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Abstract. In this paper we present a new stochastic characterization of the
Loewner optimality design criterion. The result is obtained by proving a
generalization to the well known corollary of Anderson’s theorem. Certain
connections between the Loewner optimality and the stochastic distance
optimality design criterion are showed. We also present applications and
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1 Introduction

There exists an extensive literature on optimal design criteria. For references
see Shah and Sinha (1989) and Pukelsheim (1993), for example. Among them
there are traditional criteria like A-, D- or E-optimality and more sofisticated
ones like Kiefer optimality or Loewner optimality which is quite a strong cri-
terion. However, there are models, as e.g. two-way classification models (see
Pukelsheim 1993, Section 4.8), for which a Loewner optimal design exists.

In this paper, we assume the classical linear model

Y ~ N, (XB,0°1,,), (1)
where the n x 1 response vector Y = (Y7, Ya,..., Y,) follows a multivariate
normal distribution, X = (x,Xa,...,X,)’ is the n x k model matrix of the full

rank k, k <n, B = (By,B,,-..,B:)" is the k x 1 parameter vector, E(Y) = Xf
is the expectation vector of Y and D(Y) = 1, is the dispersion matrix of Y,
where 6> = V(Y;) for every i = 1,2,...,n and I, is the n x n identity matrix.
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An experimental design ¢, for a given number n of trials specifies / < n
distinct regression vectors Xp, X, . . ., X; and assigns to them frequences n; such
!
that > n; = n. The regression vectors X, Xy, ...,X; are called the support of
i=1 . . . N .
the design ¢(,). A design assigns the weight —to each vector x;, i = 1,2,...,1.
n

Such designs are called exact.
Let g be the least squares estimator (LSE) of g which is the best linear un-

2
biased estimator (BLUE) of /i The dispersion matrix of g is D(f) = %M_],
where the matrix M = Zl 1 x x; is the moment matrix of &

More generally, we may allow the weights vary continuously in the inter-
val [0, 1]. In this case we deal with designs for a infinite number of trials (see
e.g. Pukelsheim 1993, Section 1.24). Such designs are called continuous. Each
continuous design ¢ is a discrete probability measure taking values p; > 0 at
vectors x;, i = 1,2,...,1, that is

é:{X15X2;"'axl;p17p27"'ap1}7 szzl
i=1

The moment matrix of a design ¢ is also defined by M(¢) = Z DiXiX!

The problem of searching for an optimal design is s1mp11ﬁed by consider-
ing continuous designs for an infinite number of trials, thus ignoring the con-
straint that the number of trials at any design point must be an integer. In
practice all designs are exact. However, continuous design can be used to ap-
proximate an exact design.

2 Loewner dominance

For describing the notion of Loewner dominance, let us first consider a line fit
model. Suppose we have n > 2 uncorrelated responses

Kj:ﬂ1+ﬂzxi+El'j', i:l,2,...,l;j:1,2,...,n,- (2)

with expectations and variances E(Y;) = 8, + f,x; and V(Y;) = o2, respec-
tively.

An experimental design ¢ specifies distinct values xi,x;,...,x; chosen
from a given experimental domain (usually an interval [a, b]) and assigns to

!
them weights p; such that Y p;=1. The moment matrix of a design & is given as
i=1

1
/ 1 leixi
/ =
= iXiX; = )
©) ;p l L
Zl DiXi X% DiX;
i= i=

where x; = (1,x;)".
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Let ¢, ., denotes a 2-point design {x,y;p,1 — p} for the LSE of g in (2)
with weights 0 < p <1 and 1 — p at the points x and y, respectively, a <
x <y < b. By De la Garza (1954), for any /-point design ¢ for the LSE of g
in (2), there exists a 2-point design &, ., such that min{xi,x2,...,x} < x <
y <max{xy,x,...,x} and M(&, ). ,) = M(&).

Designs having equal moment matrices are called information equivalent.
Since comparison between designs in this paper will be based solely on their
moment matrices, we can confine our study of a line fit model (2) with the
class of 2-point designs.

We say that a design &; dominates a design &, in the Loewner ordering
sense if M| — M, is a nonnegative definite matrix, where M;, i = 1,2, are the
moment matrices of the designs &, and &,, respectively. We also denote M; >
M; or M| — M; > 0 when M| — M, is nonnegative definite and M; > M, or
M; — M; > 0 when M — M, is positive definite. Thus the Loewner partial
ordering among moment matrices induces a partial ordering among asso-
ciated designs. We denote &, >, & when &, dominates &, with respect to
Loewner ordering. If &* =, & for all &, then &* is Loewner optimal. For more
extensive discussion on this concept we refer to Marshall and Olkin (1979,
p. 462) and Pukelsheim (1993, p. 12 and Chapter 4). The next result shows
that there exists a Loewner superior subclass among the 2-point designs.

Lemma 1. For any given design &, ,.,, a <x<y <b and a <x or y <b,

for the LSE of B in (2), there exists a 2-point design &, = {a,b;p,1 — p},
&y # L yors that dominates &, ., i.e.

ép =L éx.y;r'
Proof. We have
M(ép) 7M(éx,y; r)

( 0 [pa+(1=p)b]=[rx+(1—-r)y] )
[pa+(1=p)b]—[rx+(1=r)y]  [pa® +(1=p)b? x>+ (1-1)y?] )
(3)

For any given ¢, ., with a <x<y<b (a<xory<b) we can always
choose

b—[rx+ (1- 1)y
b—a

O<p= <1

so that the nondiagonal elements in (3) become zero. Then
[pa® + (1 = p)b?] = [rx® + (1 = 1)y?]
=5 — [+ (1= 1)y’ = (a+b) (b [rx + (1 = 1)y])

=rla+b—x)x+(1—-r)(a+b—y)y—ab>0
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since (a+ b — x)x > ab when x € (a,b). Consequently M(&,) — M(&, ) is
nonnegative definite. Thus there always exists ¢, # ¢, ., such that &, ~1

a_::x‘y;r' O

It is easy to see by (3) that given a design ¢,, there is no design &, that
dominates ¢,. Thus any 2-point design &, = {a,b;p,1 —p} with 0 <p < 1 is
admissible. We also say that the moment matrices of those designs are admis-
sible. Correspondingly, each design ¢, ., with support points a < x <y <b
(a < x or y < b) is inadmissible, and there exists by Lemma 1 an admissible
design which dominates it. This means that the admissible designs form a
complete class (cf. Pukelsheim 1993, Chapter 10).

Sinha (1970) introduced the concept of distance optimality criterion in
certain treatment-connected design settings.

Definition 1. Let g, = ﬁ(él) and g, = ﬁ(éz) be the LSE’s of g in (1) under the
designs &, and &, respectively, and || - || denotes the Euclidean norm in R¥. If
for a given ¢ > 0

P(|8 — Bll < &) = P(|B, - Bll <o), (4)

then the design & is at least as good as &, with respect to the DS(¢)-criterion.

A design ¢" is DS(¢)-optimal for the LSE of g in the model (1) if it max-
imizes the probability P(||# — g < ¢). When &* is DS(e)-optimal for all & > 0,
we say that &* is DS-optimal.

In fact, the relation (4) defines a partial ordering on the set of all possible
designs. This kind of partial ordering was referred to as ‘stochastic domina-
tion” in Hwang (1985) or ‘stochastic precision’ in Stgpniak (1989). Giovagnoli
and Wynn (1995) considered a closely related concept of ordering which they
called ‘D-ordering’. In all those papers various aspects of this stochastic order-
ing were studied mostly from the viewpoint of estimation of linear functions
of B. For completeness one should also mention the review paper by Stepniak
and Otachel (1994), and the book by Torgersen (1991, Chapter 8) where the
results on comparison of linear experiments were widely discussed. At last,
Liski et al. (1999) studied the properties of distance optimality criterion under
the classical linear model when observations are independent, homoscedastic
and normally distributed.

Further on it is useful to define the DS(¢)-criterion function as

Y:[M(E)] = P(IB(E) — Bll < e).

The DS-criterion is isotonic relative to Loewner ordering (Liski et al. 1999),
that is

M(<1) = M(&) = W [M(&1)] = ¥, [M(&)] - for all e, (5)

2
Since f ~ Ni /I,GnM(é)l) under the model (1) and matrix inversion is

antitonic in the case of positive definite matrices, i.e.



A stochastic characterization of Loewner optimality design criterion in linear models 211

M(&)) > M(&) & M(E) T <M(&) 7,

the result (5) is a direct consequence of a well-known corollary (see e.g. Perl-
man 1989, or Tong 1990, Theorem 4.2.5) from Anderson’s theorem on the
integral of a symmetric unimodal function over a symmetric convex set (see
Anderson 1955). We formulate this corollary as Theorem 1.

In the sequel we denote X ~ N, (0,X) when a k x 1 random vector X fol-
lows a normal distribution with expectation E(X) = 0 and dispersion matrix
DX)=X>0.

Theorem 1. Let X; ~ Ni(0,X)) and X, ~ Ni(0,X;) be k x 1 normally distri-
buted random vectors, k > 1, where X1 > 0. If £ < X5, then

P(X,€e4)>P(X,eA)
for all convex and symmetric (with respect to the origin) sets A = R¥.

In view of equation (3), there is no Loewner optimal design for the LSE of
B in (2). This result agrees with the more general one from Pukelsheim (1993,
Section 4.7).

Moreover, Lemma 1 and relation (5) imply that DS(¢)- and DS-optimal
designs are among 2-point designs &, = {a,b;p, 1 — p} if they exist. We know,
in particular, that if [a,b] = [0, 1] there is no DS-optimal design but if [a, 5] =
[—1,1] there exists a unique DS-optimal design &, = {—1,1;p,1 —p} (cf.
Liski et al. 1998 and Liski et al. 1999).

In the next section we prove the converse statement of Theorem 1, which
yields an important characterization of the normal random vectors X; and X,
when their dispersion matrices X; and X, are in Loewner order X; < X,.

3 Stochastic characterization of Loewner dominance

We start by proving the following characterization theorem.

Theorem 2. Let X ~ Nk(O, 21) and X, ~ Nk((), 22), k>1, where ;1 > 0.
Then

P(X; € 4) > P(X; € A)

for all convex and symmetric (with respect to the origin) sets A = R* iff £; <
.

Proof. In view of Theorem | we need only to prove the following assertion:
(i) If

P(X;eA4)=P(X,e€4) (6)
holds for all convex and symmetric sets 4 = R¥, then &; < X,.

Since X; is positive definite, then there exists a nonsingular matrix Q such
that
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QZLQ=1I; and Q'ZL,Q=D, (7)
where D = diag(dy, da, ...,d;) and dy,d,, . .., d) are the eigenvalues of ZIIEZ,
all of which are positive (cf. Lancaster and Tismenetsky 1985, Theorem 2,
p. 185). It follows from (7) that

<%, iff di>1 foreveryi=12,...k
and

Q'X; ~ Ni(0,I;) and D™'2Q'Xy ~ Ni(0, 1),

where D712 = diag(clfl/z7 d;l/z, e ,d,;l/z). Let’s denote for simplicity
Q’X, = Z and D"'>Q’X; = V. Then it is clear that

P(X;eAd)=P(ZeQ'A)
and

P(X; e 4) =P(Q'X, e Q'4) =P(Ve D '/2Q'4).
Since Q is nonsingular, the set Q’A4 is convex and symmetric iff 4 is convex
and symmetric.

Suppose now for a moment that X; < X does not hold, i.e. d; < 1 for some

value of i, say d; < 1. Let’s choose now such a convex symmetric set 4 ¢ R¥
that

QA4=[-1,1] xR x--- x RcR*
For such a set we have
P(X,e4)=P(ZeQ'A)
=P(Z, e[-1,1))
<PV ed;"*[-1,1])
=P(VeD '?Q'4)
=P(Xy e A),
where Z; and V) are the first elements of Z and V, respectively. Thus the
assumption d; < 1 has led to the conclusion that the inequality (6) does not
hold for all convex and symmetric sets 4 = R¥. This proves the assertion
1. O
Remark 1. According to Eaton and Perlman (1991), X; ~ N (0,X;) is said to

be more concentrated than X, ~ N;(0,X,) iff £; < X,. Hence Theorem 2
gives an equivalent characterization of ‘X; more concentrated than X;’.
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Motivated by Theorem 2, we define now a generalization of the DS-opti-
mality criterion. We call it the SC-optimality criterion (S for ‘stochastic’ and C
for ‘convex’).

Definition 2. Let #; = () and f, = B(&,) be the LSE’s of g in (1) under the
designs &; and &,, respectively and let .7 be a class of convex symmetric (with
respect to the origin) sets in R

Q) If
P(B(1) — Be A) = P(B(&) — e A) forall de .,

then the design &; dominates &, with respect to the SC_/-criterion.
(i) If

P(B(&) —Bed)>P(B(&) — pe A)

for all convex symmetric (with respect to the origin) sets 4 < R¥, then &,
dominates &, with respect to the SC-criterion.

A design ¢ for the LSE of g in (1) is SC-optimal if

P(B(E*)—Pped)=P(p(é)—ped) forallde.of

and for all designs &. A design &* is SC-optimal if it is SC- 0pt1mal for the
class .7 of all convex symmetric (with respect to the origin) sets in R¥.

Loewner dominance and SC-dominance induce by Theorem 2 the same
partial ordering among designs. Thus, for example, the set of all admissible
designs under Loewner dominance is equivalent to the set of all admissible
designs under SC-dominance. Further, a design is Loewner optimal iff it is
SC-optimal.

Theorem 2 also gives a sufficient condition for Kiefer dominance (see
e.g. Pukelsheim 1993, Chapter 14). Indeed, let # be a subgroup of the set ¥
of all orthogonal k x k-matrices and suppose that the set of all available
moment matrices is invariant with respect to . A design £; dominates &, in
the Kiefer (#) sense if there exists a matrix A belongmg to the convex hull
conV{HM(éz)H’ H e #} such that M(&)) > A. It is easy to see that the
smaller set # the stronger Kiefer (#)-criterion. The smallest set # is the
singleton set # = { +1I;}. But Kiefer ({ +1;})-criterion is simply Loewner
criterion and it is stronger than Kiefer ()-criterion for any other .

By Lemma 1 the set of designs ¢, = {a,b;p,1 — p}, 0 < p < 1isa complete
class for the LSE of g in (2) relative to the Loewner dominance. It follows
from Theorem 2 that the designs &,, 0 < p < 1, form a complete class also
relative to SC-dominance. On the basis of equation (3) it is also clear that
there is no Loewner optimal design, or equivalently, no SC-optimal design for
the LSE of g in (2).

Further, the above results yield that any SC_,-optimal design is of the form
& ={a,b;p,1 —p}. If we spemallze on a certain class .7 of convex symmetric
(with respect to the origin) sets in R¥, there might be possible to find an opti-
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mal design. In fact, DS-optimality is a special case of SC-optimality. If .o7 is
taken to be the class of all k-dimensional balls centered at the origin, then DS-
optimality follows. We know that although there is no SC-optimal design for
the LSE of g in (2) with [a,b] = [-1,1], the design &, = {—1,1;5,1} is the
unique DS-optimal design.

The next result shows that we can extend the class of 2-dimensional balls
centered at the origin so that the design &, = {1, 1;%7%} still remains opti-
mal for the LSE of g in (2) with [a,b] = [-1,1]

Lemma 2. The design &, = {1, 1;%,%} is SC_/-optimal for the LSE of B in
(2) with[a,b] = [—1, 1], where of is a class of all convex symmetric (with respect
to the axes) sets in R>.

Proof. We utilize the considerations in the beginning of Section 2 and the
proof of Lemma 1. Let’s consider only the designs ¢, = {—1,1;p,1 —p}, 0 <
p < 1, having a moment matrix

M(&,) = (:{ T) d=1-2pe(-1,1).

It is easy to see that the eigenvalues of M(&,) are Apin =1 —|d|,
Jmax = 1+ |d|. Let M(&,) = QAQ' be the spectral decomposition of M(¢,),
where A = diag[l — |d|,1 + |d|] and Q is an orthogonal matrix. Define Z =
ﬁAl/ZQ'(ﬁ(ép) — pB) and note that Z ~ N,(0,1;). Then

g

P(A(E,) — ped) = P(jﬁQAl/ZZ c A)

_ Z 4 e@ /
_P<<¢1—|d|’¢1+d|> oQA>'

It is easy to understand that the orthogonal matrix Q is either

1 1 1 1
N V2 2
+ or =+
1 1
V2 V2 V2 V2

if d # 0. In any case the set ~—Q’4 is convex, symmetric (with respect to the

vn

o
origin) and permutation-symmetric in R2. Hence, according to Theorem 7.4.6
of Tong (1990),

Zy Z, v,
f((75) o)
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is a Schur-concave function of (logd,logd,). Since (logl,logl) <"
(log+/1 —|d],log\/1+|d]), where <" means weak upper majorization
(see Marshall and Olkin 1979, Definition A.2), we get

Z1 Z> Lﬁ ' @ /
P<<\/1—|d|’\/1+|d>e UQA>SP<ZG aQA>

_ p<z . {A) —P(f(&1p) —Bed). O

The next corollary is useful in searching for optimal des1gns Given a design
E={x1,Xa,...,X};P1,P2, - -, D1}, the reflected design f is defined by &R =
{=X1,—X2,...,=X;;p1,p2,...,p1}. The designs ¢ and ¢® have the same even
moments, whlle the odd moments of ¢® have a reversed sign. The moment
matrix ofé is given by M(&R) = TM(&)T’, where T = diag(1,—1,1,—1,.. .,
+1) is a diagonal matrix with diagonal elements 1,—1,1,—1,..., +1.

Corollary 1. Let o/ be a class of all convex symmetric (with respect to the axes)
sets in R%. Then the following statements hold for any design & for the LSE of
B in (2) with [a,b] = [-1,1]:

(i) P(B(&) —Bed) = P(ﬂ(f )—BeA) forall Ae;

(ii) the symmetrized design & :%( fR) dominates & with respect to the

SC_/-criterion.

Proof. The first assertion is evident. Indeed, since (TM(&)T')™" = TM(&)™'T’,
then

P(B(&) —pe A) =P(T(B(&) — B) e TA) = P(B(X) — pe A)

due to the symmetricity of the set 4 with respect to the axes.
For the proof of the second assertion it is enough to note that since the
moment matrix of & can be written as

1 h
MO=(, o) e>W=0
then

() — _VE=R [ Mm@
P(p(&) —peAd) = e dx
n A

where
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A, = {(x,y) : (x,)—;) eA}.

From Lemma 2 it follows that

Vv1-—d?
2n

j efx'wax/sziJ N2 gy
A, T 2n A,

P(B(&) —ped) =

_ LJ o XMEN/2 gy
A

0 (2

1 0
=P(B(&) —peA), whereM(E):( ) O

The next example shows that the result of Lemma 2 is not necessarily true
if the elements 4 € R? of .o/ are convex and symmetric sets with respect to the
origin but not with respect to the axes.

Example. Consider the set of rectangulars in R? of the form

A ={CA,c> 1},

where A, = [—1,1] x [—¢,¢] and
R
2 2
c_ V2 V2
11
V2 V2

Evidently, each A4 € .o/ is convex and symmetric with respect to the origin but
not with respect to the axes (see Figure 1).

CA, "

Fig. 1. A set from .o/ is a rectangular that is convex and symmetric with respect to the origin but
not with respect to the axes.
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0.8 ¥(0.25, ¢)
¥(0.01, c)
0.6 (0.5, ¢)
0.4
0.2
0 3 ! 6 8 0 ¢

Fig. 2. The graph of ¥(p,¢) for p = 0.01,0.25,0.5 and % —1.

We show that for the LSE of g in (2) with [a, b] = [~1, 1], the design &, , =
{-1,1;1,1} is not SC-optimal. Indeed, denote
¥(p,c) = P(B(&,) — BeCA),

where &, = {—1,1;p,1 — p}. After simple calculations we get

2¢<@> 1 2¢<@> _ 1],

where @ is the distribution function of the standard normal law.
Thus for any given p € (0,1) there exists ¢o = ¢o(p) > 1 such that

W(pvc) -

Y3,0)<¥(p,c) Vo>
and

Y(i,e)>%(p,e) VYO<c<a.

The numerical values of ¢, for certain values of p in the case when — =1
are given in the following table: o

p | 001 ]005] 01 | 015] 02 | 025] 03 | 035]| 04 | 045 | 049

¢ | 932 | 425 | 3.08 | 255 | 220 | 1.95 | 1.73 | 1.54 | 1.36 | 1.19 | 1.04

In fact, the designs &, = {—1,1;p,1 —=p}, 0 <p < %form a complete class, but
there is no SC_-optimal design here.

4 Multifactor first degree polynomial models

Let us look at an m-way first-degree polynomial fit model

Y,;,»:[)’O—Fﬁ]x,q—|—---—|—[)’mx,'m—|—Eg,», 1.21,2,...,[;]':1727...,1’1,' (8)
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with m regression variables and / experimental conditions x; = (x;1, X2, - - .,
Xin)', i=1,2,...,1. We assume now that the experimental domain for the
model (8) is an m-dimensional Euclidean ball of radius /m, that is 7z =
{x e R" :||x|| < /m}. Therefore, the regression range is of the form

1

i !

Denote uy, = Y- pixi, k=1,2,...,m and wy = > pixyxy for j, k=1,
i=1 i=1

2,...,m. Then the moment matrix of an /-point design

&= {x1,X2,....,X;p1,P2,--- D1} (10)

is of the form

L g o o
! 1 Mo Mo oo Him
M(¢) = Zm( ) (1,x) =
i1 Xi
Ko 1y -+ B

Consider an /-point design (10) which is in the range (9), / > m + 1. Let
JIWIW] + oWaWy + -+ Ay Wi 1 Wy = M(E) (11)
be the spectral decomposition of M(&), where w; and 4; > 0 are orthonormal

eigenvectors and the eigenvalues of M(¢), respectively. Note that

M) =h++- 4 Ay = ) pi(l+x]x;) <m+1, (12)

/
i=1

since by assumption x; € 7 5 foralli=1,2,... 1.
Denote X; = \/A1 + Ay + - + AW and r; =

Ai
MAIdo4 4 st
2,...,m+ 1, and consider the (m + 1)-point design

i=1

)

f = {il,iz,...,ierl;rl,rz,...,}’m+1}.

Clearly, X; € 7 77,0 = 1,2,...,m + 1, and the designs ¢ and ¢ have the same
information matrix, i.e. ¢ and ¢ are information equivalent designs, though ¢
is not in the range (9). Thus for any /-point design & from the regression range
(9) for the LSE of g in (8) there exists an information equivalent (m + 1)-
point design ¢ on 7 ;-7 with orthogonal support vectors. We say that ¢ is an
orthogonal design.

Before proceeding to Theorem 3 we introduce two further design notions
that will be needed. A design & = {x},x9,...,x%:p1,p2,...,pi} is a rotation
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of the design & = {xi,Xa,...,X;;p1,P2,...,p;} if there exists an orthogonal
matrix C such that x) = Cx;, i = 1,2,...,/. The moment matrix M(&,) of &
is CM(&)C'. Let x; € I, i = 1,2,...,m + 1, fulfill the conditions

l+xx;=1+m, 1+x;x;,=0 (13)
for all i #j < m + 1. Then the vectors Xj, Xy, ..., X, satisfying (13) span a
convex body in R™ called a regular simplex. A design & = {x1,X2,..., Xpm+1;

P1,D2, - - - Pm+1 + Which places weights p;, i = 1,2,...,m + 1, on the vertices of

a regular simplex in R™ is a simplex design (cf. Pukelsheim 1993, p. 391).
Now we prove that any design & of the form (10) from the regression range

(9) can be dominated in the Loewner sense by a rotation of a simplex design.

Theorem 3. Let & be an I-point design on the regression range (9) for the LSE
of B=(Bo,P1.---.B,) in(8),1>m~+ 1. Then there exists such a rotation & of

an (m + 1)-point simplex design &, that & dominates & in the Loewner sense, i.e.
¢ =1 & Equivalently, AAM(&)) = A(M(&)), where A(M) is the vector of ordered
eigenvalues of M and > refers to the usual entrywise ordering.

Proof. Let any [-point design £ with / >m+ 1 on the regression range 9)

be given. Define an (m + 1)-point orthogonal design é {X1,X0, .-+, Xt 15
F1,72, .-, Fmy1} on the boundary of I /T a8 follows:
)A(,': \/I’Vl+lW,', ri = A

Al At

where w; and 4; > 0 are from (11). It is easy to see that f dominates & in the
Loewner sense since

m+1

. m+ 1
M(¢&) = XX = -
(=2 rxx Mttt A

M(¢) = M(¢)

i=1

by (12) and consequently ¢ =, ¢, though again ¢ is not in the range (9).
Finally, it remains to show that there exists an (m + 1)-point simplex design

&o which is a rotation of £. Indeed, denote Q = (wy, w», .. wm+1) and let Cy
be an orthogonal matrix whose first row is (1/v/m+1,...,1/v/m+1). Then
the design &y = {x{,x9, ..., X ;ir,m2, o Pt } with

(x?,xg,...,xmﬂ) CoQ'(X1,Xa, -+, Xpr1) = Vm + 1Cy

is a rotation of & (and ¢ is a rotation of &), and the support points x?,x,. ..,
X, of & belong to the range (9) and fulfill the conditions (13), i.e. & is a
simplex design. This concludes the proof of the theorem. []

The above results have important implications since all comparisons of
designs are based on moment matrices and a reasonable optimality criterion is
isotonic with respect to the Loewner ordering. An optimality criterion is a
function ¢ from the closed cone of nonnegative definite matrices into the real
line (cf. Pukelsheim 1993, p. 114). Relative to the criterion ¢, a design &, is at
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least as good as another design &, when ¢(M;) > ¢(M;), where M; and M,
are the moment matrices of &; and ¢&,, respectively. A criterion ¢ is isotonic
with respect to Loewner ordering if

Mi>M, >0= ¢(M1) > ¢(M2)

The matrix means are the most prominent optimality criteria and they enjoy
many desired properties like isotonicity (cf. Shah and Sinha 1989, Chapter 1,
or Pukelsheim 1993, p. 119 and Chapter 6). The classical A-, E-, D- and
T-optimality criteria are just particular cases of matrix means. Also DS-
optimality criterion is isotonic (see (5)).

Theorem 3 yields immediately the following corollary.

Corollary 2. For any I-point design &, | > m + 1, for the LSE of p in (8) there
exists an (m+ 1)-point simplex design that dominates & with respect to any
optimality criterion which is isotonic with respect to the Loewner ordering.

Corollary 2 says that e.g. for the SC-optimality criterion the class of all
simplex designs for the LSE of g in (8) is complete though it does not guar-
antee the existence of a SC-optimal design. A design which places uniform
weight 1/(m + 1) on the vertices X1, Xy, ..., X;,+1 of a regular simplex in R" is
called a uniform simplex design. Any rotation of a uniform simplex design is
a uniform simplex design. Liski et al. (1999) showed that an (m + 1)-point
design & for the LSE of g in (8) is DS-optimal iff it is a uniform simplex design.

Theorem 3 also proves Kiefer dominance of simplex designs for the LSE
of # in (8). Indeed, it follows from Theorem 3 that any /-point design &,
I > m+ 1, is dominated in the Kiefer (%) sense by an (m + 1)-point simplex
design &.

Consider also an m-way first degree model without a constant term,

Yi=pxa+ -+ BuXin+Ey, i=12,...,5j=12,... n. (14)

Again assume that the experimental domain is 7 ;;. Repeating the consider-
ations leading to Theorem 3 and Corollary 2 we get the corresponding results
for the model (14).

Theorem 4. Let ¢ be an Il-point design on 7 s for the LSE of B= (P,

Bay... B) in (14), 1 = m. Then there exists an m-point orthogonal design &
that dominates & in the Loewner sense, i.e. £ =1 &.

Corollary 3. For any l-point design &, [ > m, for the LSE of p in (14) there
exist an m-point orthogonal design that dominates & with respect to the SC-
optimality criterion.

It is again clear that there is no Loewner optimal or SC-optimal m-point
orthogonal design for the LSE of g in (8). Liski et al. (1999) showed that a
DS-optimal design on 7 ; for the LSE of g in (14) always exists. Thus taking
as a class of convex sets .7 a class of all m-dimensional balls centered at the
origin yields an optimal design with respect to the SC_,/-optimality criterion.
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5 Generalizations

Up to now we have assumed that the observations follow a multivariate
normal distribution. However, the corresponding results hold also for an
elliptically contoured distribution. A random vector X has an elliptically con-
toured distribution, written X ~ ECD(g, a, X), if its density function is of the
form

f(x) = [Z]gl(x — a)’=7! (x — a)],

where g : R — [0, c0) is nonincreasing and D(X) =X > 0.

Theorem 1 and Theorem 2 can be formulated for elliptically contoured
distributions as well.

We generalize now Theorem 2 for random vectors X; ~ ECD(g,0,X;) and
X, ~ ECD(g,0,%,) with £, > X; > 0. The corresponding generalization of
Theorem 1 is obvious.

Theorem 5. Let X; ~ ECD(g,0,X,) and X, ~ ECD(g,0,X,) be k x 1 random
vectors, k > 1, where X > 0. Then

P(X;e4)=2P(Xye4)

holds for all convex and symmetric (with respect to the origin) sets A = R¥ iff
Y <X

The proof of Theorem 5 is similar to the proof of Theorem 2, except that a
normal distribution is replaced by an elliptically contoured distribution.

Remark 2. Theorem 5 gives a useful characterization of peakedness in the
sense of definition by Sherman (1955). Indeed, for k£ x 1 random vectors X
and X,, X is said to be more peaked than X, if

P(X; € A) > P(X; € A)

for all convex and symmetric (with respect to the origin) sets 4 < R¥. So, for
X; ~ ECD(g,0,%)) and X, ~ ECD(g,0,%,), X, is more peaked than X, iff
X, > X; > 0. As we see, for multivariate normal vectors ‘more peaked’ and
‘more concentrated’” are equivalent notions.

Remark 3. Following the proof of Theorem 2 it is easy to see that the converse
statement of Theorem 1 holds even in more general setting.

Corollary 4. Let X = (X1,..., X)) be such a random vector that E(X) =0,
D(X) =X > 0, and the support of its distribution contains the origin as an in-
terior point. If there exists a nonsingular k x k-matrix ¥ such that the inequality

P(Xed) >P(FX e 4)

holds for all convex and symmetric sets A = R¥, then FEF' > X.
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