �K !�M since there are K ! arrangements within each
block. For small designs, complete enumeration of the values of speci®c con-
trasts may be carried out for all possible con®gurations of the ranks, to de-
termine the exact distributions of the test statistics under the null hypothesis of
no main e¨ects or interactions. To illustrate these results, the exact dis-
tributions of the standardised contrast for the linear component of U given by

T1=f12=MK�K � 1�g1=2, with T1 suitably de®ned, are shown in Table 2 for
the three small designs �2; 2; 2�, �2; 2; 3� and �2; 3; 3�, (probabilities for nega-
tive values are obtained by symmetry about zero). Note that these null dis-
tributions are discrete in nature and that their form depends on the number of
blocks M.

3.1 Comparison with the normal approximation

The exact distributions for larger designs could be determined in a similar
way, although this becomes di½cult and tedious as the number of treatment
combinations and blocks are increased. It is evident that the number of dis-
crete values taken by the test statistics increases quickly as the designs become
larger. In general, each orthogonal polynomial component for the main e¨ects
and interaction, within a design, has a di¨erent distribution since the co-
e½cients used to de®ne the test statistics are di¨erent (although there is some
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obvious reduction in this when the number of levels of the two factors are the
same). It would be a major practical disadvantage to the use of this non-
parametric procedure if extensive tables of percentage points were needed for
its implementation. It is of interest, therefore, to investigate whether a normal
approximation is satisfactory for designs of a practical size. Table 3 shows the
percentage points of the distributions of the test statistics for all the compo-
nents for a range of designs, based on 100,000 simulations of the experiment.

The simulations were checked by comparison with exact results, where
available, and these gave virtually identical values. Table 4 shows the 97.5 and
99.5 percentage points of the distributions for each component (where di¨er-
ent) for a range of designs up to �2; 5; 5�. It is evident from Table 4 that, pro-
vided the design is not very small, the normal approximation seems to be quite
adequate even when one factor is at only two levels. For practical purposes,
we have de®ned a non-parametric procedure for assessing the components in a
factorial experiment arranged in blocks, where the responses are ranked
within a block. The test statistics represent a partition of Friedman's test into
a set of K ÿ 1 components which, under the null hypothesis of no main e¨ects
and interaction, are uncorrelated with asymptotic chi-squared distributions

Table 2. Exact distributions of the linear U component for several small designs

�2; 2; 2� �2; 2; 3� �2; 3; 2�

Tl=fVar Tlg1=2 Probability Tl=fVar Tlg1=2 Probability Tl=fVar Tlg1=2 Probability

0 0.2222 0 0.1759 0 0.1200
0.548 0.1667 0.447 0.1528 0.309 0.1125
1.095 0.1389 0.894 0.1250 0.617 0.1000
1.643 0.0556 1.342 0.0741 0.926 0.0825
2.191 0.0278 1.789 0.0417 1.234 0.0600

2.236 0.0139 1.543 0.0400
2.683 0.0046 1.852 0.0250

2.160 0.0125
2.469 0.0050
2.777 0.0025

Only the non-negative values are shown since the distributions are symetric.

Table 3. Comparison of exact and normal percentage points for some small designs

Percentage points

97.5% 99.5%
Normal approximation 1.960 2.576

Design Contrast

�2; 2; 2�� Linear U 2.191 ±

�2; 2; 3�� Linear U 1.789 2.236

�2; 3; 2�� Linear U 1.852 2.469
Linear V 1.890 2.457
Quad V 1.964 2.291
Lin U� Lin V 1.890 2.457
Lin U�Quad V 1.964 2.400
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each with one degree of freedom. These components may be tested as w2
1 vari-

ables, or as standard normal variables using Tl=fVar�Tl�g1=2.
One problem with this procedure is that the null hypothesis of interest is

not that there are no main e¨ects and interactions present, i.e. that ai � 0,
for i � 1; . . . ; I , and bj � 0, for j � 1; . . . ; J and �ab�ij � 0, for i � 1; . . . ; I ,

j � 1; . . . ; J, but that ai � 0, for i � 1; . . . ; I , or bj � 0, for j � 1; . . . ; J or

�ab�ij � 0, for i � 1; . . . ; I , j � 1; . . . ; J. Speci®cally, it is desirable to be able
to test whether there are signi®cant components of the main e¨ect of one of
the factors when the other factor is present in the model, and also whether the
interaction is signi®cant when main e¨ects of both factors are present. We
shall consider this in the following section where we examine the powers of
these rank-based test statistics to detect polynomial contrasts of varying
magnitudes in the presence of other contrasts.

4 Examination of the powers of the rank-based test statistics relative to the
analysis of variance

The motivation for this non-parametric procedure came from an experimental
situation where plants were to be ranked for leaf disease to avoid the dif-

Table 4. Comparison of simulated and normal percentage points for several designs

Percentage points

97.5% 99.5%
Normal approximation 1.960 2.576

Design Contrast

�2; 3; 3� Linear U 1.890 2.646
Linear V 2.006 2.469
Quad V 1.871 2.405
Lin U� Lin V 2.006 2.469
Lin U�Quad V 1.960 2.405

�3; 3; 2� Linear U 1.897 2.424
Quad U 2.008 2.556
Lin U� Lin V 1.936 2.453
Lin U�Quad V 1.938 2.460
Quad U�Quad V 1.936 2.453

�3; 3; 3� Linear U 1.980 2.496
Quad U 1.938 2.534
Lin U� Lin V 1.897 2.530
Lin U�Quad V 1.947 2.495
Quad U�Quad V 1.897 2.530

�2; 5; 5� Linear U 1.915 2.569
Linear V 1.949 2.510
Quad V 1.954 2.596
Cubic V 1.949 2.543
Quartic V 1.997 2.559
Lin U� Lin V 1.949 2.510
Lin U�Quad V 1.954 2.540
Lin U� Cubic V 1.949 2.510
Lin U�Quartic V 1.960 2.534
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®culties of exact measurement of the response. In such a situation it would
not be possible to carry out a detailed conventional analysis of variance since
only the ranks would be available. However, in this section we examine the
power of the rank-based method (RANK) relative to the analysis of variance
(ANOVA) using orthogonal polynomial contrasts given by equations (4)
and (2) respectively. We assume that both factors are quantitative at equally
spaced levels and that the responses were generated according to one of
several models with main e¨ects and interactions of selected magnitudes
present. Simulation methods based on 30,000 experiments were used to com-
pare the powers of the RANK and ANOVA tests against a variety of non-null
situations. In these power calculations, the RANK statistics were compared
with their simulated null percentage points rather than the asymptotic values,
so that the comparisons with ANOVA were not a¨ected by any increase in the
type I error.

The model for the alternative hypothesis with linear main e¨ects and linear
by linear interaction used for the simulated power comparisons was of the
form

HU ;V ;UV : yijm � g1�i ÿ ui� � g2� j ÿ vj� � g3�i ÿ ui�� j ÿ vj� � eijm; �7�

where ui and vj are the mean levels for factor U and V, with levels i � 1; . . . ; I
and j � 1; . . . ; J respectively, and eijm is N�0; s2� with s2 taken to be 1. The
magnitudes of the linear components and interaction were varied by changing
the values of the multipliers g1, g2 and g3. Comparisons of the powers for the
two procedures, RANK and ANOVA, were carried out by evaluating the
various test statistics for each simulated sample obtained using a range of
combinations of g1, g2 and g3 values. In order to simplify the presentation of
the results of these simulations, we shall present the results of the comparisons
for three di¨erent models. Firstly, the alternative model contains only a linear
component of the main e¨ect of factor U, i.e. g1 � g, and g2 � g3 � 0 which
corresponds to the hypothesis HU ;0;0. Secondly, when g1 � g2 � g and g3 � 0,
the alternative model contains only a linear component of U and a linear
component of V of the same magnitude, corresponding to the hypothesis
HU ;V ;0, and, ®nally, when g1 � g2 � g3 � g, the model has linear components
of both factors and the linear by linear component of the interaction present:
this corresponds to the hypothesis HU ;V ;UV .

The orthogonality of the contrasts used to test these components with the
ANOVA ensures independence of the contrasts under both the null and the
alternative models, so that the power of the ANOVA procedure to detect the
linear component of factor U (represented by values of g1 � g� is not a¨ected
by the presence or absence of other e¨ects (represented by the values of g2 and
g3). However, the same is not true of the ranking procedure, since the con-
trasts in the rank sums, although uncorrelated under H0;0;0 are not necessarily
uncorrelated under HU ;0;0, HU ;V ;0 or HU ;V ;UV . The power of RANK to de-
tect one component, for example the linear component of U, will be a¨ected
by the presence of another component such as the linear e¨ect of V or the
linear by linear component of the interaction. This interdependence is related
to the fact that, under the alternative models, the variances of the ranks, and
therefore the variances of the rank sums, are not the same as under the null
model, H0;0;0. This feature of ranking methods has been noted elsewhere. For
example, Shirley (1987) commented on the over-estimation of the variance of
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the ranks due to some subsets of the data being ``constrained'' in the non-null
situation. See also Steel (1960), Shorack (1967) and Williams (1986).

Table 5 shows the powers of ANOVA and RANK for the design with both
factors at four levels within each of two blocks, i.e. design �4; 4; 2�. Powers are
given for testing for the presence of the linear component of factor U using
models HU ;0;0, HU ;V ;0 and HU ;V ;UV , and for the linear� linear component of
the interaction using models H0;0;UV , HU ;0;UV and HU ;V ;UV . In this way we
may compare the powers of RANK and ANOVA to detect an e¨ect with only
that particular e¨ect present and in the presence of other e¨ects.

It may be seen from Table 5, which is typical of many comparisons carried
out for other designs, that the power of RANK compares very favourably
with that of ANOVA when no other e¨ects are present in the model. The loss
of power resulting from the use of ranks is about 0.5 per cent when testing for
the linear component of U and about 1 per cent when testing for the linear by
linear component of the interaction when no other e¨ect is present in the
model. However, the powers of the ranking procedure are considerably lower
than those of ANOVA when the model includes other e¨ects. For example,
when the alternative model contains both linear components and the linear by
linear component of the interaction, the power of the tests based on the rank
sums are only about 70% of the powers of the corresponding ANOVA tests.
These power comparisons are illustrated in Figures 1a and 1b.

The reason for the loss of power is that, when other e¨ects are pre-
sent in the model, the standardisation of Tl by its null standard deviation
produces a test statistic which is generally reduced in magnitude relative to
the corresponding ANOVA test statistic. This null standard deviation,
f12=MK�K � 1�g1=2, is an over-estimate of the appropriate standard devia-
tion of Tl when the ranks are constrained as they would be when the model
contains additional components.

5 An alternative non-parametric procedure

In order to overcome this problem of loss of power, at least to some extent, we
propose a modi®cation to the non-parametric procedure RANK, so that the
previously de®ned T 2

l , l � 1; . . . ;K ÿ 1, are compared to an estimate of be-
tween-block variability instead of to their null variance. Because two or more
blocks are used in the designs under consideration, the between-block infor-
mation can be used as a measure of variability. For each treatment combina-
tion, i.e. for each value of k; k � 1; . . . ;K , the ranks are given by Rmk,
m � 1; . . . ;M, so that the variability in these ranks may be assessed using

XM
m�1

�Rmk ÿ R�k=M�2: �8�

The overall between-block variability is given by

XK

k�1

XM
m�1

�Rmk ÿ R�k=M�2; �9�

which has �M ÿ 1��K ÿ 1� degrees of freedom, since the ranks within each
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block sum to K�K � 1�=2. Comparison of the contrasts Tl , l � 1; . . . ;K ÿ 1,
with this ``error mean square'' leads to the test statistics

Fl � T 2
l =MPK

k�1

PM
m�1

�Rmk ÿ R�k=M�2=�M ÿ 1��K ÿ 1�
; �10�

for l � 1; . . . ;K ÿ 1. The asymptotic distribution of Fl is an F distribution
with 1 and �M ÿ 1��K ÿ 1� degrees of freedom. This is equivalent to carrying
out a normal theory analysis of variance, in which the responses are the ranks
as described in Table 1, with the treatment sum of squares divided into the

Fig. 1a. Comparison of powers of ANOVA and RANK for testing the linear component of U for
the design �4; 4; 2�

Fig. 1b. Comparison of powers of ANOVA and RANK for testing the linear by linear component
of the UV interaction for the design �4; 4; 2�
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various linear, quadratic etc components given by T 2
l =M for l � 1; . . . ;K ÿ 1.

In this analysis there is a block component with �M ÿ 1� degrees of freedom
with a sum of squares equal to zero and an error sum of squares with
�M ÿ 1��K ÿ 1� degrees of freedom as in Equation (9). Use of Equation (10)
is analogous to using the same ANOVA procedure for the blocked factorial
experiment as used earlier but with the ranks replacing the original obser-
vations. We shall refer to the non-parametric procedure based on testing for
the various components of the main e¨ects and interaction using Equation
(10) as ANALOGUE.

5.1 The null distribution of the ANALOGUE test

One of the di½culties introduced in suggesting ANALOGUE as an alterna-
tive to RANK, is that it is possible for the denominator to equal zero so that
Fl is in®nite. This occurs with non-negligible probability for some small de-
signs when the rankings within each block are identical. Under the null hy-
pothesis, for the design �2; 2; 2�, the probability of the error mean square being
zero is 1=4! ��0:0417�, whereas for �2; 3; 2�, this is equal to 1=6! ��0:00139�
and for �2; 5; 2�, it is 1=10! ��2:75� 10ÿ7�. Evidently care will be required in
the use of the ANALOGUE procedure for very small designs. As with the
RANK procedure, a series of simulations was carried out to obtain the null
distributions of Fl for a selection of designs. Table 6 gives a summary of the
comparisons with the percentage points of the appropriate asymptotic F dis-
tributions.

The results indicate that, even with only two blocks, the asymptotic per-
centage points should be reasonable for practical purposes with all but the
smallest designs. For designs such as �3; 3; 2� and �2; 5; 2�, the use of the per-
centage points of F1;8 and F1;9 will result in slightly larger type I errors than
desired, but for �4; 4; 2� and larger designs, it seems that the asymptotic per-
centage points correspond very well to the simulated values, so that the type I
error should be close to the speci®ed levels.

6 Power comparison of ANALOGUE, RANK and ANOVA

To investigate whether the adaptation of the RANK method to ANA-
LOGUE has resulted in an improved power when additional e¨ects are pres-
ent in the model, further simulations were carried out for a range of designs.
Again, as in Section 4, all powers of the various test statistics were obtained
by comparison with the corresponding simulated percentage points of their
null distributions, so that appropriate type I errors were employed.

From the large number of comparisons made for a range of designs and
with models including main e¨ects and interactions of various magnitudes, the
results for design �4; 4; 2� are given in Table 7 corresponding to the results
shown in Table 5.

The powers shown in Table 5 for RANK and Table 7 for ANALOGUE
were based on the same simulated data, so that comparisons can be con-
®dently made both within and between the tables. From Table 7, it is evident
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that the powers of ANALOGUE for testing for an e¨ect when only that e¨ect
is present compare favourably with ANOVA, although they are not quite as
close as the powers of RANK. However, the powers of ANALOGUE for
testing for one e¨ect in the presence of other e¨ects are considerably better
than those for RANK. For example, the power of ANALOGUE is about
20% higher than RANK for identifying the linear component of factor U
when both the linear component of factor V and the linear by linear compo-
nent of the interaction are present in the model. The adaptation of the non-
parametric procedure seems to have overcome the power loss to a consider-
able extent. The limited results illustrated in Tables 5 and 7 are typical of
many other designs investigated. Figures 2a and 2b illustrate the improvement
in the powers of ANALOGUE relative to RANK for the design �4; 4; 2� for
testing for the linear e¨ect of U and for testing for the linear by linear e¨ect of
the interaction when all three components are included in the model.

Table 6. Comparison of simulated percentage points and corresponding F percentage points for a
selection of designs �I ; J;M�

Design Contrast 95% 99%

�2; 3; 2� Asymptotic F 1; 5 6.608 16.260
Linear U 8.167 26.667
Linear V 8.182 25.312
Quad V 8.352 23.438
Lin U� Lin V 8.000 25.312

�2; 4; 2� Asymptotic F 1; 7 5.591 12.250
Linear U 6.034 14.175
Linear V 6.050 14.787
Quad V 6.034 14.787
Cubic V 6.050 14.450
Lin U� Lin V 5.973 14.400

�3; 3; 2� Asymptotic F 1; 8 5.318 11.260
Linear U 5.633 12.800
Quad U 5.556 12.522
Linear V 5.597 12.789
Quad V 5.628 13.000
Lin U� Lin V 5.633 12.600

�2; 5; 2� Asymptotic F 1;9 5.117 10.560
Linear U 5.358 12.166
Linear V 5.326 11.719
Quad V 5.403 11.716
Cubic V 5.409 11.912
Quartic V 5.369 11.716
Lin U� Lin V 5.358 11.683

�4; 4; 2� Asymptotic F 1;15 4.543 8.683
Linear U 4.576 8.883
Quad U 4.601 9.007
Linear V 4.474 8.606
Quad V 4.559 8.744
Lin U� Lin V 4.510 8.670
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7 Discussion

This work was motivated by the requirements of a practical problem involv-
ing a blocked factorial experiment in which the responses were available as
rankings within blocks. Initially a ranking method based on partitioning
Friedman's test statistic into K ÿ 1 `orthogonal' components, representing the
linear, quadratic, etc, polynomials for each factor and the linear by linear etc,
components of the interaction, was proposed. This procedure is equivalent to
carrying out an analysis of variance on the Friedman ranks and partitioning
the treatment sum of squares into its K ÿ 1 components with contrast squares

Fig. 2a. Comparison of powers of ANOVA, RANK and ANALOGUE for testing the linear
component of U for the model �U ;V ;UV� with the design �4; 4; 2�

Fig. 2b. Comparison of powers of ANOVA, RANK and ANALOGUE for testing the linear by
linear component of the interaction UV for the model �U ;V ;UV� with the design �4; 4; 2�
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T 2
l =M for l � 1; . . . ;K ÿ 1, each with one degree of freedom, and then com-

paring these with the mean square based on the total sum of squares

XM
m�1

XK

k�1

R2
mk ÿ

PM
m�1

PK
k�1

Rmk

� �2

MK
�MK�K 2 ÿ 1�

12
;

which has M�K ÿ 1� degrees of freedom because the ranks are constrained to
sum to K�K � 1�=2 within each block.

The problem encountered with this form of the test is that this mean
square is in¯ated under any alternative hypothesis, so that there is a loss of
power associated with testing one component when other e¨ects are present in
the model. To overcome this problem, an alternative procedure is introduced
which involves comparing the contrast squares with the residual mean square
from the same analysis of variance. It is shown that the power losses are very
much reduced with this modi®cation. There is also the bonus that the required
analysis is simply obtained, since it is the same analysis of variance that would
have been applied to the normal data if these had been available.

There are, however, two possible disadvantages with this method. The ®rst
is that use of the asymptotic distributions will result in increased probability of
type I errors for very small designs as discussed in Section 5.1. However, this
should not be a problem in most practical situations, where at least one of the
factors has three or more levels or where the experiment involves more than
two blocks. The second problem is that the residual mean square can be zero
if the rankings are identical within each block. This can occur even in the null
situation with very small designs and could occur in larger designs when the
alternative model contains very pronounced di¨erences over the levels of both
factors. This latter situation did not arise in any of the simulations used in this
study except when the designs were small.

Although the contrasts used in the tests are uncorrelated under the null
hypothesis of no main e¨ects and interactions, it was the case that the per-
formance of the test for one component was a¨ected by the presence of other
components in the model. Since we apply ranks within blocks, we did not
observe the disadvantageous feature of the rank transform test for interaction
discussed by Thompson (1991). He warns that the test for interaction based on
the rank transform applied to all the data, can have a large type I error rate,
even for large samples, when certain main e¨ects are present.

Further studies are underway, theoretically and through simulations, to
investigate the properties of the proposed ANALOGUE ranking method un-
der the null situation, with various alternative models and with di¨erent non-
normal error structures.
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