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Abstract. A non-parametric method for the analysis of blocked factorial ex-
periments, based on ranking within blocks, is proposed and shown to be
equivalent to partitioning Friedman’s test statistic into a set of contrasts re-
flecting polynomial components of the main effects and interaction. A slightly
modified version of the procedure is suggested to partially overcome the
problem of loss of power to detect one component when the model includes
other components. This alternative procedure is shown to be equivalent to
applying a standard normal theory analysis of variance to the ranks. The null
distributions and power comparisons are investigated using simulation meth-
ods, and it is shown that the non-parametric methods are almost as powerful
as the analysis of variance.
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1 Introduction

Factorial experiments in plant research are often arranged in blocks such that
a full, or fractional, replicate is contained within each block. Recently, a
problem arose in a cereal crop context, which involved measuring the amount
of disease that developed on the leaves of plants given different amounts of
nitrate fertilizer and subjected to different concentrations of carbon dioxide.
The experiment was a 6 x 2 factorial design arranged in blocks, to take ac-
count of the position in the greenhouse. However, the blocks were of sufficient
size to allow one plant in each block to be subjected to each of the 12 fertil-
izer-carbon dioxide treatment combinations. One of the major problems with
experiments of this kind is that it is difficult and time consuming to measure
the absolute amount of disease on each plant. However, ranking the plants
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within each block is simple, but this requires an appropriate rank-based anal-
ysis capable of assessing the main effects of the factors and their interaction.
The method should also be able to investigate the linear and quadratic com-
ponents of the main effects and the interactions using only the ranks within
the blocks.

The analyses of one-way and two-way layouts using the Kruskal-Wallis
and Friedman test procedures are well established, but extensions to these
tests to other situations are limited. For the one-way layout involving a single
factor at several different levels, the general alternative hypothesis of at least
one location parameter being different from the rest might not be of primary
interest. A researcher might be more interested in detecting a linear trend in
the location parameters over the levels of the factor. Terpstra (1953) and
Jonckheere (1954) independently proposed a test for the ordered alternative
based on the pairwise Mann-Whitney-Wilcoxon statistics. A weighted linear
combination of such pairwise statistics was considered by Tyron and Hett-
mansperger (1974), see also Barlow et al. (1972) for a review of inferences
under order restrictions.

For the two-way layout, an analogue of the test proposed by Jonckheere
and Terpstra has been studied by Skillings and Wolfe (1978), for the prob-
lem of detecting a trend in the location parameters of one factor, with a
blocking factor taken into account. This test is again based on pairwise
Mann-Whitney-Wilcoxon statistics, but in this case applied within each block.
An alternative, studied by Hollander (1967) and Puri and Sen (1968), relies on
the sum of a series of Wilcoxon signed rank tests computed on the ith and jth
paired samples.

The application of ranking methods to data obtained from completely
randomised factorial designs was considered by Scheirer et al. (1976). They
presented a method based on the Kruskal-Wallis test applied to a ranking of
the entire data set consisting of an equal number of observations for each
treatment combination. Simulated null distributions were produced for test
statistics defined to reflect main effects and interactions of the factors. Iman
(1974) and Conover and Iman (1976) used empirical methods to investigated
the use of the rank transform to detect main effects and interactions in the
two-factor case; see also Lemmer (1980). Scheirer et al. (1976) partitioned the
Kruskal-Wallis test statistic into components for main effects and interactions.
Further investigation of the rank transform, see for example, Brummer and
Neumann (1986), Blair et al. (1987), Sawilowsky et al. (1989) and Akritas
(1990), suggested that, because of the non-linear nature of the rank transform,
spurious indications of significant effects could occur when other effects are
presence. An alternative ranking method for factorial experiments, in which
observations are ranked for the levels of one factor within the levels of the
other factor, was considered by Shirley (1987). Details of other procedures
using ordered categorical data from factorial experiments, may be found in
Thomas and Kiwanga (1993).

In our practical problem, we do not have numerical data, simply the ranks
within blocks, so it is not possible to obtain the overall rank transform or to
rank the data over the different levels of the factors. We do, however, have a
series of replications of the factorial experiment over the blocks and a set of
ranks for each of these replications. In the following section, we consider a
simple extension of the Friedman test statistic, which involves partitioning it
into components for trends in the main effects and interactions and we inves-
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tigate the properties of these components. Because of certain limitations of
this extended Friedman test, a modified form of the test procedure is consid-
ered, and a power comparison is used to indicate its performance relative to
the analysis of variance.

2 The underlying model and orthogonal contrasts

Suppose that we have a two-factor experiment with factors U and V having
and J levels respectively. We restrict attention to the case where the levels of
the two factors are equally spaced on a linear or some transformed scale, but
the basic ideas may be extended to the more general case of more than two
factors and unequally spaced levels. The experiment is conducted in a random-
ised block design with M blocks, each block containing a full replicate of 1J
treatment combinations. The response variable is y;;, for the ith level of factor

U, the jth level of factor V within the mth block, wherei=1,...,1,j=1,...,
Jandm=1,...,M.1If y;, were a continuous response variable, then a suit-
able model would be '

yijm :ﬂ+“i+ﬂj+(aﬁ)g/+ym+gijm (1)

where x is a mean level, o;, i = 1,..., I, is the fixed effect of level i of factor U,
Bisj=1,...,J,is the fixed effect of level j of factor V, (aﬁ)ij, i=1,...,1and
j=1,...,J, is the interaction between level i of factor U and level j of factor
V, y» m=1,..., M, is the fixed or random effect of block m and ¢, is an
error, izndependent of any other error, with an assumed distribution, typically
N(0,07°).

An appropriate analysis for this situation is an analysis of variance
(ANOVA), in which the main effects and interaction are examined using F-
tests with 7 — 1, J—1 and (I —1)(J — 1) degrees of freedom respectively.
These sums of squares could be divided into orthogonal components to in-
vestigate any linear or quadratic trends in the main effects or any linear by
linear trends, etc in the interaction. The significance of these orthogonal
components is assessed by comparison with an error component from which
the block component has been removed. The ANOVA procedure is based on
a set of orthogonal contrasts of the form

K
T= chyck (2)
k=1

where ¢ are suitable coefficients used to identify linear, quadratic etc trends,
Vi 1s the sum of the responses for the kth treatment combination over the M
blocks and k = 1,...,K with K = IJ. For this T to represent a normalized

K K

contrast, we must also have that > ¢, =0 and Y ¢ = 1. (Note that the
k=1 k=1

coefficients should be scaled by an additional factor /M since they are ap-

plied to sums over M blocks. However, it is more convenient to define the

K

coefficients using > ¢ =1 as these may be found in standard tables of
k=1

orthogonal polynomial coefficients.)
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Table 1. Ranked data for the treatment combinations in a randomised block design

Treatment combinations

Blocks 1 2 3 B K

1 R Rp2 Ri3 D Rix
2 Ry Ry Ry D Rok
3 R3; R3 R33 D Rsk
M Ryn Ry Rys D Ruk
Totals Ra; R., R.3 R R.x

When individual responses are not available, or are difficult to obtain, and
ranks are used instead, it is still of interest to investigate trends in the main
effects and interactions of the factors. Since the ranking is carried out within
blocks, the ranks range from 1 to K, and y,;, for k =1,..., K, in the defini-
tion of the contrast 7" can be replaced by the sum of the ranks for each treat-
ment combination over the M blocks. The structure of the two-way layout
with ranks replacing the responses is illustrated in Table 1.

In the table, R, is the rank of the kth treatment combination in the mth
block so that

K

K(K+1
ZRmkz% form=1,...,M (3)
k=1

M
and Rex= > Rk, k=1,...,K, is the sum of the ranks for the kth

m=1 K

treatment combination. A contrast 7 may now be defined as 7T = > ¢xReg,
k=1

where the coefficients ¢, k = 1,..., K, as before, are suitably chosen to reflect

the specific linear, quadratic and other components of the main effects or the
linear by linear, linear by quadratic and other components of the interaction.
Since the main effects and interaction have a total of (I —1)+ (J— 1)+
(I-1)(J—-1)=1J—1=K-—1 degrees of freedom, there will be K —1
contrasts into which the main effects and interaction can be partitioned. This
complete set of contrasts is defined as

K
TIZZCIkR-k fOI‘ZZL...,K—l (4)
k=1

K
where ¢y, I=1,...,K—1, and k=1,...,K, are such that > ¢y =0,
K K k=1
ZCIZkZIandZC[IkC/EkZOfOI‘ll;élzandllJzzl,...,K—l.
k=1 k=1
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2.1 Expectations, variances and covariances of the contrasts

Theorem 1. Under the null hypothesis of no main effects and interaction, ie
under Hy given by

Hy:0,=0,8=0 and (of);=0 foralli,j,

the mean and variance of the contrasts are given by E(T;) = 0 and Var(T;) =
MK(K+1)/12, for [ =1,...,K — 1, and the covariance between any pair of
contrasts is Cov(Ty,, Ty,) = 0.

Proof. Let R' = (R,1, ..., R.g) be the vector of rank sums and let ¢; = {cx }
be the vector of contrast coefficients ¢y for [ = 1,. —landk=1,...,K
and let 1¢ be the vector of K 1’s. Then 7; = ¢/R, where E(R) = MK(K+1)/2
and V(R)= MK(K+1)/12{Ix — lKlK/K} Thus, E(T;) =cE(R) =
MK(K +1)/2¢/1; =0, and the covariance of any two contrasts is
Cov(Ty,, T1,) = MK (K + 1)/12¢; {Ix —1g1} /K }e;, which equals zero if /; #
b, but equals MK(K +1)/12if I, = b.

Note that even though the ranks within a block are not independent of
each other, the orthogonality condition implies that the contrasts 7; for
[=1,..., K—1involving the rank sums are uncorrelated.

2.2 Relationship with Friedman’s statistic
The Friedman statistic for testing for differences between the location param-

eters of the different treatment combinations based on the rankings shown in
Table 1 is given by

12 K
F:W;Rfk—3M(K+l). (5)

Values of F'larger than the upper o percentile of the chi-squared distribution
with K — 1 degrees of freedom would lead to rejection of the null hypothesis
of equality of the location parameters.

Theorem 2. For the set of contrasts defined in equation (4), Friedman’s test
statistic may be expressed as

T

12 )
Fymkrne ©

—
Il

K
Proof. Let TK:ZchR.k with ¢g =1/y/K for k=1,...,K, then

Z ¢, =1 and Z cxrene =0 for I =1,. —1. Let T' = (Ty,..., Tk) be
=1
the augmented vector of contrasts and C = {¢x} be the K x K matrix of
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contrast coefficients ¢y for /=1,... , Kand k=1,... K. Then T = CR and
K K

C'C=ILsothat } 77 =TT=R'C'CR=R'R= Y RZ,
=1 k=1

K MK (K +1) M2K(K + 1)
Now Tx = > Re/VK = ——~—=— so that Tz = ————" and
' 1? ! VK '
herefore ————— T2 =3M (K + 1).
tereoreMK(K+l) e =3M(K~+1)
But FLZR ME )= 12 S
MK(K+ = MK(K+1)7"!
12
3IM(K+1) = mz T?, which completes the proof.

Friedman’s test statistic is asymptotically )(K71 as M — oo and is repre-
sented as the sum of squares of a set of uncorrelated contrasts 7;/
{Var(T;)}'/? each of which is asymptotically N (0, 1). Specific contrasts may

. . C . 12
be tested either using the normal distribution or by referring m T, ,2
to the percentage points of the chi-squared distribution with 1 degree of free-
domfor/=1,...,K—1

3 Exact null distributions for small designs

In this section we examine the exact distributions of the test statistics 7;/

{Var(T;)}l/z, for/=1,...,K —1, for some selected small designs with pa-
rameters (I,J, M). Within each of the M blocks, the ranks allocated are
1,2,...,K = IJ assumlng there are no ties. The total number of arrange-
ments of these ranks is (K™ since there are K! arrangements within each
block. For small designs, complete enumeration of the values of specific con-
trasts may be carried out for all possible configurations of the ranks, to de-
termine the exact distributions of the test statistics under the null hypothesis of
no main effects or interactions. To illustrate these results, the exact dis-
tributions of the standardised contrast for the linear component of U given by
T,/{12/MK(K + 1)}'?, with T} suitably defined, are shown in Table 2 for
the three small designs (2,2,2), (2,2,3) and (2,3, 3), (probabilities for nega-
tive values are obtained by symmetry about zero). Note that these null dis-

tributions are discrete in nature and that their form depends on the number of
blocks M.

3.1 Comparison with the normal approximation

The exact distributions for larger designs could be determined in a similar
way, although this becomes difficult and tedious as the number of treatment
combinations and blocks are increased. It is evident that the number of dis-
crete values taken by the test statistics increases quickly as the designs become
larger. In general, each orthogonal polynomial component for the main effects
and interaction, within a design, has a different distribution since the co-
efficients used to define the test statistics are different (although there is some
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Table 2. Exact distributions of the linear U component for several small designs

(2,2,2) (2,2,3) (2,3,2)

T;/{VarT;}'/>  Probability ~T;/{VarT;}'/* Probability T;/{VarT;}'/*  Probability

0 0.2222 0 0.1759 0 0.1200
0.548 0.1667 0.447 0.1528 0.309 0.1125
1.095 0.1389 0.894 0.1250 0.617 0.1000
1.643 0.0556 1.342 0.0741 0.926 0.0825
2.191 0.0278 1.789 0.0417 1.234 0.0600
2.236 0.0139 1.543 0.0400

2.683 0.0046 1.852 0.0250

2.160 0.0125

2.469 0.0050

2777 0.0025

Only the non-negative values are shown since the distributions are symetric.

Table 3. Comparison of exact and normal percentage points for some small designs

Percentage points

97.5% 99.5%
Normal approximation 1.960 2.576
Design Contrast
(2,2,2)" Linear U 2.191 -
(2,2,3)" Linear U 1.789 2.236
(2,3,2)" Linear U 1.852 2.469
Linear V' 1.890 2.457
Quad V 1.964 2.291
Lin Ux Lin V 1.890 2.457
Lin U x Quad V 1.964 2.400

obvious reduction in this when the number of levels of the two factors are the
same). It would be a major practical disadvantage to the use of this non-
parametric procedure if extensive tables of percentage points were needed for
its implementation. It is of interest, therefore, to investigate whether a normal
approximation is satisfactory for designs of a practical size. Table 3 shows the
percentage points of the distributions of the test statistics for all the compo-
nents for a range of designs, based on 100,000 simulations of the experiment.

The simulations were checked by comparison with exact results, where
available, and these gave virtually identical values. Table 4 shows the 97.5 and
99.5 percentage points of the distributions for each component (where differ-
ent) for a range of designs up to (2,5, 5). It is evident from Table 4 that, pro-
vided the design is not very small, the normal approximation seems to be quite
adequate even when one factor is at only two levels. For practical purposes,
we have defined a non-parametric procedure for assessing the components in a
factorial experiment arranged in blocks, where the responses are ranked
within a block. The test statistics represent a partition of Friedman’s test into
a set of K — 1 components which, under the null hypothesis of no main effects
and interaction, are uncorrelated with asymptotic chi-squared distributions
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Table 4. Comparison of simulated and normal percentage points for several designs

Percentage points

97.5% 99.5%

Normal approximation 1.960 2.576
Design Contrast

(2,3,3) Linear U 1.890 2.646

Linear V 2.006 2.469

Quad V 1.871 2.405

Lin U x Lin V' 2.006 2.469

Lin U x Quad V 1.960 2.405

(3,3,2) Linear U 1.897 2.424

Quad U 2.008 2.556

Lin Ux Lin V 1.936 2453

Lin U x Quad V 1.938 2.460

Quad U x Quad V 1.936 2.453

(3,3,3) Linear U 1.980 2.496

Quad U 1.938 2.534

Lin Ux Lin V 1.897 2.530

Lin U x Quad V 1.947 2.495

Quad U x Quad V 1.897 2.530

(2,5,5) Linear U 1.915 2.569

Linear V' 1.949 2.510

Quad V 1.954 2.596

Cubic V' 1.949 2.543

Quartic V' 1.997 2.559

Lin Ux Lin V 1.949 2.510

Lin U x Quad V 1.954 2.540

Lin U x Cubic V' 1.949 2.510

Lin U x Quartic V' 1.960 2.534

each with one degree of freedom. These components may be tested as y7 vari-
ables, or as standard normal variables using 7;/{Var(7})}

One problem with this procedure is that the null hypothesis of interest is
not that there are no main effects and interactions present, i.e. that o; = 0,
fori=1,...,1, and p; =0, for j=1,...,J and (oc/?)ij:O, fori=1,...,1,
j=1,...,J, but that o, =0, for i=1,...,1, or ﬂj:O, for j=1,...,J or
(ocﬁ)ij =0,fori=1,...,1I, j=1,...,J. Specifically, it is desirable to be able
to test whether there are significant components of the main effect of one of
the factors when the other factor is present in the model, and also whether the
interaction is significant when main effects of both factors are present. We
shall consider this in the following section where we examine the powers of
these rank-based test statistics to detect polynomial contrasts of varying
magnitudes in the presence of other contrasts.

4 Examination of the powers of the rank-based test statistics relative to the
analysis of variance

The motivation for this non-parametric procedure came from an experimental
situation where plants were to be ranked for leaf disease to avoid the dif-
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ficulties of exact measurement of the response. In such a situation it would
not be possible to carry out a detailed conventional analysis of variance since
only the ranks would be available. However, in this section we examine the
power of the rank-based method (RANK) relative to the analysis of variance
(ANOVA) using orthogonal polynomial contrasts given by equations (4)
and (2) respectively. We assume that both factors are quantitative at equally
spaced levels and that the responses were generated according to one of
several models with main effects and interactions of selected magnitudes
present. Simulation methods based on 30,000 experiments were used to com-
pare the powers of the RANK and ANOVA tests against a variety of non-null
situations. In these power calculations, the RANK statistics were compared
with their simulated null percentage points rather than the asymptotic values,
so that the comparisons with ANOVA were not affected by any increase in the
type I error.

The model for the alternative hypothesis with linear main effects and linear
by linear interaction used for the simulated power comparisons was of the
form

Hy v,ov: Vi = 01(i — ) + 92 — ;) + g3(i — ) (j — ) + &jjm, (7)

where i; and 7; are the mean levels for factor U and v, w1th levelsi=1,...,1
and j=1,...,J respectively, and &g, is N(0,0%) with ¢* taken to be 1. The
magnitudes of the linear components and interaction were varied by changing
the values of the multipliers g;, g» and g3. Comparisons of the powers for the
two procedures, RANK and ANOVA, were carried out by evaluating the
various test statistics for each simulated sample obtained using a range of
combinations of ¢g;, g» and g3 values. In order to simplify the presentation of
the results of these simulations, we shall present the results of the comparisons
for three different models. Firstly, the alternative model contains only a linear
component of the main effect of factor U, i.e. g = ¢, and ¢g» = g3 = 0 which
corresponds to the hypothesis Hy ¢ 9. Secondly, when g; = g» = g and g3 =0,
the alternative model contains only a linear component of U and a linear
component of V' of the same magnitude, corresponding to the hypothesis
Hy v, and, finally, when ¢g; = g» = g3 = ¢, the model has linear components
of both factors and the linear by linear component of the interaction present:
this corresponds to the hypothesis Hy, y yy.

The orthogonality of the contrasts used to test these components with the
ANOVA ensures independence of the contrasts under both the null and the
alternative models, so that the power of the ANOVA procedure to detect the
linear component of factor U (represented by values of g; = ¢g) is not affected
by the presence or absence of other effects (represented by the values of g, and
g3). However, the same is not true of the ranking procedure, since the con-
trasts in the rank sums, although uncorrelated under Hy o o are not necessarily
uncorrelated under Hy .0, Hy, 1,0 of Hy, v, yr. The power of RANK to de-
tect one component, for example the linear component of U, will be affected
by the presence of another component such as the linear effect of ¥ or the
linear by linear component of the interaction. This interdependence is related
to the fact that, under the alternative models, the variances of the ranks, and
therefore the variances of the rank sums, are not the same as under the null
model, Hy ¢ . This feature of ranking methods has been noted elsewhere. For
example Shlrley (1987) commented on the over-estimation of the variance of
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the ranks due to some subsets of the data being “constrained” in the non-null
situation. See also Steel (1960), Shorack (1967) and Williams (1986).

Table 5 shows the powers of ANOVA and RANK for the design with both
factors at four levels within each of two blocks, i.e. design (4,4, 2). Powers are
given for testing for the presence of the linear component of factor U using
models Hy 0,0, Hy,v,0 and Hy,y yy, and for the linear x linear component of
the interaction using models Ho o vy, Huo,uy and Hy, y, yy. In this way we
may compare the powers of RANK and ANOVA to detect an effect with only
that particular effect present and in the presence of other effects.

It may be seen from Table 5, which is typical of many comparisons carried
out for other designs, that the power of RANK compares very favourably
with that of ANOVA when no other effects are present in the model. The loss
of power resulting from the use of ranks is about 0.5 per cent when testing for
the linear component of U and about 1 per cent when testing for the linear by
linear component of the interaction when no other effect is present in the
model. However, the powers of the ranking procedure are considerably lower
than those of ANOVA when the model includes other effects. For example,
when the alternative model contains both linear components and the linear by
linear component of the interaction, the power of the tests based on the rank
sums are only about 70% of the powers of the corresponding ANOVA tests.
These power comparisons are illustrated in Figures la and 1b.

The reason for the loss of power is that, when other effects are pre-
sent in the model, the standardisation of 7; by its null standard deviation
produces a test statistic which is generally reduced in magnitude relative to
the corresponding ANOVA test statistic. This null standard deviation,
{12/MK(K 4 1)}/2, is an over-estimate of the appropriate standard devia-
tion of 7; when the ranks are constrained as they would be when the model
contains additional components.

5 An alternative non-parametric procedure

In order to overcome this problem of loss of power, at least to some extent, we
propose a modification to the non-parametric procedure RANK, so that the
previously defined 772, /=1,...,K — 1, are compared to an estimate of be-
tween-block variability instead of to their null variance. Because two or more
blocks are used in the designs under consideration, the between-block infor-
mation can be used as a measure of variability. For each treatment combina-

tion, i.e. for each value of k k=1,...,K, the ranks are given by R,
m=1,..., M, so that the variability in these ranks may be assessed using

L 2

Z(Rmk - Rok/M) . (8)

m=1
The overall between-block variability is given by

M

Z (Rmk - R-k/M)za (9)

k=1 m=

which has (M — 1)(K — 1) degrees of freedom, since the ranks within each
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g

Power

RANK (U,0,0) —
RANK(UV,0)  ------
RANK(UV,WV) —

Fig. 1a. Comparison of powers of ANOVA and RANK for testing the linear component of U for
the design (4,4,2)

0.8 —
0.8 —
0.7 —
06 —
0.5 —
0.4 —
0.3 —
02 —
0.1 —

ANOVA
RANK (0,0,0V) — — —-
RANK (UO,LV) - --- -
RANK (UV,UV) — - —

Power

00 —

Fig. 1b. Comparison of powers of ANOVA and RANK for testing the linear by linear component
of the UV interaction for the design (4,4,2)

block sum to K(K + 1)/2. Comparison of the contrasts 7j, [ =1,..., K — 1,
with this “error mean square” leads to the test statistics

T?/M

3 5% (Rt = R/ M)/ = (K = 1)

F =

; (10)

for /=1,...,K —1. The asymptotic distribution of F; is an F distribution
with 1 and (M — 1)(K — 1) degrees of freedom. This is equivalent to carrying
out a normal theory analysis of variance, in which the responses are the ranks
as described in Table 1, with the treatment sum of squares divided into the
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various linear, quadratic etc components given by 77 /M for/ =1,...,K — 1.
In this analysis there is a block component with (M — 1) degrees of freedom
with a sum of squares equal to zero and an error sum of squares with
(M — 1)(K — 1) degrees of freedom as in Equation (9). Use of Equation (10)
is analogous to using the same ANOVA procedure for the blocked factorial
experiment as used earlier but with the ranks replacing the original obser-
vations. We shall refer to the non-parametric procedure based on testing for
the various components of the main effects and interaction using Equation
(10) as ANALOGUE.

5.1 The null distribution of the ANALOGUE test

One of the difficulties introduced in suggesting ANALOGUE as an alterna-
tive to RANK, is that it is possible for the denominator to equal zero so that
F; is infinite. This occurs with non-negligible probability for some small de-
signs when the rankings within each block are identical. Under the null hy-
pothesis, for the design (2,2, 2), the probability of the error mean square being
zero is 1/4! (=0.0417), whereas for (2, 3,2), this is equal to 1/6! (=0.00139)

and for (2,5,2), itis 1/10! (=2.75 x 10~7). Evidently care will be required in
the use of the ANALOGUE procedure for very small designs. As with the
RANK procedure, a series of simulations was carried out to obtain the null
distributions of F; for a selection of designs. Table 6 gives a summary of the
comparisons with the percentage points of the appropriate asymptotic F dis-
tributions.

The results indicate that, even with only two blocks, the asymptotic per-
centage points should be reasonable for practical purposes with all but the
smallest designs. For designs such as (3,3,2) and (2,5, 2), the use of the per-
centage points of Fig and F) ¢ will result in slightly larger type I errors than
desired, but for (4,4,2) and larger designs, it seems that the asymptotic per-
centage points correspond very well to the simulated values, so that the type I
error should be close to the specified levels.

6 Power comparison of ANALOGUE, RANK and ANOVA

To investigate whether the adaptation of the RANK method to ANA-
LOGUE has resulted in an improved power when additional effects are pres-
ent in the model, further simulations were carried out for a range of designs.
Again, as in Section 4, all powers of the various test statistics were obtained
by comparison with the corresponding simulated percentage points of their
null distributions, so that appropriate type I errors were employed.

From the large number of comparisons made for a range of designs and
with models including main effects and interactions of various magnitudes, the
results for design (4,4,2) are given in Table 7 corresponding to the results
shown in Table 5.

The powers shown in Table 5 for RANK and Table 7 for ANALOGUE
were based on the same simulated data, so that comparisons can be con-
fidently made both within and between the tables. From Table 7, it is evident
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Table 6. Comparison of simulated percentage points and corresponding F percentage points for a
selection of designs (1,J, M)

Design Contrast 95% 99%
(2,3,2) Asymptotic F s 6.608 16.260
Linear U 8.167 26.667
Linear V' 8.182 25.312
Quad V 8.352 23.438
Lin U x Lin V 8.000 25.312
(2,4,2) Asymptotic F; 7 5.591 12.250
Linear U 6.034 14.175
Linear V' 6.050 14.787
Quad V 6.034 14.787
Cubic V 6.050 14.450
Lin U x Lin V 5.973 14.400
(3,3,2) Asymptotic F g 5.318 11.260
Linear U 5.633 12.800
Quad U 5.556 12.522
Linear V' 5.597 12.789
Quad V 5.628 13.000
Lin U x Lin V' 5.633 12.600
(2,5,2) Asymptotic Fj g 5.117 10.560
Linear U 5.358 12.166
Linear V' 5.326 11.719
Quad V 5.403 11.716
Cubic V 5.409 11.912
Quartic V' 5.369 11.716
Lin Ux Lin V 5.358 11.683
(4,4,2) Asymptotic F| 15 4.543 8.683
Linear U 4.576 8.883
Quad U 4.601 9.007
Linear V' 4.474 8.606
Quad V 4.559 8.744
Lin Ux Lin V 4.510 8.670

that the powers of ANALOGUE for testing for an effect when only that effect
is present compare favourably with ANOVA, although they are not quite as
close as the powers of RANK. However, the powers of ANALOGUE for
testing for one effect in the presence of other effects are considerably better
than those for RANK. For example, the power of ANALOGUE is about
20% higher than RANK for identifying the linear component of factor U
when both the linear component of factor V" and the linear by linear compo-
nent of the interaction are present in the model. The adaptation of the non-
parametric procedure seems to have overcome the power loss to a consider-
able extent. The limited results illustrated in Tables 5 and 7 are typical of
many other designs investigated. Figures 2a and 2b illustrate the improvement
in the powers of ANALOGUE relative to RANK for the design (4,4,2) for
testing for the linear effect of U and for testing for the linear by linear effect of
the interaction when all three components are included in the model.
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Fig. 2a. Comparison of powers of ANOVA, RANK and ANALOGUE for testing the linear
component of U for the model (U, V, UV') with the design (4,4,2)
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Fig. 2b. Comparison of powers of ANOVA, RANK and ANALOGUE for testing the linear by
linear component of the interaction UV for the model (U, V', UV) with the design (4,4,2)

7 Discussion

This work was motivated by the requirements of a practical problem involv-
ing a blocked factorial experiment in which the responses were available as
rankings within blocks. Initially a ranking method based on partitioning
Friedman’s test statistic into K — 1 ‘orthogonal’ components, representing the
linear, quadratic, etc, polynomials for each factor and the linear by linear etc,
components of the interaction, was proposed. This procedure is equivalent to
carrying out an analysis of variance on the Friedman ranks and partitioning
the treatment sum of squares into its K — 1 components with contrast squares
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T?/M for1=1,...,K — 1, each with one degree of freedom, and then com-
paring these with the mean square based on the total sum of squares

(8 £

Rmk)

$hg e\ ek
mk -

MK 12 ’

m=1 k=1

which has M (K — 1) degrees of freedom because the ranks are constrained to
sum to K(K + 1)/2 within each block.

The problem encountered with this form of the test is that this mean
square is inflated under any alternative hypothesis, so that there is a loss of
power associated with testing one component when other effects are present in
the model. To overcome this problem, an alternative procedure is introduced
which involves comparing the contrast squares with the residual mean square
from the same analysis of variance. It is shown that the power losses are very
much reduced with this modification. There is also the bonus that the required
analysis is simply obtained, since it is the same analysis of variance that would
have been applied to the normal data if these had been available.

There are, however, two possible disadvantages with this method. The first
is that use of the asymptotic distributions will result in increased probability of
type I errors for very small designs as discussed in Section 5.1. However, this
should not be a problem in most practical situations, where at least one of the
factors has three or more levels or where the experiment involves more than
two blocks. The second problem is that the residual mean square can be zero
if the rankings are identical within each block. This can occur even in the null
situation with very small designs and could occur in larger designs when the
alternative model contains very pronounced differences over the levels of both
factors. This latter situation did not arise in any of the simulations used in this
study except when the designs were small.

Although the contrasts used in the tests are uncorrelated under the null
hypothesis of no main effects and interactions, it was the case that the per-
formance of the test for one component was affected by the presence of other
components in the model. Since we apply ranks within blocks, we did not
observe the disadvantageous feature of the rank transform test for interaction
discussed by Thompson (1991). He warns that the test for interaction based on
the rank transform applied to all the data, can have a large type I error rate,
even for large samples, when certain main effects are present.

Further studies are underway, theoretically and through simulations, to
investigate the properties of the proposed ANALOGUE ranking method un-
der the null situation, with various alternative models and with different non-
normal error structures.

References

Akritas MG (1990) The rank transform method in some two-factor designs. Journal of the
American Statistical Association, 85:73-78

Barlow RE, Bartholomew DJ, Brenner JM, Brunk HD (1972) Statistical inference under order
restrictions. Wiley, New York

Blair RC, Sawilowsky SS, Higgins JJ (1987) Limitations of the rank transform statistics in tests
for interaction. Communications in Statistics — Simulation and Computation 16:1133-1145



54 P. Prescott, R. Shahlaee

Brunner E, Neumann N (1986) Rank tests in 2 x 2 designs. Statistica Neerlandica 40:251-272
Conover WJ, Iman RL (1976) On some alternative procedure using ranks for the analysis of ex-
perimental designs. Communications in Statistics — Theory and Methods A5:1349-1368
Hollander M (1967) Rank tests for randomised blocks when the alternatives have an a priori
ordering. Annals of Mathematical Statistics 38:867-877

Iman RL (1974) A power study of a rank transform for the two-way classification model when
interactions may be present. Canadian Journal of Statistics 2:227-239

Jonckheere AR (1954) A distribution-free k-sample test against ordered alternatives. Biometrika
41:133-145

Lemmer HH (1980) Some empirical results on the two-way analysis of variance by ranks. Com-
munications in Statistics — Theory and Methods A9:1427-1438

Puri ML, Sen PK (1968) On Chernoff-Savage tests for ordered alternatives in randomised blocks.
Annals of Mathematical Statistics 39:967-972

Sawilowsky SS, Blair RC, Higgins JJ (1989) An investigation of type I error and power properties
of the rank transform procedure in factorial ANOVA. Journal of Educational Statistics
14:255-267

Scheirer CJ, Ray WS, Hare N (1976) The analysis of ranked data derived from completely ran-
domised factorial designs. Biometrics 32:429-434

Shirley EAC (1987) Applications of ranking methods to multiple comparison procedures and
factorial experiments. Applied Statistics 36:205-213

Shorack GR (1967) Testing against ordered alternatives in model I analysis of variance: normal
theory and non-parametric. Annals of Mathematical Statistics 38:1740-1752

Skillings JH, Wolfe DA (1978) Distribution-free tests for ordinal alternatives in a randomized
block design. Journal of the American Statistical Association 73:427-431

Steel RGD (1960) A rank sum test for comparing all pairs of treatments. Technometrics 2:197—
207

Terpstra TJ (1953) The exact probability distribution of the r-statistic for testing against trend
and its normal approximation. Proceedings Koninklijke Nederlandse Akademie van Weten-
schappen 56:433-437

Thomas GE, Kiwanga SS (1993) Use of ranking and scoring methods in the analysis of ordered
categorical data from factorial experiments. The Statistician 42:55-67

Thompson GL (1991) A note on the rank transform for interactions. Biometrika 78:697-701

Tryon PV, Hettmansperger TP (1974) A class of non-parametric tests for homogeneity against
ordered alternatives. Annals of Statistics 1:1061-1070

Williams DA (1986) A note on Shirley’s non-parametric test for comparing several dose levels
with a zero-dose control. Biometrics 42:183-186



