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Abstract. It is well known that if the parent distribution has a nonnegative
support and has increasing failure rate (IFR), then all the order statistics have
IFR. The result is not necessarily true in the case of bivariate distributions
with dependent structures. In this paper we consider a multivariate normal
distribution and prove that, the distributions of the minimum and maximum
retain the IFR property.
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1. Introduction

The distributions of the maximum and minimum of p random variables X,
X>,..., X, play an important role in various statistical applications. For ex-
ample in the competing risk survival analysis due to p causes, X1, X2,..., X,
are not observed but 77 = min(X;, X», ..., X,) is the observable time of death.
Similarly in reliability studies, 7, = min(Xj, X>,..., X)) is observable if the
components are arranged in the series system and 7> = max(Xi, X2,..., X)) is
observed if the components are arranged in the parallel system.

In the case of independent and identically distributed random variables
from a distribution F(-), 71, and 7, constitute order statistics for a random
sample of size p from a distribution F(-). In reliability theory literature, it is
well known that if the parent distribution has a nonnegative support and has
increasing failure rate (IFR), then all the order statistics have IFR, see for
example Barlow and Proschan (1981) and a recent monograph by Kamps
(1995).

Nagaraja and Baggs (1996) have studied the order statistics of bivariate
exponential random variables and noted that even if the marginal distribution
is IFR, it is not necessary that 77, and 75 have IFR. For example, for Raftery’s
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(1984) bivariate exponential distribution, the marginals are exponential and yet
the failure rate of 7} is non-monotonic for certain values of the parameters.

In this paper we consider a random variable (X, X3, ..., X,) having a mul-
tivariate normal distribution and so the marginals have IFR. We are inter-
ested in the monotonicity of the failure rates of 77 and 7. In section 2, we
obtain the distributions of 7' and T, for the bivariate normal distribution and
in section 3 we prove that both 7' and 7, have IFR . These results are similar
to the ones in the independent case. The three dimensional and the general p
dimensional case are discussed in sections 4 and 5.

2. Distributions of 7 and 7T,

Consider a random variable (X}, X>) having a bivariate normal distribution,
BVN (:ul yM2, 01,02, p): having pdf

e s

Let 73 = min(X;,X>) and 7> = max(Xj, X2). Let us also denote by
n(x|u,a?) a normal density at x with mean x and variance 2.

2.1. Distribution of T}

Suppose (Xi, X2) is a bivariate random vector with pdf f(x,y). Then

Pt = [ [ e da

t t

Therefore, the pdf of 77 can be written as
J1,(t) = fr,(OP(X1 > t| Xo = 1) + fy, () P(X2 > t]| X1 = 1). (2.2)

This gives us a general formula for expressing the pdf of 7} in terms of the
survival functions of the conditionals. Thus in our case, the pdf of T is given

by
o)
/1 — p?
B t—my(t)
o)) s

Sfr, () = ”(fl|#170'12)

+ n(t|ﬂ27 G%)
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where

malt) = E|Xa = 1) = pu + 77 (1 = ),
and

(1) = Bl = 0) = iy #7721 — ).

Remark 1. Note that the pdf of 7 is not a mixture of two normal densities.

2.2. Distribution of T,

Proceeding as before, the pdf of 75 is given by
Ir,(0) = fx,(OP(Xy < t| X1 = 1) + fy,()P(X1 < t| X2 =1). (2.4)
This gives us a general formula for expressing the pdf of 7, in terms of the

survival functions of the conditionals. Thus in our case, the pdf of 75 is given
by

fﬂﬁd@wﬂ¢Q;fTZ> (2.5)
+MWW@@&%%%%> (2.6)

Remark 2. Kella (1986) has obtained the Laplace-Stieltjes transform (LST) of
the distribution of 75 in a very complicated way. From the LST, it is not very
easy to recover the pdf.

3. Failure rates of T; and 7,

Let X be a random variable with pdf f,(¢) and distribution function Fy(¢).
Then the failure rate of X is defined by

hio) = P58 = G nse(o),

where Sx (1) = 1 — Fx(1).

X is said to have increasing failure rate (IFR) if /(¢) is increasing. Likewise
we define decreasing failure rate (DFR) distributions. It is well known that if
X is normally distributed, then X has IFR distribution. We are interested in
determining the monotonicity of the failure rates of 77 and 7.

In most practical applications, the failure rate is quite complicated and so
the straight derivative method is very complex. In such cases, we work with
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the density function and use the following procedure. Let fy(#) be the pdf of
X. Define

1) = 10/ 1) = 5 10 1y (1)

If ' (¢) > 0 for all 7, then X has IFR distribution, and if #% () < 0 for all ¢,
then X has DFR distribution. For details, see Glaser (1980). We now determine
the monotonicity of the failure rate of 77.

In our case, even the expression for 7 (¢) is quite involved to yield an ana-
lytic solution of the problem. So we proceed as follows:

Let us denote by /() the failure rate of 7 with survival function St,(z).

d
Then A(t) = —— In S(¢, t), where S(t1, t;) is the survival function of (X7, X>).
Define dt

0
hi(t1, ) = —a InS(h,6), i=1,2.

Then h(ty,1;) and hy(t1, 1;) are called the hazard components of the haz-
ard gradient defined by Johnson and Kotz (1975). h(t1,1) represents the
hazard rate or the failure rate of the conditional distribution of X; given X, >
1. Likewise /iy (11, t;). Tt can be verified that

h(t) = h (1) + ha(t,1). (3.1)

Note that #,(¢,¢), i = 1,2 is proportional to the failure rate A;(¢,7) of
the conditional distribution of 7} given X| < X>(X> < X7). In the context of
competing risks /;(¢, ¢) describe the (instantaneous) rate of dying from cause i
when both the causes are acting simultaneously, see Gupta (1979) and Elandt-
Johnson and Johnson (1980).

Then the probability density functions f;"(¢) of the conditional distribu-
tions are given by

@) = %hi(t, nSt (1) i=1,2, (3.2)

where St, (1) is given by

u 2
Sy, (u) = exp{—L > hilx, x) dx} (3.3)
i=1

and 7; is a proper constant of proportionality. For more details and applica-
tions, see Gaynor et. al. (1993).

Because of (3.1) and the proportionality mentioned before, the monoto-
nicity of /() can be established if f,"(z) and f,"(¢) fulfill the criteria mentioned
before.

In our case it can be verified that

hi(t), ) = ¢(ll;—1ﬂl) [1 - (p{h ;f2 _p<tl ;1M) H . (3.4)

S(ll,lz)
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This gives
t(i—ﬁ> PR _Fa
. 1 oy O] ) <l—ﬂ1)
H=—<K1-0@ + —, 3.5
£ =+ T I | 19( (35)

where ¢(x) and @(x) are the pdf and the cumulative distribution function of a
standard normal, respectively. This gives

ni() =~ ()

d Z_,ul d
=——1 — S In{l — D(at + b 3.6
Gmg(S) - - aar+ o), (3:6)
where
L » Pl
a=2_9%_ and p=2_2
1—p2 1-p2
or

o ¢<t—,ul) 1= &(at + b)

a1

‘() = — 1 ¢/(Z;ﬂl> n $(at +b)

l‘_
= 2#1 + ar(at + b),
o

where r(.) is the failure rate of a standard normal. This gives

, 1
n () = ?—&- a*r'(at +b) > 0,
i

since the failure rate of a normally distributed random variable is increasing.
From this we conclude that /;(z, ¢) is increasing. Similarly /,(¢, ¢) is increasing
i.e. T1 has IFR.

Remark 3. The proof above shows that the values of uy, 1,057,053 are not
playing any important role in proving the IFR property. Hence, it could be
sufficient to take y; =y, = 0 and 67 = 63 = 1.

3.1. Failure Rate of T,

Note that 75 = max(X;, X>) = —min(—X;, —X3). Let T} = min(—X,, —X3).
Since (X1, X>) has a bivariate normal distribution, (—Xj, —X>) also has a
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bivariate normal distribution. This means that the failure rate of 77" is in-
creasing. So 57, >0 for all . Now T3 has the same distribution as —77".
Therefore

I, (6) = f,(—1).
() fr (=D

1 *

0= T e

This gives

07, (1) = 07, (=) > 0.

Hence T, has IFR.

4. Three dimensional case

As seen in the two dimensional case, it will be sufficient to consider X =
(X1, X2, X3) having a trivariate normal distribution with correlation matrix R
given by

L pin opi
R=1pn 1 px
Pz P 1
d . . .
Then A(t) = T In S(z,¢,¢), where S(#1,1,13) is the survival function of

(X17X2,X3). Define

0
//li(tl,tz,t3):751HS(11,12,[3), = 1,2,3.

1

Then
h(t) = h(t,t,0) + ha(t,t,0) + hs(2,1,1). (4.1)
Interpreting as before, /;(¢,¢,¢) is the hazard rate of the conditional dis-

tribution of X; given X, > ¢, X5 > ¢, evaluated at the point (¢,¢,¢). Likewise
hy(t,t,t) and hs(t, ¢, t). We shall now find expressions for these functions. Now

0
hi(t, b, t3) = ~an InS(t, 0, 13)

0
= —TS(ll,lz, l3)/S(l1,lz, 13).
ot
So

0
== S(t1, 02, 8) |~y 1y

on
S(t,t,1)

hl(tv Z, t) =
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This gives

) 0
St =— 5—t15(11»t2> 63)| 1 —tymty—e/ 71 -

Now
_ 0 InS(t1,t,83) = ;Jw JOO b dzy dz3 (4.2)
on 112 o0 IR ) s ’
where

1
L= exp{—m(cnl% + 02023 + 3373 + 20232023 + 20128122 + 20131123)}

and

cir C2 Ci3
C=lc mm o
€13 €3 €33

is the matrix of cofactors of R. Letting r(x,y) = (x — pyt1)2en+

(y — pist1)*ess + 2¢23(x — piot1)(y — pi3t1), it can be seen that (4.2) is of
the form

ei/2 “ (" ¥(z2,23)
—_— — : dzy d
(2n)3/2|R|1/2L L eXp{ 2[R| } 2

¢(t1) (“ [~ r(z2,23)
:7271R|1/2L L exps — 3R] dz, dzs. (4.3)

Note that the integrand in the above expression is proportional to the
conditional pdf of (X>, X3)" given X; = #; with mean (p;,t1, p;3t1)" and covari-
ance matrix given by 22121’11212, where 2,212,272 and X, are the parti-
tioning matrices of R shown below.

L pi pis Su o
P12 P23 [221 222}

P13 P 1

By the transformation

Zy — pohi
v /1 —

V= :DZ )
U3 zZ3 — P13l

\/ 1 —P123
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where D, = diag(\/l — b, \/1 — p}), (4.3) will reduce to

o0 o0 l p
"““)J ( )J (o) 22K P PR gy = g(1)) Sk, (). a3(11),  (44)
) Jax(n 2

where Sk, (ax(t1),as(t1)) is the survival function of a standard bivariate nor-
mal with correlation matrix K at the point (a2(f), a3(1)), where

_b _Plzll _B—pruh

\/1—P12 \/1_/7137

and
1 ki 1 ,
K = [k 1 } =Dr(2 — 2927 212)Ds.
12
Now
) ?
fl (t) = 57‘15(117[27 t3)|z1:12:t3:1/n1
= ¢(1)Sk,(ax(1), a3(1)) /1.
This gives
D) = = 5 () = — 5 p(0)Si, (ot o),

where b, = — P and b3 = —Pu
+ P12 1 +p13

d
ni(t) = I—JZ In Sk, (bat, b3t)
d © * 1 2 2 2
el = WA= N =2kny ] gy, d
dtJ, J / ¢ e
L bst Joat 2y [1 — ke,
Sk, (bat, bst)

byt —kabot byt — kyabst

bag(bt) |1— % +byg(bst) |1 — @ %
1_klZ 1_klZ
t+

Skz (bz[, b3[)

=t + bag1(bat, bat)+b3g2(bat, b3t), (4.5)
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where g;(bat,bs3t), i = 1,2 is the ith component of the hazard gradient of a
standard bivariate normal with correlation ky,. Thus

) d d
1(6) = 14+ by—g1(bat, bst) + b3 —g2(bat, b3t).
m (1) +2dtgl(z,3)+ 3dzg2(2’3)
. . . d
Proceeding as before, it can be verified that Egl(bzt,bﬂ) >0 and

%gz(bzt, b3t) > 0. Hence 7} (¢) > 0. This implies that %hl(t, t,t) > 0. Like-

.d d d
wise Ehz(l‘, t,t) >0 and %hg(t, t,t) > 0. Hence Eh(t) > 0.

5. General case

Suppose X = (X1, X, . .. ,Xp)' have a multivariate normal distribution with
correlation matrix R given as follows:

R =[pilppy=1 ifi=]

Then A(t) = —% InS(z,¢t,...,t), where S(t1, 2, ..., t,) is the survival func-
tion of (X1, X2,...,X,). As before

The density corresponding to /i (¢,¢,. .., ) is given by

. 0
fl ([) = _a_tlS(tlvt% R tp)|t1:12:»~tp:z/n1'

Proceeding as before

-

—aL;lS(zl,tz, ty) = H0)Sk (aa(t),as(t), - ap(t)),

where Sy, (a2(t1),a3(t1),...,a,(21)) is the survival function of a standard
(p — 1) dimensional normal variable with correlation matrix K,_; at the point

l[ - it
(ax(t1), as(tr), . ..ay(ty)), where () = ———2ull

. . . \/1-=p
lation matrix K,,_; is given below: Pii
-1
fo-oa( X ST S

p—Lp-1 p-11 11 1p-1

,i=2,3,...,p. The corre-

1

1 1
\/1_sz’\/lfpfs"n’\/l_p%p

D,_| = diag
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and

are the partitions of R defined by

[ 1 p Pz - - Py
P bop ooy
P13 P 1y, Z Z
R — _ | 1,p—1
p—1,1 p—1p—1
_plp p2p p3p s 1 i
Now
J7(1) = () Sk, (ax(1), a5(1), . .. ap-1 (1)) /m1
This gives
. . d
m (t) = dt lnfl (t) = % 1n[¢(l)Sk,}71 (b2ta b3ta s 7b[)—1l)]a
where
1 —py .
b= —la 1= 27 37 )
I \/ 1+ py; P
or

ni(t) =t— % In Sy, (bat,b3t,. .. b, 1t)

p
=1+ Zb[g[_l (bzl, bst, ... ,bp_ll),
=2

where g1 (bat, b3t, ..., b,_1t) is the first component of the hazard gradient of a
standard (p — 1) dimensional normal variable with correlation matrix K, ;.
Thus,

, P d
’flk (Z) =1+ ;biagi—] (bzla b3la LR 7bp—ll)-
Using the induction argument,

d .
Egi,l(bzl,b3l,...bp,11) > 0, 122,3,...,[).

Therefore, 7} (¢) > 0. Hence %h(z) > 0. This completes the proof.
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