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Abstract. In this paper, a compromised imputation procedure has been
suggested. The estimator of mean obtained from compromised imputation
remains better than the estimators obtained from ratio method of imputation
and mean method of imputation. An idea to form “Warm Deck Method” of
imputation has also been suggested.

Key words: Estimation of mean, missing data, imputation, ratio estimator,
bias, mean squared error, design based approach.

1. Introduction

Missing data is a common problem in sample surveys and imputation is fre-
quently used to substitute values for missing data. Statisticians have recognised
for some time that failure to account for the stochastic nature of incomplete-
ness in the form of missingness of data can spoil inference. A natural question
arises what one needs to assume to justify ignoring the incomplete mechanism.
Rubin (1976) addressed three concepts: missing at random (MAR), observed
at random (OAR) and parameter distribution (PD). Rubin defined “The
data are MAR if the probability of the observed missingness pattern, given
the observed and unobserved data, does not depend on the value of the un-
observed data”. Heitzan and Basu (1996) have distinguished the meaning of
missing at random (MAR) and missing completely at random (MCAR) in a
very nice way. Following them, we implicitly assume MCAR in the present

_ N
investigation. Let ¥ = N~!3"y, be the mean of the finite population

i=1
Q={1,2,...,i,...,N}. A simple random sample without replacement
(SRSWOR), s, of size n is drawn from Q to estimate Y. Let r be the number
of responding units out of sampled » units. Let the set of responding units be
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denoted by R and that of non-responding units be denoted by R¢. For every
unit 7 € R, the value y; is observed. However for the units i € R¢, the y; values
are missing and imputed values are derived. We assume that imputation is
carried out with the aid of a quantitative auxiliary variable, x, such that x;, the
value of x for unit i, is known and positive for every i € 5. In other words, the
data x; = {x; : i € s} are known. Following the notations of Lee et al. (1994),
in the case of single value imputation, if the i" unit requires imputation, the
value bx; is imputed, where b = >, _p ¥,/ > ;. g Xi- The data after imputation
becomes

y; ifieR
[ 11
Jei {bm if ie R (LD

This method of imputation is called the ratio method of imputation. Under
this method of imputation, the point estimator of population mean given by,

_ 1
yﬁ;Zy.i (1.2)
ies
becomes,
— — xl’l
YRaT = yr; (1.3)

¥

where %, =n~' 3, xi, & =17 3, gxiand 5=t Y gy
Under mean method of imputation, the data after imputation take the
form,

y; ifieR
L= 1.4
Yo {ﬂ if i e R (14)

and the point estimator (1.2) becomes
-1 -
ym:;zyz‘:yr (15)
ieR

Here we have considered the design based approach to compare the proposed
strategy with the existing strategies. The next section has been devoted to
define few notations and expectations which are useful to find the conditional
bias and variance of the estimators at (1.3), (1.5) and the estimator resultant
from the proposed compromised imputation procedure in Section 3.

2. Theory

Let us define,

=201, =" _1 and p="2_1
X X
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Using the concept of two phase sampling following Rao and Sitter (1995) and
the mechanism of MCAR, for given r and n, we have

E(e?) = G%) Cy, E@©)= G%) C?, E(ed) = G%)pcycx

B = (-5 ) €3 Bon = -y )¢t Een = (55 )roc

where C} = S}/Y?, C; = S}/X?, p=Sy/(S:S,) and S}, S} and S\, have
their usual meanings. Thus we have the following theorems

Theorem 2.1: The conditional bias of the estimator Vg 41 is given by

1

Baar) ~ (1 -3 ) F(C = pe,C) 2

Proof: The estimator ¥, at (1.3) in terms of ¢, 6 and # can be written as
Frar ® Y[l +e+n—040>+ey— &) —on+ O(e?)] (2.2)

Taking expected value on both sides of (2.2) and its deviation from actual
mean, we get (2.1). Hence the theorem.

Theorem 2.2: The mean squared error of the estimator, Y4, is given by

_ 11 11
MSE(Fpyr) & (n - N) s>+ <r — n) [S? + RIS} — 2R, Sy,] (2.3)

where R = Y/ X.
Proof: We have, to the first order of approximation,
MSE (Frar) = E[Frar — Y| = Y?Ele+ 1 - )’
= Y2E[e® + n? + 07 + 2en — 2e0 — 20]

On putting the expected values, we get (2.3). Hence the theorem.
The variance of the estimator (1.5) obtained by the mean method of
imputation is given by

V() = (% - %) A (2.4)
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On comparing (2.3) with (2.4), one can easily see that the ratio method of
imputation is better than mean method of imputation if

28,
52

X

R <

2 (say) (2.5)

where = S,,/S2. The condition (2.5) holds in most of the practical situa-
tions and the ratio method of imputation remains better than the mean
method of imputation.

In the next section, we are suggesting a compromised imputation proce-
dure. The estimator obtained from the proposed compromised imputation
method has shown to remain better than the estimator obtained from the ratio
method of imputation and hence the mean method of imputation.

3. Compromised imputation

In the case of compromised imputation procedure, the data take the form,
_ Omy,/r-i-(l—oc)l;x, ifieR (3 1)
- wby if i e R¢ :

where o is a suitably chosen constant, such that the variance of the resultant
estimator is minimum. Here, we are also using information from imputed
values for the responding units in addition to non-responding units.

Thus we have the following theorem:

Theorem 3.1: The point estimator (1.2) of population mean Y under compro-
mised method of imputation becomes

_ _ _ Xn
Vcomp = 2P, + (1 = O‘)yr)_c— (3.2)

r

Proof: We have

Ycomp = %Z Yei = % [Z Yei T Z )’.i] (3.3)

ies ieR ieR¢

and using (3.1), we get (3.2). Hence the theorem.

The estimator at (3.2) is an analogue of the well known estimator of
population mean proposed by Chakrabarty (1968), Vos (1980) and Adhavryu
and Gupta (1983) as

- i X
Vevag = 0¥, + (1 =)y, — (3.4)

n

Now we have the following theorems:
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Theorem 3.2: The conditional bias of the proposed estimator Yoy p at (3.2) is
given by

B(Feour) ~ (1 - a) (l - 1) F(C2— pC,Cy) (3.5)

r n

Proof: The estimator yp,p in terms of ¢, 6 and # can be written as
Feoup ~ oY (1+&) + (1—a) Y(1+e+n—0+en—ed—on+5°+0(e?))  (3.6)

Taking expected value on both sides of (3.6) and its deviation from actual
mean, we get (3.5). Hence the theorem.

Theorem 3.3: The minimum mean squared error of the proposed estimator
Vcomp 1s given by

. - _ 11 G\ o
Min. MSE(ycopp) ® MSE(Yrar) — (; - Z) <1 - P%) r:c; (3.7)

for the optimum value of o given by

C

o= l—pr (3.8)
X

Proof: See Appendix 1.

4. Practicability

The main difficulty in using the proposed compromised imputation procedure
is the choice of «. It is important to note that the optimum value of « depends

C L
only upon the well known parameter K = pr. The value of K is quite stable

X
in the repeated surveys as shown by Reddy (1978). Thus if the value of K is
known then the proposed method can be easily implemented in actual surveys.
Some time the value of K is not known. In these situations, we are suggesting
two estimators of o given by
G =1-— )_C’Sj; (4.1)
yer

where s3, = (r— 1) (0 5)(x — %) and s2=(r— 1) Y (x - %)°,
and

XSy,
4.2
RE: 42)
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where s = (n — 1)"' S (x; — %,)*. Although the choice between &, and &, is

i=1

not very important for the infinite populations, because the asymptotic mean
squared error of the resultant estimators of mean will remain same (Sampath,
1989). Also refer to Appendix-2. It is interesting to observe through simula-
tion that the estimator &, remains slightly better than &; for the case of finite
populations. Its reason may be that 4, makes use of full auxiliary information
X, and sf, whereas 4; makes use of partial auxiliary information X, and sjz
statistics. In general, the proposed compromised technique remains better that
ratio or mean methods of imputation.

5. Recommendations

It is interesting to note that if a strong imputation variable, x;, is available, so
that y;, = bx; very nearly holds for all i. Then to very close approximation,
b = b and bx; = y,, that is, the imputed value is near perfect. Then the impu-
tation rule (3.1) reduces to

(5.1)

o

_{y1[1+oc(n/r—1)] ifieR
a (1 =)y if ie R¢

Under such situations, the values of p,,— > 1 and C) ~ C, then the optimum
value of o and hence its estimators &;,i = 1,2 will tend to zero. In other words,
then the imputed values, using compromised technique, remain close to the
true values in R¢. Also the actual values y,’s does not have any impact of
imputation in R. It is remarkable that a bad guess of o may lead to bad results
in the compromised imputation. Since the compromised imputation provides
better estimator of population mean, therefore, it is recommended to use in
future.

6. Few suggestions

This type of compromisation can also be done between other type of impu-
tation methods. For example a compromisation between Hot deck and Cold
deck methods of imputation may lead to “Warm Deck” method of imputa-
tion, defined as

Vwp = Wep + (1 =) ypp (6.1)

For details of the Hot deck and Cold deck methods of imputation, one can
refer to Rubin (1978). The correlation between values obtained via cold deck
and hot deck methods is expected to be high and hence the resultant estimator
(6.1) named as “Warm Deck’ method of imputation is expected to be efficient
for optimum value of «, given by

V(j}HD) B COU(I’HD??CD) (62)
V(Fup) + V(¥ep) — 2 Cov(Fup, Yep)

ooy =
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A consistent estimator of o at (6.2) can easily be obtained by replacing
variance — covariance terms by their sample analogues.

A compromised method of imputation obtained by pooling Mean method
and Nearest Neighbourhood (NN) method of imputation, given by

Fun = o, + (1 = o) ¥y (6.3)

can be named as “Mean-cum-NN”’ method of imputation. In the same
fashion, a linear combination of any of two or more imputations procedures
can be used to make a compromised imputation procedure. To study the
properties of the resultant imputation procedures is interesting, but algebra is
tedious though straightforward.

7. Empirical study

For the purpose of empirical study, we considered a finite population of
N = 20 units given by Horvitz and Thompson (1952). First, we selected all

20
possible samples of n = 7 units, which results in M = < 7 > = 77520 sam-

ples. First we dropped two units randomly from each sample corresponding to
the study variable y. Then the dropped units were imputed with four methods:

1. Mean method, ¥, (say)
2. Ratio method, y, (say)
3. Proposed method with o = 4, say ¥,
4. Proposed method with o = &, say 7,

The relative efficiency,

RE="1——— %100, j=12,3
Y3, - TP

of the ratio and proposed method with respect to mean method of imputation
is shown in Table 1. Same process was repeated with other finite populations
as shown in Table 1.

8. Remarks

Following remarks are the consequences of the comments given by one of the
referees.

Remark 8.1: If the data satisfy only the MAR, but not the MCAR assump-
tion, i.e. if missingness in y; may depend on x;, imputation based on ratio
method is still valid. Especially, it is now a method to remove a potential bias
of y,. Hence one may expect, that the difference between mean imputation
and imputation based on ratios may become even larger.
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Table 1. Relative efficiency of the ratio and proposed methods of imputation with respect to mean
method of imputation

Source Description of the population Relative efficiency
N »n Vs
Horvitz and Thompson y: no. of hh’s on i block 103.25 | 107.82 | 108.14
(1952) N =20 x: eye estimate of no. of hh’s on
i™ block
Gunst and Mason (1980). | y: Height of black female 11436 | 119.45 | 121.45
p- 358 N =33 applicants with the police

department (cm)
x: Foot length (cm)

Wang and Chow (1994). »: Volume 109.45 | 114.75 | 116.45
p- 349 N =31 x: Height
y: Volume 110.76 | 11498 | 115.98
-do- x: Diameter

Remark 8.2: Here basic idea is to consider a weighted average of the (un-
biased) complete case estimate and a more sophisticated (but slightly biased)
estimate, which infact leads to the following result. Let 0; be an unbiased
estimate of @ with variance v;. Let 6, be a biased estimate of § with variance
v2 < vi. Then there exists a w € [0, 1] such that

MSEWwO, + (1 —w)0y] < vy = MSE(6)) (8.1)

Many shrinkage methods follow this idea, which has been especially consid-
ered for prediction problems by Houwelingen and Cessie (1990) and Copas
(1983), but also the Stein-estimator is close to this idea.

Remark 8.3: From (3.7), the difference between the MSE’s of the ratio and
proposed method of imputation is given by

D= MSE()_;RAT) — MlnMSE()_/COMP)

1 1 C\
_ (;—;) (1 _pg) y2c? (8.2)

which is always a positive quantity.
In the model m : y; = fx; + e; such that E,,(e;|x;) = 0 and E,, (ejej | x;,x;) =

ox?, i=7j . N .
{0 ! _;éj_ if f=Y/X then the difference D reduces to zero because
) L7J
p E} = 1 under such situations. The method of assuming f = Y /X is not its
X
best choice even for ratio method of imputation.
On the other hand, if f =3, X:Yi/ > ;.0 X7, which is more realistic
measure of regression coefficient because it minimises Y, o e? under the
constraint that intercept is zero. Under such situations, the difference D is
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always positive. It is also to be noted that the proposed method of imputation
attains the minimum variance of regression type estimator and hence valid
under the assumptions of the general linear model defined as m; : y; = f, +
Bix; + & with intercept f,.
Appendix-1: To prove Theorem 3.1, we have

Feour ® Y+ Ye+ (1 =) Y (1 = 6) + O(¢%)
where O(e?) indicates terms of higher orders of ¢,d,7 etc. Thus we have

— — 512
MSE(ycomr) = E[Vcomr — Y]

~ E[Ye+ (1 —a)Y(n—0)]

n (l_l> Y2[(1 —2)>C? = 2(1 — a)pC, Cy] (A1)

On differentiating (A.1) with respect to (1 — &) and equating to zero, we get

C,
—1-p 2 A2
o Pe. (A2)
On substituting (A.2) in (A.1), we get the proof of Theorem 3.3.
*2
Appendix-2: Following Singh and Joarder (1998), define v, = ;Lz -1, ¢, =
2 * X

S.
% — Land y, = < — 1 such that E(;) = 0, i =0,1,2 and E(y) = O(r").
¥ xy

Now, using & as an estimate of a, the estimator Ycomp can be expressed as
Feoup X Y + Ye+a¥(n —0) + O(e?) (A.3)

One can easily see that up to the first order of approximation, replacement of
o by 4 in the estimator J,,p Will also yield the same expression (A.3).
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