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Abstract. In this paper, we discuss interactively visualizing hierarchical clus-
tering using multidimensional scaling (MDS) and the minimal spanning tree
(MST). We can examine the sequential process leading to agglomerative or
divisive hierarchical clustering, compare the different agglomerative methods,
and detect influential observations better than is possible with dendrograms.
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1 Introduction

Clustering is a valuable method for understanding the complex nature of
multivariate relationships, and it is widely used in taxonomy and pattern rec-
ognition. It is enjoying a resurgence in popularity in the context of data min-
ing. Cluster analysis is a procedure for grouping individuals or objects into
similarity groups, without prior knowledge of groups. It is an exploratory
tool. In general, the methods are divided into two categories: hierarchical and
non-hierarchical. We focus on hierarchical methods.

In hierarchical cluster analysis the algorithms begin (1) with all objects in
a single large cluster and proceed to sequentially divide them into smaller
clusters, or equivalently, (2) with all the objects as individual clusters and
proceed to sequentially fuse or agglomerate them into larger clusters, based
on the interpoint distances. More emphasis has been placed on the rules gov-
erning the splitting or fusing process than on the adequacy with which each

The implemented S-plus and JAVA source programs, and associated documentation can be
obtained from Web site: www.public.iastate.edu/~dicook/papers/Metrika/paper.html.
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cluster accurately represents the objects in the measurement space (Zupan,
1982). Graphical representation of the clusters, consequently, provides visual
grouping information, and plays a complementary role to the numerical al-
gorithms in cluster analysis.

In hierarchical cluster analysis, the clustering process can be summarized
diagrammatically in tree form, i.e. a dendrogram. Using a dendrogram, we
can see the sequence of successive fusions or divisions that occur in the clus-
tering process. For example, in Figure 3 following downwards from the top
to the bottom of the dendrogram we can get the divisive process of clustering,
while following upwards from the bottom to the top we can get the agglom-
erative process. Different agglomerative methods can produce radically dif-
ferent dendrograms, and a single observation can dramatically affect the
dendrogram. Essentially the dendrogram is good for displaying sequential
steps in the hierarchical algorithms, but it lacks the context of the problem,
i.e., relative positions of the points and their interpoint distances. For these
reasons, the dendrogram is less helpful for comparing methods and detecting
influential observations. Yet, these are important parts of a cluster analysis.
Because cluster analysis is inherently exploratory, it is important to examine
the results produced by different methods, and assess the impact of excluding
certain observations. To extract this type of information different graphical
representations are drawn: multidimensional scaling (MDS) views, profile plots,
stars, Chernoff faces, Andrews curves and scatterplots. Adding interaction and
motion to these graphical displays greatly enhances the exploratory process.

Buja, Cook and Swayne (1996) discuss an interactive system where the
dendrogram is dynamically linked to a grand tour scatterplot display. The
grand tour (Asimov, 1985) exposes clustering through motion of points as
they are spun through high-dimensional euclidean space. Points that are
“close” in the data space will have similar motion patterns. The dendrogram
is also overlaid on the data as it moves in the grand tour. This helps in un-
derstanding the agglomerative process in terms of interpoint distance and can
assist in detecting influential observations. Also, Swayne, Buja and Hubbell
(1991) describe interactively “cutting” the dendrogram in an S-Plus plot which
colors the corresponding observations according to the resulting cluster solu-
tion in scatterplot views in XGobi (Swayne, Cook, and Buja, 1998). Now, a
more common approach to graphically representing the individuals is to use
MDS to find a low-dimensional representation of the data that closely pre-
serves the cluster structure. We discuss this approach further in this paper, and
also discuss overlaying a minimal spanning tree (MST) rather than a den-
drogram. The MST provides strong visual cues for unraveling cluster struc-
ture in high-dimensional data.

This paper discusses using MST with MDS for interactive visualization of
hierarchical clustering. We demonstrate comparing agglomerative methods
(single, complete, average, centroid, median, Ward) and detecting influential
observations. The work is implemented in S-Plus, and some of it is imple-
mented in a prototype JAVA program.

2 MDS and MST

Multidimensional scaling (MDS) is a method that provides a low-dimensional
visual representation of points that preserves their relative positions in high-
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dimensions, using a dissimilarity matrix or rank orderings. Because MDS is a
way of representing interpoint distances it can naturally be used for visually
identifying clusters. It is commonly used for this purpose. An interesting
feature of MDS is that it depends only on the dissimilarity matrix, and as a
consequence it is useful even in situations where a raw data matrix is non-
existent. See Buja, Swayne and Littman (1998) for an example of an inter-
active system for generating MDS representations, and Bienfait and Gasteiger
(1997) for an approach to visually describing the error in MDS representa-
tions. Note also that, MDS is a very computationally intensive procedure and
is only feasibly computed in real-time for small data sets, and for larger data
sets the MDS representation needs to be computed off-line. The MDS repre-
sentation is independent of the hierarchical cluster analysis, so alone it is of
little help to understand the agglomerative process. One needs to connect the
idea of the dendrogram to the MDS representation.

An approach to solving this problem, along the lines of Buja, Cook and
Swayne, is to overlay a representation of the dendrogram on the MDS plot.
Here, an interesting point to note is that, the dendrogram is essentially the
MST when the agglomerative method is single linkage. It is a very neat rep-
resentation of the dendrogram in this case. The MST is a tree which com-
pletely connects all the objects without any closed loop and minimizes the sum
of the edge lengths of the tree. Given n points, a tree spanning these points is
any set of edges joining the pairs of points such that there are no closed loops,
each point is visited by at least one edge, and the tree is connected (Gower and
Ross, 1969). When a set of n points and n(n — 1)/2 possible edges are given, a
minimal spanning tree (MST) is a spanning tree for which the sum of edge
lengths is smallest. MST is closely related to single linkage cluster analysis.
Since single linkage joins clusters by the shortest length between them, single
linkage cluster can be constructed from the MST. So a dendrogram for single
linkage cluster can be drawn directly from the MST (see Gower and Ross,
1969). The MST has been used for identifying influential observations by
Jolliffe et al. (1995), and for highlighting the inaccuracies present in the low-
dimensional MDS representations of high-dimensional data by Gordon (1981),
Krzanowski (1988), Bienfait and Gasteiger, (1997). The MST provides valu-
able visual cues to cluster structure when used in conjunction with a scatterplot.

The structure overlaid on the plot can be adapted from the strict MST to
be a useful representation of the dendrogram even with other agglomerative
methods. For example, within the groups use MST to visualize the nature of
the interpoint connectedness here, and between groups connect the elements
using a representation that matches the agglomerative method. We will simply
connect the closest elements between groups by a line. This provides sufficient
information for us to compare methods.

3 Adding interaction

We provide MDS representations overlaid by the MST in an interactive set-
ting, allowing the user to change the number of final clusters to examine the
agglomerative or divisive sequence, compare different agglomerative methods,
and the influence of particular objects on the final solution. We introduce an
example to demonstrate the methods: villages data introduced by Morgan and
Shaw (1982), and used again by Seber (1984) and Jolliffe et al. (1995).
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Fig. 1. Single linkage: 2 clusters

The villages data comes as a similarity matrix, measuring the frequency
that the same word is used for a range of 60 items amongst 25 villages. (It is
available on the web page for this paper.) The similarities (s;;) were converted
to dissimilarities (dj) by dj; = \/2(1 — s;). Figure 1 displays the 2-dimensional
MDS representation, with the MST overlaid. The MDS used is the represen-
tation of the classical metric multidimensional scaling. A 2-cluster single
linkage solution is displayed: points in the same cluster are connected by solid
edges of the MST, and the dashed line represents the edge separating the two
clusters. (On the computer screen color is also used.) Here we see that two
clusters are separated between the points 13 and 24, which corresponds to
the longest edge of the MST. The only difference between the 2-cluster and
3-cluster solution is that point 22 is separated into its own cluster. We can in-
teractively choose the number of clusters sequentially and watch the process of
divisive clustering. (The web page has additional plots illustrating the iterative
process.)

Conversely, if we start from 24 clusters and sequentially reduce the number
of clusters we can see the steps of agglomeration. At the first step (the 24-
cluster single linkage solution) points 2 and 7 are connected, which means the
distance of these two points is the shortest among all pairwise distances.
Points 21 and 24 are connected in the second step (the 23-cluster single linkage
solution).

This is more useful than similarly working through the dendrogram be-
cause we can see the relative positions of points using the MDS representa-
tion. Also using MST superimposed on MDS we can assess the distortion that
exists in a two-dimensional representation of dissimilarity matrix. For exam-
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ple, in Figure 1 the points 3 and 11 are close together in the diagram, but
MST shows that point 3 is closer to point 1 than to point 11.

Single linkage cluster analysis is directly related to MST since the distance
between groups is defined by the smallest distance between any elements of the
two groups, and so MST can be used to visualize the single linkage clustering
process easily. However, other hierarchical clustering methods, complete,
average, centroid, median and Ward’s cluster methods, are not directly related
to MST, and so MST cannot be used directly to visualize these clustering
process interactively. We modify the representation as follows:

* Within groups, the points are connected by the MST.
* Between groups, a line is drawn which connects the closest elements of the
two groups.

Note that, MST is re-computed within each cluster, after sequential splits.
Using this modified MST, we can visualize the process of clustering inter-
actively for any hierarchical cluster analysis. The web page shows the 4-cluster
complete linkage solution where the points are clustered as (1,2,3,5,6,7,8,
9,10,11) (13,14,15,16,17,18,19,20,21,23,24,25), (12,22) and (4). Here
dashed lines between groups denote the smallest distance between two points
connecting groups. In the 5-cluster complete linkage solution the points are
clustered as (1,2,5,6,7,8,10), (3,9,11), (13,14,15,16,17,18,19,20,21,23,
24.25), (12,22) and (4), which means that cluster (1,2, 3,5,6,7,8,9,10,11) is
divided by two clusters of (1,2,5,6,7,8,10) and (3,9, 11) at the next step.
Using this sequence we can follow the hierarchical clustering process agglo-
meratively or divisively and get the difference between steps visually.

For the purpose of comparing agglomeration methods we allow two plots
to be made simultaneously. Figure 2 shows the 2-cluster solution of single
linkage and complete linkage. Here we can see that using single linkage the
two groups are divided by points (13,24), and for complete linkage the two
groups are divided by points (11, 18). It is generally well known that the single
linkage method builds clusters by linking objects to those most recently added,
producing elongated clusters. On the other hand the complete linkage method
concentrates on their internal cohesion, producing spherical clusters. Figure
2 clearly shows the difference between single and complete linkage methods.
We can clearly see the difference of two methods as we increase the number
of clusters to 5. Generally, it is well known that the complete, average and
centroid methods lead to spherical clusters exhibiting high internal affinity,
and the median methods weights towards the objects most recently added to
the cluster. In our program we implemented six hierarchical cluster methods —
single, complete, average, centroid, median and Ward’s linkage methods, so
we can compare these clustering methods interactively. The web page shows
the 5-cluster comparisons of (average, Ward) and (centroid, median) respe-
ctively. We can see an interesting fact that several points with only one degree
comprise the separate clusters in centroid and median methods. (Degree is the
number of edges incident with an observation.) Through interactively running
the program, we can also see that in the centroid method points (4,22,23,16)
are separated from other points sequentially, while in median method points
(4,23,12,22) are separated sequentially, and these two methods are very
similar in comprising clusters. From comparing plots like this we can see the
differences between several clustering analyses visually.



44 S.-S. Kim et al.

Single-link Complete-link

-04 -02 00 02 04 06 -04 -02 00 02 04 06

(no.of Cluster: 2') (no.of Cluster: 2)

Fig. 2. Single and Complete linkage: 2 clusters

Single-link Single-link: Removed obs.11

0.70 0.75 0.80 0.85 0.90
0.70 0.75 0.80 0.85 0.90

Fig. 3. Dendrogram of single linkage, (left) all 25 villages, (right) without village 11

Detecting influential observations

Cluster analysis is very sensitive to one or two observations, in the sense
that their removal may cause large changes in the results of the cluster analy-
sis. Influential observations are defined as those which cause a large change in
cluster solution when they are omitted. It is important here to recognize this
definition. Points that are influential can be more insidious here than in other
types of applications. Outliers to the general point cloud are not necessarily
influential, but rather will be peeled off as individual clusters. More influential
points can be found in the confluence of clusters, points that fall in “average”
positions between cluster centers, or form daisy chains between clusters. Single
linkage clustering is especially prone to influence from this type of point. Jolliffe
et al. (1995) gives an example showing that removal of a single observation has
a substantial effect on the results, using the similarity matrix for the village
data. Table 1 shows the 5-cluster single linkage solutions with full data and
without observation 11, and dendrograms with full data and without obser-
vation 11 are given in Figure 3 respectively. From Table 1, it is clear that the
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Table 1. Single linkage cluster analysis on 25 villages — 5-cluster solution with and without village
11

All villages Without village 11

{1,2,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18} {1,2,3,4,5,6,7,8,10}

{3} {9}

{19,20,21,24,25} {19,20,21,22,24,25}

{221 {12}

{23} {13,14,15,16,17, 18,23}
Single-link Single-link: Removed obs.11
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(no.of Cluster: 2') (no.of Cluster: 2')

Fig. 4. Single linkage with and without observation 11: 2 clusters

removal of single observation has a substantial impact on the results of single
linkage cluster analysis for a 5-cluster solution. Despite large discrepancies
near the top of these dendrograms there is a great deal of similarity between
two solutions. This is very difficult to see from the dendrograms, and so it is
not easy to determine how influential an observation is based on the dendro-
grams. Jolliffe et al. (1995) considered using the MST to find potentially in-
fluential observations in a single linkage cluster. Points with a large degree
within suitable radius may have a great effect on cluster analysis.

The approach that we described in Section 2 also helps to visualize influ-
ential observations interactively. Figure 4 shows the single linkage solution
with and without observation 11 for the 2-cluster solution. For all the data,
the two clusters are divided between points (13,24) and for the data without
observation 11, two clusters are divided between points (3,17). So the sol-
utions are quite different when the observation is excluded, and it is easy to
understand what happens: observation 11 is intermediate between 3 and 13
and acts like a connecting link in a chain.

All of what has been described above can be done interactively. The in-
teractive setting helps uncover and understand the nature of influential points,
and also helps illuminate how persistent the impact is through numerous
stages of the agglomerative clustering process. Information on running the
software interactively is available on the web page.
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MDS with MST
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Fig. 5. MDS representation of the flea beetle data: Its not clear to which clusters observations 6
and 10 belong

This approach to assessing sensitivity of the results only can work well for
small sample sizes, and primarily for the single linkage method. With com-
plete linkage there is little difference with and without observation 11, which
means that observation 11 is not influential in complete linkage cluster. This
fact means that whether observations are influential or not depends on the
cluster methods. We can also see the effect of observations in other cluster
methods.

If we can compare cluster methods in sequential order interactively when
observations are removed, it is helpful to see the role of observations in dif-
ferent hierarchical cluster methods. The implemented graphic displays are
similar to the previous displays: plots of the solutions on the full data with
each linkage method are displayed, alongside the solution without selected
cases. (See the web page for examples.) Using this procedure, we can see the
effect of observations visually and compare cluster methods after removing
some observations interactively.

4 Adding motion

It is important to go beyond 2-dimensional MDS representations to fully
understand the inherent cluster structure. To demonstrate this we introduce
a second example: flea beetles, first discussed by Lubischew (1962). In this
data there are 3 different species of beetles and 6 measured variables, and
there are 3 neatly separated clusters. We know the species’ identity so it is a
good data set to use to test cluster algorithms, especially since the presence of
a few influential points confound every hierarchical method. For this data we
use Euclidean distance metrics, and results change little if Mahalanobis dis-
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Fig. 6. One projection from the grand tour on the flea beetle data: Cluster identity of observations
6 and 10 more clearly belong to a cluster, the middle one
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tance is used. Figure 5 shows the MDS plot, overlaid by the MST. Looking at
this plot it is quite easy to recognize the three clusters, although two points
(6,10) are not easily placed in a cluster. But MDS can be misleading because
the construction only preserves “relative distance”, so points that are “far” in
the original space could appear “closer” in the MDS space. Also even with
MST overlaid it is not possible to be certain to which cluster the points, 6 and
10, belong.

This confusion can be clarified using a grand tour. In a grand tour the
points are placed in motion with a rotation through the original data space.
Cluster structure can be identified by similar motion paths or separation of
points in some projections. People are surprisingly good at detecting clusters
with the grand tour, and can recognize the three clusters in this data set within
minutes of viewing. It is a visually simple data set, and yet, there is enough
nuisance structure to confound many clustering algorithms. Figure 6 shows
one grand tour view where the cluster identity of points 6 and 10 is clear.

We have a prototype JAVA program which runs the grand tour, and also
calculates and overlays the MST in the grand tour window. Additionally it
displays a graph of the ordered MST edge lengths in the separate window.
There is linked brushing between the ordered MST edge length plot and the
grand tour window. When the user brushes a point in the edge length plot, the
edge is highlighted in the grand tour window. These could be used to “cut”
the MST to divide the data into clusters, and in this case the resulting parti-
tions can be saved for further analysis. The partitions made by cutting the
MST are the same as those obtained in single linkage clustering, so we can
examine the process of single linkage clustering with this program. Our JAVA
software can also accept the results of MDS result as input. Hence we can
extend 2-dimensional MDS representation to higher dimension, and examine
situations when there is only a distance matrix by passing a d-dimensional
MDS representation into the grand tour.

In Figure 6 the largest edge length is brushed and it corresponds to the
edge connecting points 47 and 51. Trimming this edge would result in a 2-
cluster single linkage solution. The second longest edge is between points 6
and 40. This step provides the first “real” split of two clusters, rather than
a peeling of outliers. Interestingly, the next real split doesn’t come until the
10th longest edge is trimmed, i.e. 11 clusters are made.

Motion can also be used to detect potentially influential points. After not-
ing the major clusters, we can watch for points that fall on the edges of these
clusters, especially ones that fall close to other clusters in some projections.
For example, points 6, 10, 16, 74, in the flea data. (Note that, points 22, 41, 47
are on the edge of clusters, but on the outer edges and these get peeled off by
the hierarchical methods into individual clusters.) To assess impact of the po-
tentially influential points, we remove these points and recompute the clusters.
Interestingly, removing observation 6 is sufficient to cleanly split two clusters,
and removing observation 74 is sufficient to cleanly split the remaining two
clusters (Figure 7). This suggests that removing these two points would enable
the single linkage method to perfectly cluster this data.

Expanding on this line of thought, if we were examining complete linkage
clustering, from the grand tour we would learn that the clusters are non-
spherically shaped and rather elliptical. A natural solution would be to trans-
form the data into principal components, but this doesn’t fix the shape
problem sufficiently to enable complete linkage clustering to work. The only



Interactive visualization of hierarchical clusters using MDS and MST 49

Single-link Single-link: Remov. obs.6,74

40 20 0 20

(no.of Cluster: 3) (no.of Cluster: 3)

Fig. 7. Three clusters (species) of flea beetle data correctly identified when observations 6 and 74
are removed

approach that facilitates the simple hierarchical cluster methods on this data is
projection pursuit, where the data is projected into a 2D solution provided by
the Holes index (Cook, Buja, Cabrera, 1993) before beginning cluster analysis.
Interestingly, the more complex model-based clustering (Banfield and Raftery,
1993; Fraley, 1999) works perfectly, when different variance-covariance ma-
trices are assumed.

5 Conclusions

Hierarchical cluster analysis can be summarized in a dendrogram, which gives
the agglomerative and divisive process. However, it does not provide explor-
atory representations of data, and it becomes visually unwieldy for even
moderate sample sizes. So, we need alternative methods to efficiently compare
clustering methods and to see the effect of influential observations in cluster
analysis.

In this paper we presented an approach for interactive visualization of
hierarchical clusters using MDS and MST, from which we can obtain several
benefits related to cluster analysis: (1) we can see the sequential processing
of agglomerative or divisive hierarchical clustering interactively, (2) we can
compare several cluster methods visually and interactively, (3) we can see the
effect of influential observations in cluster analysis interactively, (4) we can
examine relationships existing between MDS and cluster analysis visually and
(5) we can assess the distortion that exists in a low-dimensional representation
of high dimensional data. We also described the benefits of using motion to
elucidate cluster structure, and explore potentially influential cases. Having
an interactive and dynamic environment can greatly enhance cluster analysis.
We hope that clustering software developers might be inspired to incorporate
some of these approaches.

It is also possible that the hierarchical methods, especially the single link-
age cluster algorithm, through the MST, may be a promising data reduction
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techniques. We typically consider the k-means algorithm to be the most pro-
mising method for reducing the number of cases in very large data sets, how-
ever when the data is sparse in high-dimensions partitioning the data using the
MST may provide a better reduction (Kwon, 1999).
The implemented S-plus and JAVA source programs, and associated doc-
umentation can be obtained from Web site:
www.public.iastate.edu/~dicook/papers/Metrika/paper.html.
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