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Abstract. This paper summarizes some results on random fuzzy variables with
existing expectation and variance, called random fuzzy variables of second
order. Using the Frechét-principle and — via support functions — the embed-
ding of convex fuzzy sets into a Banach space of functions it especially pres-
ents a unified view on expectation and variance of random fuzzy variables.
These notions are applied in developing linear statistical inference with fuzzy
data. Detailed investigations are presented concerning best linear unbiased
estimation in linear regression models with fuzzy observations.
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1 Introduction and overview

Consider the clouding y for given atmospheric pressure x. Our experience
is that y cannot be predicted exactly for given x. Therefore y is modelled by
a suitable random variable Y. Assume further that the observation scheme
is of such kind that the clouding Y is recorded by linguistic (and more or
less vague) expressions like “Cloudless”, “Clear”, “Fair”, “Cloudy” and
“Overcast”. Thus, we have to consider Y as a random variable with vague
outcomes. This is an example for a so-called random fuzzy variable and we
may ask e.g. for a suitable regression model for the relation between Y and x
(see section 3.2).

Also in other real situations uncertainty of data comes from two sources:
from randomness and from fuzziness. Randomness models the stochastic
variability of all possible outcomes of an experiment and fuzziness describes
the vagueness of the given or just realized outcome. Randomness is more an
instrument of a normative analysis which thinks about the question ‘“What
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will happen in future?”’; fuzziness is more an instrument of a descriptive anal-
ysis reflecting questions like “What has happened?” or “What is meant by the
data?”.

Vague outcomes of an experiment can be described by fuzzy sets. Follow-
ing Zadeh (1965), a fuzzy set 4 on R is identified by its membership function
my | R? —[0,1] where m4(x) is interpreted as the degree of acceptance that
x € R? is a member of A. Obviously, for sets 4 = R? in the usual sense, called
crisp sets in fuzzy set theory, the membership function m,4 coincides with the
indicator function of A.

The crisp set

def
4, =

{xeR?:my(x)=a}, 0<a<l (1)
is called the a-cut of 4. For o =0 define: A4, & closure{x € R? : m4(x)
> 0}. A fuzzy set A is called convex and compact if all a-cuts A4, have this
property. A4 is called normal if 4, = {xe RY : my(x) =1} # &.

Basic to fuzzy set theory is Zadeh’s extension principle

Myiay,. 4)(2) = sup inf{my (x1), ... ma (x)} (2)
X1 geeey Xict
g(X1yeey Xp)=2
which provides a general method to extend classical functions g(xj,...,x;) on
R¥ to allow for fuzzy input 4, ..., A. Given the fuzzy input, (2) presents the

membership function of the fuzzy image by g.

In modelling realistic situations, fuzziness is often tied to randomness since
possible random outcomes have to be described by fuzzy sets, especially in the
case of linguistically expressed outcomes. Consider the introductory example.
“Classical” statisticians probably consider data like “Cloudless”, “Clear”,
“Flair”, “Cloudy” and “Overcast” as ordinal data and “defuzzify”’ them in a
formal way by numbers, for example by 0, 1, 2, 3, 4. Now the basis for sta-
tistical inference is an arbitrary classical discrete random variable.

The advantage of considering random fuzzy variables is the following: At
the level of experimentation it is often possible to use the experience of the
experimenter for a justified modelling of the fuzziness of the outcomes. Sta-
tistical inference with random fuzzy variables transfers the fuzziness, e.g. into
parameter estimators. Now, at this level, the level of decision, it may be nec-
essary to defuzzify the vague parameter estimate, but it can be done in a more
responsible way as on the level of experimentation because consequences of
wrong decisions can be taken into account. Hence, the vagueness of experi-
mental outcomes is carried with a random fuzzy variable and the associated
statistical procedures up to the level of decision. Roughly speaking, the “phi-
losophy” of random fuzzy variables is: Do not defuzzify at the level of
experimentation, take care of a fair transfer of fuzziness and defuzzify — if
necessary — at the level of decision.

There are several concepts of a random fuzzy variable Y.

Following Kwakernaak (1978), a random fuzzy variable Y is considered as
a vague perception of a crisp but unobservable random variable X. A typical
example for Kwakernaak’s approach is the following (see Kruse/Meyer
(1987)): The currentage X of a randomly chosen mayfly is an ordinary
random variable on the positive real line. But, since mayflies have no certifi-
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cate of birth, we only can perceive a random variable Y through a set of
“windows” like “Young”, “Middle age” and “Old”, i.e. we perceive fuzzy
sets as observation results since the original X is not observable.

A conceptional different approach is given by the so called probabilistic
fuzzy sets introduced by Hirota (1981). There Y is considered, first of all, as
a fuzzy set with random membership values, i.e. my can be considered as a
random process on IR? with values in [0,1] (which describes, for example, the
grey values of X-ray photographs).

In this paper, however, we mainly will consider (randomly chosen) real
vague objects. Consider e.g. the notion “nose’’. There is no natural crisp
boundary between “nose’ and “cheek’ or “nose” and “forehead’ and there is
no possibility to reduce this vagueness by more precise observations. Consider
a population of people. Then the “nose” of a randomly chosen individual is a
random fuzzy variable Y but without a crisp original X behind them. The
most successful approach to random fuzzy variables of this kind was pre-
sented by Puri/Ralescu (1986) where Y is considered as a fuzzification of a
random set (therefore, sometimes Y is called random fuzzy set, too). An exact
definition is the following:

Definition 1. Denote by %’Cd the set of all normal compact convex fuzzy subsets
of RY. Let (2,8, P) be a probability space. Then, Y |Q — F¢ is called a
random fuzzy variable (rfv) on R? if for any o € [0, 1] the a-cut Y, is a convex
compact random set (e.g. in the sense of Matheron (1975) ).

One essential advantage of the Puri/Ralescu-approach is the embedding of
the concept of a rfv into the well-developped concept of random sets. So,
complicate measurability considerations which are necessary e.g. for Kwa-
kernaak’s approach, can be avoided. Let us remind the reader that a compact
random set M is a random variable for which for any compact set K all “hit-
events” M N K # (& and all “miss-events” M n K = (§ are measurable.
More exactly: M can be characterized by the so called capacity functional
¢(K) & P(M nK # ). For an overview on random sets Stoyan (1998) is
recommended.

The concept of rfv’s in the sense of Def. 1 has been studied successfully,
e.g. for limit theorems (starting with Klement/Puri/Ralescu (1986)) and has
been applied to asymptotical statistics with vague data by Kruse/Meyer
(1987).

Our attention is focussed on so-called rfv’s of second order, i.e. on rfv’s
with existing expectation and variance. This paper summarizes some earlier
results on this topic from a unified point of view and is organized as follows:

In section 2, a well justified approach for defining expectation and variance
of rfv’s is presented. As a guide, we use the so called Frechét-principle (see
subsection 2.1). Using their support functions convex (fuzzy) sets can be em-
bedded isomorphically in a Banach space of functions (see Radstrom (1952)).
Therefore a convex rfv can be identified with a special Banach-space-valued
random variable. From this point of view concepts for expectation and (co)-
variance of rfv’s can be deduced from the corresponding well-defined notions
for Banach-space-valued random variables. Some special properties of expec-
tation and variance of rfv’s as well as estimators of them are presented in
subsection 2.5.
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In section 3 we refer to some results on rfv’s of second order, e.g. to strong
laws of large numbers and to asymptotical tests of hypotheses on the expec-
tation. Some more detailed, we discuss ideas to develop some kind of linear
statistical inference for rfv’s of second order, especially for linear regression
with random fuzzy observations. Unfortunately, a straightforward general-
ization of known classical results on this topic is not possible since gf’cd isnota
linear space w.r.t. (later defined) addition and scalar multiplication of fuzzy
sets.

2 Expectation and variance of random fuzzy variables
2.1 The Frechét-principle

For defining expectation and variance of a rfv Y the Frechét-principle is used
as a methodological principle. Frechét (1948) has defined the expectation
E@Z for a random variable Z with values in a metric space (M, d) as a (not
necessary unique) solution of the problem

Ed(Z,EYZ)* = inf Ed(Z, a)’. (3)

Note that ]Ed(Z a) is the usual expectatlon of the real-valued variable
d(Z,a)*. The variance of Z, denoted by Var®Z, is then defined by

Var)Z = Ed(Z,EY 7). (4)

This is a generalization of the known fact that for a real-valued random
variable X the expectation IEX minimizes IE|X — a\ and Var X equals
E|X — EX|*.

In the following, IEZ satisfying (3) is called Frechét-expectation w.r.t. d.
For rfv Y, the Frechét approach opens the way for defining several types of
expectations and (via (4)) their associated variances, each induced by a given
metric between fuzzy sets. Therefore, first of all, we have to discuss on suitable
distances between fuzzy sets.

2.2 Distances between fuzzy sets

It seems to be natural to start with the Hausdorff-metric between crisp sets
A, B = R?, given by

dy(A4,B) = max{sup inf ||@a — b||,sup inf |ja — b||}
pepacAd acAbeB

Using the a-cuts (1), for two fuzzy sets 4, B this can be generalized to

dy(4, B) = (J;(d”(A“’B“))pd“j/p, pell, )
(4, B) =

sup dH<AzX7Bx)7 p =0
ae0,1]
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where especially d; and d,, are investigated in the literature. For example,
(JC 7dl) appears as a complete and separable metric space, (/C ,do ), how-
ever, is a complete but non-separable metric space (see Puri/Ralescu (1986)).

Another type of distances can be defined via support functions. For any
compact convex set A = RY the support function s, is defined as

sa(u) =sup<u, yy; ue S
yed

where (-,-) is the scalar product in RY and S9! the (d — ) -dimensional
unit sphere in R?. Note that for convex and compact A = RY the support
function s, is uniquely determined. A fuzzy set A — JC can be characterized
a-cut-wise by its support function:

sA(u7oc)d:efsA7(u); wel0,1], ueSL (5)

Thus, via support functions (5), 37 can be embedded in a space of functions
on §4-1 x [0,1] and we can deﬁne a metric in Z¢ using e.g. a special L,-

metric in Ly(S9™! x [0,1]), i.e

1
5>(A, B) = ¢ I ] (oat7) = snlu ) st (6)

0

where v is the Lebesgue measure on S¢~!. Note that (#¢,d,) is complete and
separable (see Diamond/Kloeden (1994)).

As an example, consider so-called LR-fuzzy numbers 4 (u,l r)pr With
central value € ]R1 left and right spread / € R™ and r € R", decreasing left
and right shape functions LIR" — [0, 1], RIR* — [0, 1] with L(O) R(0) =1
and finite support, i.e. a fuzzy set 4 with

(=2 if x <
my(x) = ( ! ) nrEs (7)

R(x;,u) if x> pu

Note that the o-cuts of 4 = (u,/,r), are given by the intervals
Ay =[u— L (@) u+ R (2)r]; oe[0,1]

and that the support function of an interval is defined on S° = {1, 1} by

s (u):{—a if u=-—1
.5} b oifu=1.

An LR-fuzzy number A = (u,l,r);p with L=R and /= r & 4 is called

symmetric and abbreviated by 4 & (o, 4);.

Then, we have especially for two symmetric fuzzy numbers 4 = (u,, 44),,
B = (iuB7 AB):
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dp (A, B) = iy — ppl + L7 ()| A4 — A

1

di(A,B) = |py — ugl+ h|d4— 45|; I :J LY (a)do
0

d(A,B) = |uy — upl +lo|44 — 4|; 1o = SI['lp]Lil(a) (8)
ael0,1
2 2 ! 2
52(A4, B) = \/(ta — 1p) + b(d4 — Ag)% b =j L) de. (9)
0

2.3 Expectation

Asking for laws of large numbers for rfv’s, Puri/Ralescu (1986) have proposed
to use the so-called Aumann-expectation as a suitable expectation of rfv’s.
The Aumann-expectation goes back to the paper Aumann (1965) on integrals
of set valued functions and is defined as follows:

Definition 2. Let Y be a rfv on R with Esy < oo. The Aumann-expectation
of Y is defined as the fuzzy set EAY e 97Cd with

Vae[0,1]: (EYY), = ED Y,
where EXY,, is the Aumann-expectation of the random set Y, defined by
EAWY, = {IEy : n(w) € Yy(w)P-a.e. and n e L' (2, %, P)}

Note that [Esy < oo ensures the existence of E(Y and that the Aumann-
expectation of the convex compact random set Y, is the set of all (usual) ex-
pectation of random vectors 7 in IR? which P-a.e. lie in M. Often such 7 is
called a selector of Y.

It should be emphasized that there are also other proposals to define the
expectation of a rfv. E.g. for a rfv in form of a probabilistic fuzzy set Y an
expectation IE™ Y can be defined via the expected membership function, i.e.
(see Hirota (1981))

Mg y(x) = Emy(x); xe€ RY,

which in general does not coincide with Def. 2. There are further definitions
of expectations for random sets (see e.g. Molchanov (1993), Stoyan/Stoyan
(1994)) which can be used for further alternative o-cut-wise definitions of
expectations for rfv’s.

Now we will discuss the reasons why the Aumann-expectation is prefera-
ble.

Denote by @ the addition between fuzzy sets which comes from applica-
tion of extension principle (2) to g(x1,x2) = x1 + xp, iL.e.

myep(z) =  sup  inf{m,(x)),mp(x2)}. (10)

X1,X2:X1+X2=Z



Random fuzzy variables of second order 207

Note that @ for crisp 4, B coincides with the Minkowski-addition. It is simple
also to define by (2) a scalar multiplication ©; of fuzzy sets. For simplicity, we
write 1Y instead of 1 ©O,Y.

A nice property of the Aumann expectation is its linearity w.r.t. @, i.e.

ED LY @ hYs) = WED Y, @ LEDY,. (11)

The main question, however, is: Can IEY)Y be interpreted as a Frechét-
expectation w.r.t. a certain metric? If this is true this metric can be used by (4)
for a well defined variance. Examples show that IE“) is not Frechét w.r.t. the
Hausdorff metric d, and that the Frechét-expectation w.r.t. d, is a nonlinear
operator (see Néther (1997)). But it holds:

Theorem 1. The Aumann-expectation ) is Frechét-expectation w.r.t. 6,

from (6).

For the proof see Néther (1997).
The result in Theorem 1 holds not only for the distance d, from (6) but also
for the more general Ly-distance in L,(S9~! x [0, 1])

mwﬁfzj (s ( 1) — 51, 2))
[0,1]%x(S4-1)?

X (SA(Uaﬁ) _SB(Uvﬁ))dK(%a?Uaﬁ) (12)

with a symmetric and positive definite kernel K.
Now, let us mention that IE“Y coincides with the so-called Pettis-
expectation. Let (U, || - ||) be a separable Banach space.

Definition 3. Let Z be a random variable on U with E||Z|| < co. The Pettis-
expectation IE") Z is that element of U with

FOEP)Z) = Ef(Z)
for each linear functional on U.

Using the Hahn-Banach-Theorem the uniqueness of E) easily can be
shown (see e.g. Ginssler/Stute (1977)). Since the Aumann-expectation IE“)

satisfies (11) the following theorem is not surprising:

Theorem 2. Let Y be a rfv with E| Y|, < oo, where || - ||, = p,(-, {0}) is gen-
erated by p, from (12). Then the Aumann-expectation EAY is equal to the

Pettis-expectation EX Y.
2.4 Variance

Using the Frechét-principle the variance of a rfv Y corresponding to its
Aumann-expectation E?) Y exists if IE|| Y||i < oo. Then it is given by (4), i.e.
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Var Y = Ep3(Y,EYY).

Since spu) y = Esy, which goes back to a standard result on random convex
sets (see Stoyan/Stoyan (1994)), the variance can be written as

Var ¥ — J Cov(sy (u, 5), 5y (v, B)) dK (1,2, v, ). (13)
[0,1]%x(S4-1)?

Let us mention but not stress here that (13) can be deduced also from a more
general point of view using the notion of covariance operator for random
variables on a Banach space (U, || - ||), see e.g. Araujo/Giné (1980).

Moreover, let us mention that for two rfv’s X and Y by use of the
Ly(S9! x [0, 1])-scalar-product we can define

def

<Xa Y> = SX(”> a)SY(Uaﬁ) dK(“a OC,U,ﬂ). (14)

J[o. 1)%x(84-1)?
Then (13) can be written in a well known form as

VarY = ECY,Y) —<(EY,EY). (15)
Consequently,

Cov(X,Y) ¥ EX, ¥y — (EX,EY)

o(X, V) def Cov(X,7Y)
vVar X Var Y

are definitions of covariance and correlation between rfv’s X and Y which are
suggesting themselves.

Let us point out, however, that {(X,Y) is not a scalar product
in (?Cd, @, ©y). The reason is that the image of ?Cd by the embedding via
support functions is only a cone in Ly(S?"! x [0,1]), i.e. <X, Y) has only
linearity properties w.r.t. scalar multiplication with positive constants. One
consequence is, for example, that from p(X, Y) = 1 we cannot deduce a linear
dependence between X and Y.

Let us show now that (13) contains several earlier approaches as special
cases. Using the special kernel

(16)

dK(u, 0,0, ) = d - 5,(v)0,(f)v(du) da

p, reduces to d, from (6). This leads to the special variance

1
VarY:dJ

J Var sy (u, o)v(du) do (17)
0 Jga

which is used by Nather (1997).
The class of distances introduced by Bertoluzza et. al (1995) are special
cases of (12). They defined a distance between two normal convex fuzzy sets A
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and B of the real line R' by

1 ¢l
D(4,B) = L JO [¢(inf 4, — inf B,)

+ (1 — t)(sup 4, — sup B,))” dg(1) do(a),

where g and ¢ are normalized weight measures on [0, 1]. Straightforward cal-
culations show that

1
D(4,B)* = CzJ (inf 4, — inf B,)? do(x)
0
1
+ (1 =2¢; + cz)J (sup A, — sup B,)? do(o)
0
1
+2(c1 — cz)J (inf 4, — inf B,)(sup A, — sup B,) dp(«)
0

with

1 1
= J tdg(t) and ¢, = J 2 dg(t).
0 0

Because S9! = S° = {41, -1}, the integral with respect to S~! is a sum of
two terms for u = +1 and u = —1. Hence, with the kernel
1—-2¢c1+c¢ foru=v=+1
dK (u, 0,0, ) = 04(p) dop(a){ 2 foru=v=-1
c—C for u=—v

D(A, B)? is a special case of (12). Especially the A-mean squared dispersion
defined by Lubiano et al. (2000) is based on a special D-distance and is in-
cluded in the variance concept above. Lubiano defines the A-mean squared
dispersion of a random fuzzy variable Y by

A2(Y) = ED; (Y, EY)?

with
1

D,(4,B)* = J [Z1(sup 4, — sup B,)* + Z»(mid 4, — mid B,
0

+ J3(inf 4, — inf B,)?] da,

where L= (41,42,743) with 1;€[0,1), A1 +4+43=1 and mid 4,=
1/2(sup A, + inf 4,) denotes the middle point of the interval. Here
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M+ /4 foru=v=+1
dK(u,0,0,0) =0,(f)dos Az + /4 foru=v=-1
—Aa /4 for u = —v.

Also the Hagaman distance (see Bardossy et al. (1992)) between two different
LR-fuzzy numbers A = (pt4,l4,74); g, a0d B = (pup, Ip,78) 1z, (€€ (7))

er 1! - -
D, B = 5 | {0 = 131 0) =y + 1L 2

+ (ua + 4Ry (@) = g — raR3' (2))*} f (@)

with density function f'is obtained by

1

K (1.2,0,) = 50,()f (&) do.

In this way, also Diamonds distance (Diamond (1988)) in the case of trian-
gular fuzzy numbers 4 = (uy, L4, 74) ,

d(A,B)* (g — Ly — g+ 18) + (g + 14 — 5 — 18)° + (104 — 1t5)°

is included. Note that a triangular fuzzy number is an LR-fuzzy number with
linear left and right shape, i.e. L(x) = R(x) = max{l — x,0}.

2.5 Properties and estimation

We will summarize some properties of the Aumann-expectation and the
associated variance, and we will show that they both can be estimated in a
similar way as in the classical case. In the following the superscript in IE() is
omitted and we only write IE for the Aumann-expectation.

The following theorem deals with independent rfv’s. It is emphasized that
it is not necessary to develop a special concept of independence for rfv’s: Due
to the embedding, rfv’s Y can be considered as random (support) functions sy,
and the independence of random functions is well-defined.

Theorem 3. Let Y| and Y, be independent integrable random fuzzy variables on
R'. Then E(Y) © Y2) =EY| © EY,, where O is the extended multiplication
via (2).

Proof. The operation 4 © B is linear in both arguments, i.e. for all fuzzy sets
A, By, B, and all real numbers A

A@(AB):/I(AQB) and A@(Bl@Bz)Z(AQB])@(AQBz)

(for the first argument use the symmetry 4 © B= B(® A4). By the indepen-
dence of Y; and Y, and by the linearity of the expectation we obtain

E(Y1OY:) =EyEy (Y10 Y1) =Ey (Y1 OEY,|Y) =EY; OEY>.
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Theorem 4. Let Y and Y, Y, be random fuzzy variables and define the variance
with respect to any Ly distance p, in (12) and let || - ||, = p(-,{0}) be the in-
duced norm. Then for any positive squared integrable random Uarlable &, for any
Ae ,/C and for any real number A we obtain

L. Var(é) E(¢ - B,

2. Var(Y) = lEllYH — [EY]],

3. Var(lY) = A Var( Y),

4. Var(¢4) = Var &),

5. Var(4 @ Y = Q’ar

6. Var(¢Y) = IE|| Y|| Val‘(f) +EE - Var(Y) if & and Y are independent.
7. Var(Y1 @ 1) = Var( Y1) + Var(Y>) if Y| and Y, are independent.

For the proof see K6rner (1997).

Theorem 5. Let Y1, Y,,... be independent and identically distributed random
fuzzy variables with E||Y)|| < co. Then Y, = (Y1 ® ---Y,)/n is an unbiased
and consistent estimator of the Aumann expectation, i.e.

EY,=EY, and Y, 5 EY,.
n—oo

Proof. Because of the linearity of the Aumann expectation we obtain that Y, is
unbiased. The consistency follows from the law of large number of Klement/
Puri/Ralescu (1986).

Theorem 6. Let Yi,Y,... be a sequence of independent and identically
distributed random fuzzy variables with E| Y,||* < o.

Then S? = (n—1)" Z/ﬁ:l p2(Yi, Y,)? is an unbiased and consistent esti-
mator ofVar( Y1), ie

ES? = Var(Y,) and S2 % Var(1)).

n— o0

Proof. Note that

1< 2 w2
:—ZHYka — Y
=

- P-as. 2. .
Now, ¥, —— EY; and | - [|; is continuous, therefore,
n—oo

2 P-as.

1%l == [EY1[;. (Note that ||EY: |} < E[[ Y1} < o0.)

P —

Furthermore, dx = || Yx || is a sequence of independent identically distributed
variables, such that

— def 1 P-as. 2
dnzﬁgdk—dlidl E[| Y]]
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Hence,

P-
Sy == E||Yill; — [[EY: [, = Var(11).

1 & . .

7 > (xi — X)(z; — £) is an unbiased
— L=
estimator of Cov(X, Z) in the classical real case, i.c. we have

Furthermore S?2 is unbiased, because

msgzj Z sy, (1, 0) — 7 (1,0))-

[01] Szll n—l

’ (SYi(U7ﬁ) - Sﬁ(vvﬁ)) dK(uv %, U7ﬁ)

- j Cov(sy (u,2), 5y (0, ) dK (u,,0,17) = Var Y.
[0, 1]2x (Sd-1)>

3 Applications
3.1 Asymptotic results

Having an expectation of a rfv Y it is naturally to ask for a law of large
numbers, i.e. for the convergence of

de

%(Yl@m@m: (18)

_ﬁ
=

to E4Y for n to infinity where Yi,..., Y, are iid replications of Y. A first
strong law of large numbers (SLLN) was presented by Klement/Puri/Ralescu
(1986) where a.s.-convergence is proved w.r.t. the dj-metric.

Let us point out, however, that measurability conditions of rfv’s are mainly
characterized by the d,-metric. Therefore one is more interested in SLLN
with a.s.-convergence w.r.t. d,,. Since (#¢,d,,) is non-seperable, the proof
of such a SLLN is relatively complicated It was achieved only recently by
Colubi et al. (2000) and by Proske (1998) (see also Molchanov (1999)).

Proving SLLN for rfv’s of second order, the existing variance allows the
application of the well-known tools from classical theory, e.g. a Kolmogorov
inequality can be proven. A typical SLLN for rfv’s of second order is the
following:

Theorem 7. (see Korner (1997)) Let Yi,...,Y, ... be a sequence of
independent rfv’s with E|| Y,7Hf, < 0. If the series > Var Y /k? converges then
k=1

(llm p2<Yn, ZIEA)Yk> —O) =1.
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Applying results for probability distributions in linear spaces (see Vakhania
(1981)) it can be shown further that for an independent identical distributed
sequence Yi,...,Y,,...of rfv’s with E4 Y, = M,

ndy( Y, M,)’ (19)

has asymptotically a so-called w?-distribution, i.e. the distribution of (19) is
asymptotically equivalent to the distribution of

o0
> u& (20)
k=1

where &p,...,&,... are iid N(0,1) and A; > 4, > --- are the eigenvalues

of the covariance operator Cy, of Y. At least in that case where the Y; are
random LR-fuzzy numbers (7) the distribution of (19) is relatively easy to
compute since Cy, reduces to a 3x3-matrix with three eigenvalues. (19) and
(20) can be used to construct an asymptotic significance test of the hypothesis

EXY = M,. For more details see Korner (2000).

3.2 Linear statistical inference for regression with random fuzzy data

Let us denote a classical crisp linear regression model by a random variable y
which depends on the regressor x € R* by

IEy:fl(x)ﬂl +"'+fm(x)ﬁm :f(x)Tﬂ (21)

where f|R¥ — R™ is a known setup-function and e R is an unknown
regression parameter. Given observations y;, ..., y, of y at the design points
X1,...,x, € R¥, the parameter f§ has to be estimated, e.g. by the classical least-
squares estimator

p=FTF)'FTy (22)
where y = (yy,...,,)" and F = (f(x1),..., f(x,))" is assumed to have full
rank.

The problem now is that only fuzzy observations Yi,..., Y, are available,
for example the clouding y for given atmospheric pressure x is reported by
linguistic expressions like: Cloudless, Clear, Fair, Cloudy, Overcast (see the
introductory example). Thus (21) has to be generalized by

EWY = f(x)"B, (23)

where now Y is a random fuzzy variable and B is a fuzzy parameter vector.
The question is: How to estimate B?

There are some data-analytic approaches from literature where it is not
necessary to have a stochastic model like (23). For example Tanaka and his
school looks for such a fuzzy parameter B that the fuzzy function f(x)" B
covers all the fuzzy data Yy,..., Y, at least to a given degree (see e.g. Tanaka
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(1987)). A second approach consists in a straightforward application of the
extension principle (2) to well justified classical crisp estimators, e.g. to the
least squares estimator (22) (see Viertl (1996) but also Korner/Néther (1998)
with some critizism of this approach). A third possibility is to find a suitable
fuzzy parameter estimate B by use of a least squares approximation principle
for fuzzy data (see e.g. Diamond (1988), (1992), but also Korner/Néther
(1998) with a certain generalization).

Here we will emphasize the stochastic background of the data, i.e. we
assume that the data Yi,..., Y, are realizations of a rfv. Y, especially of a
random fuzzy number, and we are interested especially in best linear unbiased
estimation (BLUE) of B.

At first let us specialice the expectation and variance formulas for a
random LR-fuzzy number Y = (u,/,r); . We restrict ourselfes to J, from (6).
Having in mind that in the LR-fuzzy-number-case S¢ = S° = {—1,1} and

) = {—,qulLl(oc) if u=-1
S lu+rR ) ifu=1

we have for 4 = (u, la,74) ;g B= (5, 18,78) 1 1
5 5 1 1
02(4,B)” = |y — gl +§r2|VA —rg| +§12|1A — g
—h(paq — pp)(la — Ig) +r1(py — pp)(ra —rp)
with

1 1
l :J LY (o) da, r :J R Y(a) du
0

1 1
b= | @) =] R’

(compare also with (9)).
Then it is easy to compute

EW(u,1,r) p = (Eg, ELEr), (24)
Var(u,[,r); . = Varu+ %lgVarl + %erarr

— L Cov(u,l) + riCov(y,r). (25)

For a random symmetric fuzzy number ¥ = (u, 4); (24) and (25) reduces to

IE(A)(:“? A)L = (IE:uv IEA)L

Var(u,4), = Varu+ LVar4 (26)
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Looking for a BLUE, we have to carry out linear operations with the fuzzy
data. The advantage of LR-fuzzy numbers is that @ and O, can be expressed
by simple operations w.r.t. the parameters u,/ and r (see e.g. Dubois/Prade
(1980)):

(1, 1) g @ (25 b2y 12) g = (W + oyl + b1y +712) 11 (27)
(A, 2, 0r), . if 2> 0

M1y F)y g =4 (g —ar,—il) gy i 2<0 (28)
Loy if 7= 0.

Here 1, is the indicator function of a set A4.
For symmetric fuzzy numbers (27) and (28) reduces to

(s A1) @ Aoty 42)p = (Aapy + Japly, || A1 + 22| 42) - (29)

a) BLUE

First of all let us point out that (similar to interval arithmetics)
(9751, @, ;) is not a linear space since @ is not a group operation. Especially
LR-fuzzy numbers with given L and R form a convex cone w.r.t. @ and QO;.
This will be the reason (and the following discussion will show it) that there is
no straightforward analogy between classical BLUE and BLUE with fuzzy
data. Now the starting point is the fuzzified regression model (23), i.e. more
exactly

EDY(x) = f(x)"B=fi(x)B1® -+ @ f,,(x)B. (30)

Let n fuzzy number data be given, say

Yi=(y,4i); i=1,...,n (31)
The aim is to estimate the B;; j = 1,...,m; by a linear estimator
Bi=wYi® - @Y, E2TY (32)

which is unbiased in the sense that

EYB, = B,. (33)

Taking into account (29), for unbiasedness it is necessary that B; is modeled as
a symmetric fuzzy number with the same shape function L, say

Bj:(ﬂjﬁj)ﬁ j=1,....m.
Then (30) writes

EDY = (f1()B) + -+ LB L1 (N1 + -+ 1)),
E B 1)),
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and, since the Y; are assumed to be a realization of Y(x;),

EWB; = (A Fp. AT |IFIo),

with A7 = (A, ), 14 =gl Agl)s =1, m F=
(f(x1)s - f)T, 1Fl = (If (), |f(xw)])T. More condensed, with

G, i) and B=(By,...,B,)" € (p,6),, an estimator B is un-
biased iff

EYWB = (AFB, |4]|F|6), = (,9),
which is satisfied iff simultaneously
AF =1, |A||F| = I, (34)

The first equation ensures unbiasedness of the centre, the second unbiased-
ness of the spreads. Unfortunately, in general it is not possible to obtain
unbiasedness of the spreads. This can be seen already in the simple linear
regression case

IEY:Bl)C@Bz.

ey X i A ,
Here FT = (b7 A= (" ") and the second equation of (34)
I,...,1 A2t -+ daop

writes

Dol =1, >l =0,
i i
Z |42:| = 0, Z |Aai|i = 1,

1 1

which is inconsistent, since e.g. from Y |15;| = 0 it follows 4,; = 0 for all i. But
then we cannot obtain ) |1x||x;] = 1.
Therefore it holds:

Theorem 8. For the model (30) with m > 2, there is in general no unbiased
linear estimator for B of the form (32).

For m =1, i.e. EY = f(x)B, unbiasedness can be forced. Then (34) reduces
to

Ai

D af) =1 Y Il ()l =1 (35)

which is equivalent to > A;f(x;) =1 and sign 4; = sign f(x;). E.g. 1, =

1/nf(x;) automatically leads to an unbiased linear estimator for B. In this
one-dimensional special case it is easy to find the BLUE: Using Theorem
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4 point 3 and 7 with Var ¥; & 52 we have
Var B = Z 2o’
i-1

The BLUE coefficients

3= 1) / S () (36)
j=1

n
are the solutions of > A = Min with side condition (35). As a special case

i=1

of (36), clearly, the arithmetic fuzzy mean Y, (see (18)) is BLUE for the
expectation EX Y = B.

b) Weak BLUE

One way out of the situation described in Theorem 8§ is to make setups
and requirements only for the central values of the data and not for the
spreads (see Néther (1997)). Given data of the form (31), i.e. ¥; = (y;,4i),;
i=1,...,n; instead of (30) we use a model ¥; = Y (x;) with

EYY (x) = (B + -+ + Su(X)Bos Ao(x)),
= (f(x)" B, 40(x)),. (37)
For estimating the f8; we consider analogously to (32) for j=1,...,m
Bi=ii @ - @y Y, =2 Y =y, 14" ),

where y = (y,,...,»,)", 4= (41,...,4,)". Now, with the terminology from
subsection a) we have for j=1,...,m

IE(A)B/‘ = (/@TF/)), 12517 40) 15 Ao = (Ao(x1), ..., Ao(x))"
or more condensed

EWS = (AFp,|A]40),.
Much more weaker as in (34), we only require unbiasedness of the centre, i.e.

AF = I, (38)
An estimator /i with (38) is called weak unbiased. Analogously to classical
linear inference a weak linear unbiased estimator f§ exists iff F is of full rank.
To find the weak BLUE for f8 let us consider Var f; which we can compute by
use of (26) as

Var[;f/ = Var(ijTy) + LVar(|;|"4)

=4y by k=1 (39)
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where ), like ), are the covariance matrices of the observed centres y and
of the observed spreads 4. Minimization of (39) w.r.t. 4; under side condition
(38) gives the coefficient vector 4, of the weak BLUE f7. As an essential
difference to the classical linear estimation theory, (39) can in general not be
reduced to minimization of a quadratic form. However, reduction to a qua-
dratic form is possible, if the spreads are uncorrelated, i.e. if

> =diag(o(x)).

V|

Then (39) reduces to

Varfy =213 0z =3 +hy . (40)

Minimization of (40) under side condition (38) coincides with the classical
BLUE-problem for linear regression with observations correlated by 5.
Thus, the solution is given by

Theorem 9. If FT "' F is regular and 4 Is diagonal, the weak BLUE for f8
in the model (37) is given by

B = (FTZ*IF)AFTZ’l Y.

The main disadvantage of a weak BLUE is that the spreads are uncontrolled,
and indeed examples show too large spreads of the estimated regression
function.

¢) Componentwise BLUE

A more satisfactory approach in this connection seems to be the following:
The idea is to split up the problem. For estimation of the centre of the re-
gression parameter only the observed centres y; are used, while for estimation
of the spread only the observed spreads 4; are taken into account. This means
that we give up the requirement that the estimator should be a linear form of
the “unsplitted” fuzzy data Y; = (y;, 4;),. Somewhat more detailed: Now the
model is

EW Y (x) = (Ey, E4), = (f(x)" B, 9(x)" 7)1 8 e R,y e RY,

i.e. for the centre and for the spread different setups are used. Clearly, in the
interesting region, say H = IR¥, positivity of spread must be ensured, i.e.

VxeH:g(x)"y>0.
Given observations Y; = (y;, 4;); we consider estimators of the form

B=Ay, §=T4, VxeH:g(x)"9>0
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where y = (y,,...,»,)" and 4 = (4,,...,4,)". j is a classical linear estima-
tor of the centre-parameter f based only on the observed central values y and
7 is a classical linear estimator of the spread-parameter y based on the ob-
served spreads 4 with a side condition for positivity. Unbiasedness of f and 7
is ensured if

AF =1,,TG=1; G=(g(x1),...,9(x))".

For estimation of the regression function EY (x) we will use
7 = (1) h.9)7) . (41)

An unbiased estimator ¥* of the form (41) with minimal variance is called
componentwise BLUE. Clearly, Y is unbiased iff # and j are unbiased. To find
the componentwise BLUE, firstly Var Y (x) is obtained from (26) as

Var ¥(x) = Var(f(x)"§) + bVar(g(x)"5)
= f(x)"Cov Bf(x) + hg(x)" Covig(x).

From this the following is clear:

Theorem 10. If[}* is BLUE for p in the linear model Ey = Ff and if p*
is BLUE for y in the linear model EA = Gy under the side condition
Vx e H : g(x)"9* > 0, then

is componentwise BLUE. Clearly, if regularity of the matrices is ensured, [;’ *is
given by

pr=(rry) F)_IFTZ;I y

and p* by

7 =(c"y, G)ilGTZ; 4, (42)
if

VxeH:g(x)"5* >0 (43)
is fulfilled.

The crucial point is that 9* from (42) satisfies (43) only in special cases.

=1,...
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H; by y; >0, i.e. if we use g(x) = (1a,(x),. .., IHq(x))T, then 7* from (42) is
given by 5* = (4y,...,4,)" where 4; is the arithmetic mean of spreads for
observations from H;. Clearly, 4; > 0 for x € H; and the requirement (43) is
automatically satisfied.

By straightforward considerations, the results of this section can be gener-
alized to LR-type-data using the model

IE(A) Y(X) = (IEya IEZ? IE“V)LR = (f(x)Tﬂa gl(x)Tyla g,.(X) Tyr)LR'

Some numerical examples w.r.t. section 3.2. can be found in Kérner/Nather
(1998).

4 Concluding remarks

We have discussed in section 3.2 the application of rfv’s in the context of
BLUE for regression models with fuzzy data. This is a contribution to non-
asymptotic results for statistical inference with rfv’s. Note that there are many
results on the asymptotic behaviour of rfv’s. Some of them are quoted after
Definition 1 and in section 3.1. Let us emphasize, however, that particularly
non-asymptotic results are important, since fuzzy data are available often in
such situations where the amount of information on an experiment is re-
stricted, i.e. we cannot expect large sample sizes.

An interesting problem for further research on regression with fuzzy data is
the statistical analysis of that case, where not only the “output™ Y is fuzzy but
also the “input” x.

Acknowledgement. I am indebted to the referees for their careful reading and valuable proposals
which have led to on improvement of the manuscript.
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