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Abstract. In this paper we extend the concept of graphical models for multi-
variate data to multivariate time series. We define a partial correlation graph
for time series and use the partial spectral coherence between two components
given the remaining components to identify the edges of the graph. As an
example we consider multivariate autoregressive processes. The method is
applied to air pollution data.
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1 Introduction

Graphical interaction models have become an important tool for analyzing
multivariate data — for an introduction to the topic, the basic notations and an
overview of the different methods see the recent monographs by Cox and
Wermuth (1996), Edwards (1995), Lauritzen (1996) and Whittaker (1990). In
this paper we extend the concept of undirected conditional independence
graphs to multivariate time series. The edges of a conditional independence
graph reflect the conditional dependence structure between several variables
and give the data analyst an idea of the interaction structure of the observed
variables. In particular, it helps to discriminate between direct and indirect
correlations between the variables.

In this paper we discuss the concept of graphical models for multivariate
time series. The vertex set will consist of the components of the series while the
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edges will reflect the partial correlation structure of the components given the
others. Thus, for Gaussian time series our graph is a conditional independence
graph (a generalisation of a concentration graph/covariance selection model)
while for non-Gaussian time series it is termed partial correlation graph.

For the characterisation of the edges the partial spectral coherence is used
— a standard tool in the frequency domain analysis of time series (cf. Bril-
linger, 1981, Chapter 8.3 and the references therein). It is a measure for the
dependence between two time series after removing the linear time invariant
effects of a third (or more) series. The partial spectral coherence has been used
for time series by Gersch (1972) in electrophysiological signal analysis and for
point processes by Brillinger, Bryant and Segundo (1976) for the identification
of synaptic interactions of neurons. Graphical models for time series based on
the partial spectral coherence have also been defined by Brillinger (1996).

The paper is organized as follows. We discuss graphical models for time
series. In particular, we prove a property of the inverse of the spectral matrix
which helps to identify the graph. In Section 3 we prove a separation theorem
for time series graphs which is equivalent to the global Markov property of
the graph. In Section 4 we consider as a specific example multivariate autore-
gressive processes. Section 5 contains as an example the analysis of air pollu-
tion data.

2 Graphical models for time series

A graph G = (V, E) consists of a set of vertices V', say V' ={1,...,k} and a
set of edges E = {(a,b) € V x V}. We only consider undirected graphs, i.e.
we assume (a, b) € E whenever (b,a) € E.

Suppose X(t) = (X1(¢),..., Xx(1))', t € Z is a multivariate stationary time
series. As the vertices of our graph we want to have the components of the
series, i.e. we set V' = {1,...,k}. The basic idea is that an edge (a, b) is miss-
ing if the components X,(-) and Xj(-) are uncorrelated given the other com-
ponents of the series. To come to an exact definition we now make this
idea rigorous. Note, that in the following definitions we are dealing with the
stochastic properties of the process and not with empirical values based on
observations.

Let Y. (1) = (X;(¢),j # a,b). We remove the linear effects of Y, from
X,(t) by determining the optimal u, and the optimal 1 x (r — 2) filter {d,(u)}
such that

E(’Yu([) —Hq — i dy(t —u) Yub(“))

U=—0o0

is minimal. The remainder is denoted by ¢,(?), i.e.
ea() = e qq me (1) = Xa(t) — 4™ — Z doP (1 — u) Yap(u).

In the same way we define

ea(1) = epjga ) (1) = Xp(0) — g7 = di™ (1 — u) Yap ().

u
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We now set 2, = (X,(¢);t € Z) and ¥, = (Yu(2);¢t € Z) and define the
relation

%all—%bv ab = COV(Ea\{tl,b}“(t)v6b|{a,b}“(t + M)) =0 forallueZ (21)
leading to the definition of a partial correlation graph.

(2.1) Definition. Let X(¢) = (X;(?),...,Xk(¢))" be a multivariate stationary
time series and ¥ = {1, ..., k} the corresponding set of vertices. Let (a,b) ¢ E
if and only if Z, 1L Z|%,. Then G = (V,E) is called a partial correlation
graph for time series.

We might also use the notation concentration graph instead of partial
correlation graph — in particular since the graph is a generalisation of an
ordinary concentration graph. However, we chose the above name since it
better describes the nature of the graph (Furthermore, the inverse spectral
matrix which characterizes the edges of the graph — see Theorem 2.4 below —
has also never been termed spectral concentration matrix).

For Gaussian time series, ¢, and ¢, defined above are again Gaussian and
the above best linear predictor of X,(¢) given Y,(¢) is the best predictor.
Furthermore, %, L Z4|%,, if and only if &, and &, are independent. In this
situation the above graph is a conditional independence graph for time series.
Note, that the orthogonality relation L defined in (2.1) can be retained if
X,(#) and X, (¢) are vector time series.

An important characterisation of the edges of the graph can be obtained
from the partial spectral coherence. An estimate of the partial spectral coher-
ence will also be of importance in identifying the graph from an observed time
series. Let

cap(u) = cx,x, (u) = cov(X,(t + u), Xp(1))

be the covariance function of the process. If

> leas(w)] < oo
then the (cross-)spectrum between X, (¢) and X, () is defined by
1 & )
Ja(2) = frx, (4) = I Z cap () exp(—idu).

Let fyy(4) = (fab()”))a‘bzl,”.‘k and cyx(u) = (Cab(”))a,b:l ,,,,, - The Fourier
inversion formula gives

ey () = J_ Fen(3) explidu) .

A similar Fourier-representation for the process itself holds (cf. Brillinger,
1981, Theorem 4.6.2).
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If the components X, (¢ + u) and X,(¢) are uncorrelated at all lags u then
f.(2) =0 (and vice versa). Otherwise f,,(4) contains information on the
dependence structure, decomposed into different frequencies. arg f,;,(1) is a
measure for the time delay of the two signals, also decomposed into different
frequency components (cf. Brillinger, 1981 Chapter 6 and 7).

A measure of the dependence between X, (¢) and X, (¢) given Y,,(¢) is the
partial cross-spectrum of X,(¢) and X, (¢) given Y,;(¢)

fX“Xb\Y,,;, (4) = fe,,sb(;“)

where ¢,(f) and ¢,(r) are as above. Rescaling leads to the partial spectral
coherence

fXX|Y (4)
Ry, x, v, (4) = e : (2.2)
e v, v ) o v (]

The solution of the above optimization problem can be found together
with the form of the partial cross-spectrum in Brillinger (1981, Theorem
8.3.1). Brillinger proves that

fxaxb\y(/l) = fX,,X/,(i) - fxuY(/I)fyy()v)_lfyx,,(/l)- (2-3)

Since f; . (-) =0 if and only if cov(e,(?),e,(t +u)) = 0 for all ue Z we
obtain the following result.

(2.2) Proposition. Suppose G = (V,E) is a partial correlation graph for a
multivariate time series. Then

(a,b) ¢ E if and only if Ry, x,y,(-) = 0.

(2.3) Remark. The orthogonality relation 1L can be defined in the same way
for arbitrary vector time series 24 := (X,(t);a€ A,t € Z). In particular we
have

s L X% & covieyc(t),epc(t+u)) =0 forallueZ
g fXAXB|XC<') =0

g RXAXB\XC(') =0 (24)

for disjoint sets 4, B, C = V. Furthermore, (2.2) and (2.3) stay the same in the
vector case

We now prove that the partial spectral coherences can be obtained as the
negative values of the rescaled inverse of the spectral matrix. Let

g(4) = fxx(iy1
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and

gn(A)~? 0 g2 0

0 g ()12 0 g ()12

(2.4) Theorem. Suppose X (t) = (X,(1);a € V) is a multivariate time series with
spectral density matrix fyy (). If fyyx () has full rank, we have with the above
notations

da (/L) = 7RX(/X17\Y¢/I: (}v) fOV a 75 b
Furthermore,

Jaa(4) = l/fxl,xum(/l)

where Y (1) = (X;(t)|j #a). If X(t) = (Xi(2),..., Xk(2))" and the X,(t) are
vector processes then g4p(4) = 0 (as a matrix) if and only if fy x,y,,(%) = 0.

Proof. The proof is given in the appendix O

Theorem 2.4 has important consequences. First, with view to Propo-
sition 2.2 it means that the missing edges in the partial correlation graph can
uniquely be identified from zeroes in the rescaled inverse of the spectral
matrix (similar to concentration graphs/covariance selection models where
missing edges are characterized by zeroes of the concentration matrix (inverse
covariance matrix) — cf. Lauritzen, 1996, Chapter 5). This characterizes for
example the restrictions on the parameter space for parametric time series
models that have a certain graph (cp. (4.1) below for multivariate autore-
gressive models). This is for example important for likelihood ratio tests of
graphical models.

Second, Theorem 2.4 is the basis for a nonparametric identification of
the time series graph where an estimate of the spectral matrix is inverted
and rescaled (see Section 5). This is much less computerintensive than e.g. the
estimation of the residuals &4, »)() used in the definition of the graph which

would require the calculation of 2( 2) linear filters.

For certain applications it may be interesting to study the situation where
day(2) = 0 for certain frequency bands leading to the idea of a frequency
dependent graph. However, we do not want to pursue this any further.

(2.5) Remark. The inverse of the spectral matrix may also be used to explain
the effect of a confounder, i.e. an unobserved component X, of the time
series. Suppose X (f) = (X1(1),..., Xk(¢))" is the full time series including
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X.(1), g(A) := fxx(/qil, X(t) = (X;(1); j # ¢)" is the observed reduced series
and (1) := fy(4)" . Then we obtain with some matrix calculations (see also
the expressions for B~! in the appendix)

Gav(2) = Gab(2) = Gac(2)gec(2) " gen(2)

explaining the relations between edges in the full graph (g, (1) #0) and edges
in the reduced graph (§,»(4)#0). In particular, if there is no edge between «
and b (gu(4) = 0) but edges between « and ¢ and ¢ and b with g,.(1) # 0 and
gen(A) # 0 for the same A this causes an edge between ¢ and b in the reduced
graph (note that it can be shown that 0 < fy y () < oo implies 0 < g..(4) <
o).
We conclude this section with a remark on the possibilities of including
ordinary variables into the graph.

(2.6) Remark (Joint graphs for time series and ordinary variables). In the ‘mixed
case’ where one has time series and ordinary variables we have to consider
two different cases:

1. One observes the ordinary variables independently at each time point
where one observes the time series. In that case the ordinary variables may
be treated as a time series consisting of iid observations and having a con-
stant spectrum. This situation is only a special case of the situation con-
sidered above. If e.g. all variables are ordinary, then fy,(4) is constant
with 27 fyy (1) being the variance covariance matrix of the observations. In
some sense covariance selection models may therefore be regarded as a
special case of the time series graph above.

2. With each time series one only has one observation of the ordinary variable
(e.g one investigates the blood and an EEG-recording of a patient). In
this case the time series may be regarded as one (multivariate) variable
leading to a classical graphical model. Usually one would even summarize
the information contained in the time series into one (or several) variables
(e.g. for EEG data one might consider a variable which reflects the occur-
rence of an epileptic seizure).

3 Markov properties of time series graphs

In this chapter we prove the separation theorem for time series graphs. This is
equivalent to the global Markov property.

(3.1) Lemma. Suppose X (1) = (X,(¢);a € V') is a multivariate time series whose
spectral matrix fyy(A) has full rank (for all 1) and Z4 = (X, (t);a€ A,t € Z),
X, Xc and Xp are vector time series with disjoint sets A, B, C;D < V. Then we
have

(1) Zu L (Xp, Zc)|Xp implies Xy L X|%p,
(11) 3{,4 1 (%B7gc)|%p lfal’ld only lfg{A 1L %Bl(%‘C;%D) and 3{14 1L %Cl(%‘g, %D)
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Proof. (i) From (2.4) we get fy,(x, xc)x, = 0 which implies fy y,x, =0, ie.
Za L Zp| Zp.

(ii) Consider the matrix g(4) from Theorem 2.4. If 24 L Zp|(Zc, Zp) and
Xa L Ze|(Xp, Zp) then Theorem 2.4 implies g45(-) = 0 and g4c(-) = 0. If we
set Y4 = Xy, Yp = (Xp,Xc) and Y¢c = Xp then g(-) = g7 (-) and Theorem 2.4
implies Z4 L Z¢|(%p, Zp). The other direction follows in the same way.  []

(3.2) Remark. For ordinary graphical models assertion (ii) only holds under
additional assumptions, for example under the condition that the joint density
of the variables involved is positive everywhere (cf. Lauritzen, 1996, Proposi-
tion 3.1). For time series graphs also additional assumptions are needed for
assertion (ii) to hold. As an example consider the case where 4 = {a}, B =
{b},C ={c},D={d}, Xp(t) = X.(2), Xa(t) = X, (2) + &(¢) where &(¢) is an iid
sequence independent of the other components and X,(7) is also independent
of all other components. Then %4 L 2g|(Zc,Zp) and Z4 L %”C\(%”B, Zp) but
we do not have 24 L (%5, Zc)|%p. In this case the spectral matrix is singular
since the columns b and ¢ are identical.

We now establish the separation theorem for a time series graph (V, E).
For 4,B,S — V we say that S separates 4 and B if every path from an ele-
ment from A4 to an element from B contains at least one vertex from the sep-
arating set S (a path is a sequence of distinct vertices iy, . . ., iy, With (is,i41) €
Eforeach/=1,...,m—1).

(3.3) Theorem. Suppose X(t) is a multivariate time series with everywhere reg-
ular spectral matrix and corresponding partial correlation graph (V,E). Let
A, B,S < V where S separates A and B. Then we have

4 L X5 %s.

Proof. With the assertions of Lemma 3.1 (i) (ii) the result can be proved in
exactly the same way as Theorem 3.7 in Lauritzen (1996). ]

(3.4) Remark (Markov properties). The relation %, L Z5|Z ¢ constitutes a
range of different Markov properties (cf. Lauritzen, 1996, Section 3.2.1).

Without repeating all the definitions we remark that the separation theorem
implies that the global Markov property holds for a time series graph.

(3.5) Example. Let X1(1) = a1 X1(t — 1) + & (2),
Xj() = q;X;(t = 1) + 0;X; 1 (1 = ) + (1) (G =2,3,4)

with some time lags #; € Ny. The () are assumed to be iid .A°(0,0?). This
means that each process depends on its own past and its predecessor with
some time lag #;. Then all processes are correlated while the conditional cor-

relation graph is
O—60—0G WO
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This follows from the next section where the more general class of multi-
variate autoregressive processes is treated. The separation theorem gives for
example in this situation 2y L Z4|2>.

4 Vector autoregressive processes

The class of vector autoregressive processes provides an intuitive example for
time series graphs. Let

X(t) = Zp: D X(t— j)+Z(1)

where the @; are k x k matrices and Z(¢) are iid ./"(0,2). Let
D(z)=1—-Diz—-- —D,z*

be the characteristic polynomial of the process. If det @(z) # 0 for all ze C
with |z| < 1 then the above recursion has a stationary solution (cf. Brockwell
and Davis, 1987, Theorem 11.3.1).

In the above model the components @;,, may intuitively be regarded as
the ‘influence’ from X, (¢ — j) on X,(¢), that is we have no influence from
component b on a if @,(-) = 0.

The spectral density matrix of X(#) is (cf. Brockwell and Davis, 1987,
Example 11.8.1)

1

Syx(2) = o o ez (),

i.e. we have
9(2) = fxx (1) = 2nd(e™) =7 (7).

Suppose now for simplicity ~ = ¢2I;. Then we have
) 2 & iA —il
Jar(1) = ;Z Doy (e Dy (e (4.1)
c=1

If @ and b do not ‘influence’ jointly another component ¢ then we have
gap(-) = 0 if and only if @,(-) = 0 and Py, () = 0, i.e. with view to Theorem
2.4 we obtain the result we would expect. In particular this proves the asser-
tion from Example 3.5.

The above restriction seems to be strange from a first view. The following
example demonstrates that this is a natural restriction: Suppose X, X; and ¢
are independent and X3 = X + X> +&. Then X; and X, are no longer inde-
pendent conditional on X3 and the conditional correlation graph will show a
connection between X and X; contrary to the intuition. In Dahlhaus, Eichler
and Sandkiihler (1997) we have studied this effect more detailed in the context
of point processes.
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The situation is very similar to ordinary graphical models where the
problem of equivalence of directed and undirected graphs arises (cf. Whit-
taker, 1990, Chapter 3.5). Both graphs have the same independence inter-
pretations if the directed graph satisfies the so called Wermuth condition which
forbids that non-connected variables have ‘influence’ on the same variable.
For an arbitrary directed graph the corresponding (undirected) conditional
independence graph is a subgraph of the so called moral graph where ‘parents
are married’ (cf. Whittaker, 1990, Chapter 3.9; Wermuth, 1980). Relation
(4.1) implies that the same holds in the above situation if an influence from b
to a (Dgp(-) #0) is represented by a directed edge (b, a) in a directed graph.

We hesnate to set down the definitions of directed graphs, moral graphs
etc. indicated above in a rigorous way for time series. The reason is that we
feel that in a careful (and meaningful) definition of ‘direction’ of time series
graphs time should play a major role (e.g. in the model X>(¢) = b X (r — 1) +
&(¢) the direction should be from X; to X, due to the time lag). Such a defini-
tion therefore requires more and deeper considerations. In particular it will
not be totally analogous to the definition of ordinary directed graphs.

5 Identification of the time series graph for air pollution data

Given a k-dimensional multivariate time series of length n the problem arises
how to identify the corresponding graph. By Proposition 2.2 the presence of
an edge is equivalent to a non-vanishing partial spectral coherence. Therefore,
we build the graph by testing whether the different spectral coherences
disappear.

For an estimate of the partial spectral coherence we use the character-
isation from Theorem 2.4:

We nonparametrically estimate the spectral matrix and invert and rescale
this estimate. As an estimator for f,,(1) we take

fuld) =g o w (G0 ()

where W is a kernel with [* W () do. = 1 and
T 2(r
D) ={om hi}{ (L) (X0 - X, —zx}
8 { SUERII POTERICAURR ALEERD
{Zh( ) - X) exp(l/ll)}

is the tapered periodogram.

The method was used to analyze a 5-dimensional time series of length 4386
of air pollutants recorded from January 1991 to December 1992 in Heidelberg
(6 equidistant recordings a day). The recorded variables were CO and NO
(mainly emitted from cars, house-heating and industry), NO, and O; (created
in different reactions in the atmosphere) and the global radiation intensity gri
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Fig. 5.1. Average of the daily measurements of CO, NO, NO,, O3 and gri over 61 days in
summer.

which plays a major role in these reactions, in particular in the generations of
ozone.

The original data were recorded with a distance of 30 minutes. Figure 5.1
shows the daily course of the five variables averaged over 61 consecutive days
in summer. CO and NO increase early in the morning due to traffic and, as a
consequence, also NO, increases. O3 increases later due to the higher level of
NO; and the increase of the global radiation. Figure 5.1 indicates that all
variables are correlated at different lags.

Beside the original series we will also analyze the residual series after sub-
tracting the (local) average course as shown in Figure 5.1 (trend corrected
data). The original series contained a few missing values (less than 2%)
which were completed by interpolation of the residual series with splines. For
the final investigation each 8th value of the original series was taken (i.e. 6
values per day).

Figure 5.2 shows above the diagonal the squared empirical coherences
|Rx,x,(4)|* of the original series with

D -f;l[)(}“)
RXuXh i .
( ) [faa( fbb( )] 'z

These plots show strong dependencies between all of the variables. The peak at
frequency 7/3 and its harmonic at (27)/3 corresponds to the periodic behav-
iour of length 6 (one day) Below the diagonal we have plotted the partial
coherences | Ry, Xhmh(iﬂ as defined in Section 2. The dashed line in the plots
is a 95%-test bound (as described below) for the supremum of the estimates
under the hypothesis Ry, y, y,, (1) = 0.
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-

Fig. 5.3. Estimated partial correlation graph for air pollution data.

The test indicates that some of the processes are uncorrelated given the
remaining processes. Although the test bound was slightly exceeded at a few
frequencies we found it reasonable to draw the time series graph as in Figure
5.3 from the partial spectral coherences.

The graph correctly reflects the creation of O3 from NO, and the fact
that the global radiation intensity plays a major role in the process of Os-
generation. Furthermore, CO and NO are correlated (both are emitted from
cars etc.).

The meaning of the other edges (and of some of the missing edges) is less
obvious. Chemical reactions between air pollutants are very complex and still
not completely understood (cf. the monograph on this topic by Seinfeld,
1986). In particular, one has to be aware of the fact that NO, and O3 are not
only increased but also decreased by several chemical reactions and that sev-
eral other chemicals play an important role.

Part of these reactions can be explained by a photochemical theory (cf.
Seinfeld, 1986, Section 4.2). This theory is confirmed by the above graph:
the edge between gri and NO, represents the photolysis of NO, and the edge
between CO and NO,; supports that most of NO; is generated via a radical
reaction where CO is involved. A bit surprising is the missing edge between
NO and NO,. This missing edge and the edge between CO and NO indicate
that mainly the concentration of CO (and not of NO) is responsible for the
generation of NO,. This means in particular that NO, is generated via a rad-
ical reaction (where CO plays a major role) and not in a direct reaction
(where CO is not involved). It is remarkable that a direct correlation analysis
indicates the opposite since the spectral coherence between NO and NO; in
Figure 5.2 is highly significant.

One may raise the question to what extent the above findings are due to
the daily up and down of the five variables. For this reason we have repeated
the analysis with the residual series (obtained as described above). The plots in
Figure 5.4 show that the analysis of the residual series leads exactly to the
same graph.

Figure 5.5 shows above the diagonal the cross correlations and below the
diagonal the partial cross correlations of the trend corrected series (i.e. esti-
mates of the correlations used in (2.1)). These partial cross correlations have
been calculated by the inverse Fourier transform of estimates of the partial
cross spectra, which in turn have been calculated by using Theorem 2.4. The
partial correlations lead to the same graph as before. Remarkable is the neg-
ative correlation between NO, and O3 and the positive correlation between
O; and gri with negative lag (a high global radiation leads with some time lag
to an increase of ozone which at the same time reduces the amount of NO).
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The dashed line in Figures 5.3 and 5.4 is a 95%-test bound of an approxi-
mate distribution of

sup Ry, x, v, (D)) (5.1)

derived under the hypothesis that Ry, y,y,, (-) = 0. Let Hy = fol h(x)* dx and

H.
cr = %Fij W (e)*do.. Tt can be concluded that the real and the imaginary
3
part of

—-1/2/H ”
72 (Ry, v, (2) = Rz v (4))

are asymptotically independent and standard normally distributed lead-
ing under the hypothesis Ry,x,y,()=0 to a x3 distribution for
c}l|R&Xbmh(i)|2 (cf. Dahlhaus et al., 1997, Section 2 and Brillinger, 1981,
Section 8.8). We then have taken the supremum of m(n) independent y3 dis-
tributions where m(n) is the maximum number of frequencies A such that the
smoothing intervals of the spectral estimates do not overlap, i.e. the dashed

line is CTX; (1)) (for the air pollution data m(n) was 31).

It is very difficult to determine the exact asymptotic distribution of (5.1) —
in particular since the values of Ry, y, y,, (4) are dependent for neighbouring /.

Furthermore, the problem of multiple testing has to be addressed. An
alternative would be to determine the ““best approximating graph” by using a
model selection criterion which penalizes the complexity of the graph in an
adequate way.

We also mention that the partial correlation graph only reflects linear
dependencies. Nevertheless, the above method may be useful for exploration
of the dependence structure even if nonlinear dependencies are present (an
example for neuron nets is given in Dahlhaus et al., 1997).

Appendix
Proof of Theorem 3.2. Suppose B is a regular matrix of the form
B, B
B < 11 12)
By By

Direct verification gives

o E —E'F
~ \-GE™' B3] +GE'F

where E = By; — B2B5, By, F = Bp»B5) and G = By, By;. To prove the first
part we can assume without loss of generality « = 1 and b = 2. We set

ARa)

B = fyy(4) with By = (le(/l) S (2)
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E then is a 2 x 2 matrix whose rescaled inverse is

1 —eny/(enen)'?

—621/(611622)1/2 1

which proves the first part. The second part follows by setting B = fyy (1) and
Bi1 = f11(4). For processes with vector components the assertion follows
similarly.
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