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Abstract
For X1, X2 independently and normally distributed with means θ1 and θ2, variances
σ 2
1 and σ 2

2 , we consider Bayesian inference about θ1 with the difference θ1 − θ2 being
lower-bounded by an uncertain m. We obtain a class of minimax Bayes estimators of
θ1, based on a posterior distribution for (θ1, θ2)� taking values onR2, which dominate
the unrestricted MLE under squared error loss for θ1 − θ2 ≥ 0. We also construct and
study an ad hoc credible set for θ1 with approximate credibility 1 − α and provide
numerical evidence of its frequentist coverage probability closely matching the nom-
inal credibility level. A spending function is incorporated which further increases the
coverage.

Keywords Bayes estimator · Hierarchical prior · Point estimation · Interval
estimation · Skew-normal · Additional information · Uncertain constraint

Mathematics Subject Classification 62F15 · 62F30 · 62F10 · 62C20

1 Introduction

It has long been known, for a bivariate normal model with X1, X2 independently
distributed with means θ1 and θ2, and known variances σ 2

1 and σ 2
2 , that the Bayes

estimator of θ1 with respect to the uniform prior on θ1 ≥ θ2 dominates the benchmark
minimax estimator X1 when θ1 ≥ θ2 under squared error loss (Cohen and Sackrowitz
1970). However, there are situations where one would not expect this bound to hold
exactly, and one could envisage introducing uncertainty in the parametric bound. This
has been previously proposed (see O’Hagan and Leonard 1976 where uncertainty
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is expressed through a hierarchical prior, as well as Liseo and Loperfido 2003 for
uncertain linear restrictions) and allows for a more flexible and encompassing model,
where the data is allowed to contradict the believed parametric constraint. Moreover,
with such a model, one has the ability to take into account the degree of prior belief
in the constraint. Despite the earlier work, little is known about the frequentist risk
performance of associated Bayes point estimators or Bayes credible sets.

Here, we consider Bayesian inference about θ1 for the two-sample normal prob-
lem with hierarchical prior density given by π(θ1, θ2 |m) = 1[m,∞)(θ1 − θ2) with
m ∼ N (0, σ 2

m), and study the frequentist performance of (generalized) Bayesian
point estimators and credible sets. We show that the Bayes estimator of θ1 dominates
X1, and is hence minimax, under squared error loss for θ1 − θ2 ≥ 0 and all choices of
σ 2
m > 0. Wemake use of the so-called rotation technique (e.g., Blumenthal and Cohen

1968a), and a one-sample minimax finding by Marchand and Nicoleris (2019) set in
the context of a single normal mean with an uncertain lower bound. The proposed
Bayesian estimators stem from posterior densities for θ = (θ1, θ2)

� that take values
on R

2, but still pass the test of minimaxity for estimating θ1 when evaluated on the
restricted parameter space θ1 ≥ θ2. In this sense, they are more flexible and desirable
in the context of constraint uncertainty than their counterpart estimator when σ 2

m = 0,
for which the posterior density is concentrated on θ1 ≥ θ2. The finding adds to known
analyses for σ 2

m = 0 carried out by Cohen and Sackrowitz (1970), van Eeden and
Zidek (2002), and Kumar and Sharma (1988), among others.
The attractive performance of the proposed point estimators of the suspected larger of
the two means, θ1, leads to interest in Bayes credible sets, and to the investigation of
the extent to which one can capitalize on this additional information.We namely focus
on the performance of such credible sets as measured by frequentist coverage proba-
bility. Typically, Bayesian credible sets are far from guaranteeing matching coverage
probability and are not designed to do so. Exceptions lie in location and scale models
without parametric restrictions and non-informative priors. Even so, in such problems,
in the face of a parametric restriction θ ∈ C , the truncation of such non-informative
priors on C perturbs probability matching, with both higher coverage and lower cov-
erage than credibility occurring (e.g., Mandelkern 2002; Marchand and Strawderman
2006). We point out that there has been much work on evaluating Bayesian posterior
densities and estimates with parametric restrictions, notably for ordered parameters
with or without nuisance parameters (e.g., Gelfand et al. 1992; Madi et al. 2000).

We introduce below an ad hocBayes credible set with approximate 1−α credibility
(based again on the prior π(θ |m) = 1[m,∞)(θ1 − θ2) with m ∼ N (0, σ 2

m)), and
study its frequentist coverage probability with evidence of very good matching to the
nominal credibility 1 − α. Numerical evidence of the remarkable proximity between
the actual and nomimal credibilities is also provided. We furthermore explore how
the performance is affected by the choice of the hyperparameter σm , ranging from the
case of a certain constraint, i.e., σm = 0, to the case of no useful information provided
by X2 when σm → ∞.

For a given posterior distribution, there is no single definitive choice of a Bayes
credible set and such a choice can be impactful in terms of frequentist coverage.
Namely, as illustrated by Marchand and Strawderman (2013), as well as Ghashim
et al. (2016), the characterization of Bayes credible sets through a spending function
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merits to be considered. Hence, the analysis and illustrations presented here involve a
spending function, the choice of which is guided.

The paper is organized as follows. After having extracted and interpreted some
useful properties of the posterior distributions in Sect. 2.1, which relate to extended
skew-normal densities, the dominance and minimax results are presented and com-
mented on in Sect. 2.2. Section 3 deals with proposed credible sets for θ1, focussing
mostly on their frequentist coverage probability. The findings are commented on at
length and illustrated with several figures. Section 3.2 expands onmodifications which
make use of the concept of a spending function. A summary and further research ques-
tions are presented in Sect. 4. Finally, we mention that the developments in this paper
also appear in the M.Sc. thesis (Drew 2021) of Courtney Drew.

2 Bayesian inference andminimax point estimators

2.1 Posterior analysis

We consider the following model for X = (X1, X2)
T and hierarchical prior:

X1 ∼ N (θ1, σ
2
1 ), X2 ∼ N (θ2, σ

2
2 );

π(θ1, θ2|m) = 1[m,∞)(θ1 − θ2) , m ∼ N (0, σ 2
m), (1)

where X1 and X2 are independently distributed and σ1, σ2, σm > 0 are known. This
corresponds to a situation where the difference of parameters θ1 − θ2 is bounded
below by m, with uncertainty on m. We denote throughout φ and � as the standard
normal pdf and cdf respectively. An alternative and equivalent representation of the
prior in (1) is readily obtained by integrating out m yielding the improper density
π(θ1, θ2) = �(θ1−θ2

σm
).

Remark 2.1 (a) The situation given by (1) also covers the case of a parametric bound
of the form θ1 − c θ2 ≥ m, with c �= 0. Setting X ′

1 = X1, X ′
2 = cX2, the constraint

becomes re-expressible as μ1 − μ2 ≥ m with X ′
1 ∼ N (μ1, σ

2
1 ) and X ′

2 ∼ N (μ2 =
cθ2, c2σ 2

2 ).
(b)Analysis for (1) yields applications for correlated variables, specifically forW =

(W1,W2)
� ∼ N2(ξ,	) with ξ1 − ξ2 ≥ m, correlation coefficient ρ = ρ(W1,W2) ∈

(−1, 1), such that λ = ρσ(W1)/σ (W2) �= 1. This is achieved by setting X1 =
W1 − λW2, X2 = W2 whereupon part (a) applies with θ1 = ξ1 − λξ2, θ2 = ξ2,
c = (1 − λ), σ 2

1 = V(W1)(1 − ρ2), and σ 2
2 = V(W2).

Remark 2.2 There exist many instances with summary statistics well modelled by
normal observables such as in (1). Common occurrences arise through sufficiency
or asymptotically justified approximations. An example emerges in a basic linear
model with W ∼ Nn(Z�β, σ 2 In) with Z(n × p) of full rank p, the least squares
β̂ = (β̂1, . . . , β̂p)

� = (Z�Z)−1Z�W , X1 = β̂1 and X2 = β̂2, where it is suspected
that β1 ≥ β2. In such cases, with the link presented in part (b) of Remark 2.1, analysis
for (1) applies whether β̂1 and β̂2 are correlated or not.
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The following known result is useful in analyzing the posterior density in (1).

Lemma 2.3 Let Z ∼ N (0, 1) and ν, ε ∈ R. Then E
[
�(ν(Z + ε))

] = �
(

ν ε√
1+ν2

)
.

Proof Let T ∼ N (0, 1) be independent of Z . Then, we can write E
[
�(ν(Z + ε))

] =
P
(
T ≤ ν(Z + ε)

) = �
(

ν ε√
1+ν2

)
since T − νZ ∼ N (0, 1 + ν2). �


Theorem 2.4 Under themodel and prior given by (1), setting d = x1−x2, themarginal
posterior density of U = θ1−x1

σ1
is given by

π(u|x) =
φ(u)�

(
σ1u+d√
σ 2
2 +σ 2

m

)

�

(
d√

σ 2
1 +σ 2

2 +σ 2
m

) . (2)

Proof This follows from writing the marginal posterior density of θ1 as

π(θ1|x) =
∫∞
−∞

∫ θ1−m
−∞ f (x |θ) π(θ |m) π(m) dθ2 dm

∫∞
−∞

∫∞
−∞

∫ θ1−m
−∞ f (x |θ) π(θ |m) π(m) dθ2 dm dθ1

,

where

f (x |θ) π(θ |m) π(m)

= 1

2πσ1σ2
e
− 1

2σ21
(x1−θ1)

2

e
− 1

2σ22
(x2−θ2)

2 1
√
2πσ 2

m

e
− m2

2σ2m 1[m,∞)(θ1 − θ2),

then using Lemma 2.3 to evaluate the integrals, and changing variables from θ1 to U .
�


One recognizes the posterior density in (2) as a skew-normal density of the form
φ(u)

�(α1u+α2)

�

(
α2/

√
1+α2

1

) ; α1, α2 ∈ R (e.g., Azzalini 1985; Arnold and Beaver 2002). Note

that the density in (2) also holds for σm = 0. We next link properties of such extended
skew-normal distributions to the posterior distribution (2).

Lemma 2.5 Under the context of Theorem 2.4, the posterior moment generating func-
tion, expectation and variance of U are given respectively by

MU |x (t) = e
t2
2

�(d ′)
�
(
tσ ′ + d ′) , E(U |x) = σ ′ R

(
d ′) ,

V(U |x) = 1 − σ ′2 d ′ R
(
d ′) − σ ′2 R2 (d ′) ,

with σ ′ = σ1√
σ 2
1 +σ 2

2 +σ 2
m

, d ′ = x1−x2√
σ 2
1 +σ 2

2 +σ 2
m

, and where R(t) = φ(t)
�(t) is the reverse

Mill’s ratio.
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Proof The moment generating function is readily computed by making a change of
variables u′ = u − t and using Lemma 2.3. The posterior expectation and variance of
U follow by straightforward calculations. �

In Sect. 3, we construct an ad hoc credible set for θ1 based on its posterior expectation
and variance. It is therefore of interest to study the properties of these quantities, which
in turn follow from well-known properties of the reverse Mill’s ratio.

Lemma 2.6 In the setting of Theorem 2.4, the following properties of E(U |x) and
V(U |x) hold for d = x1 − x2:

(a) E(U |x) is a decreasing function of d with limd→∞ E(U |x) = 0, limd→−∞ E(U |x)
= +∞ and limd→−∞ E(U |x)

d = − σ1
σ 2
1 +σ 2

2 +σ 2
m
;

(b) V(U |x) is an increasing function of d with limd→∞ V(U |x) = 1 and

limd→−∞ V(U |x) = 1 − σ 2
1

σ 2
1 +σ 2

2 +σ 2
m
;

(c) E(U |x) is decreasing in σ 2
m when d < 0, and V(U |x) is increasing in σ 2

m when
d < 0.

Proof These results follow from properties of the reverse Mill’s ratio, in partic-
ular limt→∞ R(t) = 0, limt→−∞ R(t) = ∞, limt→−∞ R(t)

(
t + R(t)

) = 1,

limt→∞ t R(t) = 0 and limt→−∞ R(t)
t = −1, as well as the fact that R(t) is a decreas-

ing function of t and R′(t) = −R(t)
(
t + R(t)

)
. �


Remark 2.7 The case σm = 0, i.e., no uncertainty on the restriction θ1 ≥ θ2, war-
rants particular attention. One recovers results for this degenerate case in literature,
notably in Cohen and Sackrowitz (1970) and Blumenthal and Cohen (1968b). More-
over, the case σm → ∞ corresponds to an absence of additional information. It is
useful to consider heuristics related to these limiting cases in order to gain additional
understanding.

(A) If x1 � x2, then d = x1 − x2 is large and, since θ1 ≥ θ2 given that σm = 0, x2
provides very little additional information. We would therefore expect to obtain
results similar to those in the limiting case with information on x1 only. This
is indeed the case, since we would expect a N (x1, σ 2

1 ) posterior for θ1, which
matches the limiting density of U in (2) when d → ∞.

(B) In the opposite situation where σm = 0 but d � 0, we have data which appears to
contradict the model. Assuming the model is still correct, posterior belief would
be concentrated on the boundary θ1 = θ2. This suggests the benchmark model

Xi |θ1 ∼ N (θ1, σ
2
i ) independent.

For the flat prior π(θ1) = 1, the posterior distribution of θ1 becomes

θ1|x ∼ N

(
σ 2
2 x1 + σ 2

1 x2
σ 2
1 + σ 2

2

,
σ 2
1 σ 2

2

σ 2
1 + σ 2

2

)

,
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which for U = θ1−x1
σ1

and very small d, yields the approximations:

E

(
U

d
|x
)

≈ − σ1

σ 2
1 + σ 2

2

and V(U |x) ≈ σ 2
2

σ 2
1 + σ 2

2

,

which match the limiting values as d → −∞ given in Lemma 2.6 (taking
σm = 0).

2.2 Point estimation

This section concerns itself with the efficiency of point estimators of θ1 for model
(1). We obtain a class of Bayesian estimators that dominate X1. From Cohen and
Sackrowitz (1970), it is known that X1 is minimax for θ1 ≥ θ2, which renders our
class of estimators alsominimax. Consider the problem of estimating θ1 under squared
error loss L(θ, d) = (d − θ1)

2 with X distributed according to model (1) and with
the additional prior information θ1 − θ2 ∈ A ⊂ R. As reviewed by Marchand and
Strawderman (2004), it is pertinent to consider the class of estimators:

C1 =
{

δφ(X)=Y2 + φ(Y1) where Y1= X1 − X2

1 + τ
,Y2= τ X1 + X2

1 + τ
, and τ = σ 2

2

σ 2
1

}

.

(3)

Of particular interest is the choice δφ0(X) = X1, i.e., theMLEof θ1 without parametric
restrictions, obtained by taking φ(Y1) = Y1. Under model (1), Y1 and Y2 are indepen-
dently distributed with Y1 ∼ N (μ1, σ

2
Y1

) and Y2 ∼ N (μ2, σ
2
Y2

), where μ1 = θ1−θ2
1+τ

,

σ 2
Y1

= σ 2
1

1+τ
, μ2 = τθ1+θ2

1+τ
and σ 2

Y2
= τσ 2

1
1+τ

. Furthermore, the mean squared error of the
estimator δφ(X) reduces to

R(θ, δφ(X))=Eθ

[
(Y2+φ(Y1) − θ1)

2
]

= Eθ

[
(Y2 − μ2)

2
]

+ Eθ

[
(φ(Y1) − μ1)

2
]
.

The efficiency of the estimator δφ(X) in estimating θ1 is therefore reliant on that of
the estimator φ(Y1) in estimating μ1.

Lemma 2.8 For estimating θ1 in the context of model (1) under squared error loss
L(θ, d) = (d − θ1)

2, with prior additional information θ1 − θ2 ∈ A ⊂ R, the
estimator δφ1(X) dominates δφ0(X) if and only if φ1(Y1) dominates φ0(Y1) in the
problem of estimating μ1 ∈ C = {y : (1 + τ)y ∈ A}.

We now use a recent result fromMarchand and Nicoleris (2019) which gives a class
of minimax Bayes estimators for a normal mean suspected to be positive.

Lemma 2.9 (Marchand and Nicoleris 2019) For X ∼ N (ε, σ 2), squared error
loss L(ε, d) = (d − ε)2 and parametric restriction ε ≥ 0, estimators δc(X) =
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X + cσ R
( cX

σ

)
, c ∈ (0, 1], dominate δ0(X) = X . Moreover, this class of esti-

mators contains Bayes point estimators of ε under the hierarchical prior density
π(ε |m) = 1[m,∞)(ε) with m ∼ N (0, σ 2

m), namely δc, with c = σ√
σ 2+σ 2

m
.

Combining Lemma 2.8 and Lemma 2.9, one obtains the following result.

Theorem 2.10 Let X be distributed according tomodel (1), τ = σ 2
2

σ 2
1
, with squared error

loss for estimating θ1, L(θ, d) = (d − θ1)
2. Then under the additional information

θ1 − θ2 ≥ 0, estimators of the form

δφc (X) = X1 + c σ1√
1 + τ

R

(
c (X1 − X2)

σ1
√
1 + τ

)
(4)

dominate X1, and are hence minimax, for c ∈ (0, 1]. Furthermore, the choice c =√
1+τ√

1+τ+ σ2m
σ21

coincides with the Bayes estimator for θ1 under the prior given in (1); that

is,

δπσm
(X) = E[θ1|X ] = X1 + σ 2

1√
σ 2
1 + σ 2

2 + σ 2
m

R

⎛

⎝ X1 − X2√
σ 2
1 + σ 2

2 + σ 2
m

⎞

⎠ . (5)

Proof Under the setting of (3), Lemma 2.9 asserts that estimators of the form

δc(Y1) = Y1 + cσY1R

(
cY1
σY1

)
= X1 − X2

1 + τ
+ c σ1√

1 + τ
R

(
c (X1 − X2)

σ1
√
1 + τ

)
(6)

dominate δ0(Y1) = Y1 for c ∈ (0, 1]. Thus, with φ0(Y1) = Y1 and correspondingly
δφ0(X) = Y2+Y1 = X1, Lemma 2.8 yields (4) as a class of estimators which dominate
X1 for c ∈ (0, 1]. �


Theorem 2.10 provides a class of Bayesian estimators that dominate X1 and are
minimax for θ1 ≥ θ2. As for the previously known result when σm = 0, the estimators
δπσm

(X) incorporate the sample information X2 but, in contrast, do not arise from
a prior (or posterior) density for θ concentrated on θ1 ≥ θ2. Expressed otherwise,
choices with σm > 0 allow more flexibility for the data to contradict such a constraint
and for it to be better reflected in the posterior distribution determination. Despite this
accommodation, the estimators δπσm

(X) for σm > 0 still remain minimax for θ1 ≥ θ2
and will have less inflated risk than δπ0(X) for parameter values of θ such that θ1 < θ2.
The value of σm relates to the degree of confidence for which θ1−θ2 ≥ m and impacts
the corresponding risk accordingly. Several of the frequentist risk features above will
be paralleled by the frequentist coverage analysis of Bayes credible sets, which is the
object of study of Sect. 3. Finally, questions ofminimaxity and admissibility, including
simultaneous estimation of θ = (θ1, θ2)

�, are addressed in Drew (2021).
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3 Bayes credible sets

Having evaluated the posterior distribution of θ1 under model and prior (1), we now
turn to the construction of a Bayesian credible set for θ1 and the study of its frequen-
tist coverage probability and length. One objective is to determine the effect of the
additional information on the credible sets, notably by considering the length of the
intervals, as well as their frequentist coverage probability and credibility. Naturally,
one may strive to obtain a satisfactory compromise between a short interval and good
coverage. While there exist several types of credible sets; one thinks of highest pos-
terior density (HPD) or equal-tails for example; we focus on an ad hoc interval with
approximate credibility 1 − α due to its ease of computation (i.e., explicit endpoints)
and interpretation, which also presents the potential for further analytical determina-
tion of frequentist coverage probability. In Sect. 3.1, the ad hoc credible set studied is
of a standard form E[θ |x] ± zα/2 σ(θ |x) (e.g., Berger 1985). In Sect. 3.2, we propose
and study a modification based on the idea of a “spending function” (e.g., Marchand
and Strawderman 2013) that shifts the above credible set towards lower values.

3.1 An ad hoc credible set

The Bayes credible set studied here is given by Definition 3.1.

Definition 3.1 Let E(U |x) and V(U |x) denote respectively the posterior expectation
and variance of U given by Lemma 2.5. The ad hoc Bayes credible interval for θ1 (i.e.,
for σ1U + X1) is defined as

Iah(X) = [X1 + l(X1 − X2), X1 + u(X1 − X2)], (7)

where l(d) = σ1E(U |x)−zα/2σ1
√
V(U |x) and u(d) = σ1E(U |x)+zα/2σ1

√
V(U |x),

and where zα/2 = �−1
(
1 − α

2

)
.

Theorem 3.2 (also see Denis 2010) gives an expression for the frequentist coverage
probability of a more general interval for θ1, of which Iah(X) is a particular case.

Theorem 3.2 Let Xi ∼ N (θi , σ
2
i ), i = 1, 2, independent, with d = X1 − X2, σ 2

i
known and consider an interval of the form I (X) = [X1 + l(d), X1 + u(d)]. Then the
frequentist coverage probability, P[θ1 ∈ I (X)], is given by

C(θ) = E
Z
[
�

(
γ u

{√
σ 2
1 + σ 2

2 Z + β

}
+ σ1

σ2
Z

)

−�

(
γ l

{√
σ 2
1 + σ 2

2 Z + β

}
+ σ1

σ2
Z

)]
, (8)

where β = θ1 − θ2, γ =
√

σ 2
1 +σ 2

2

σ1σ2
, and Z ∼ N (0, 1).

Proof We have C(θ) = Pθ [θ1 ∈ I (X)] = Pθ

[
X1 + l{X1 − X2} ≤ θ1 ≤ X1 + u

{X1 − X2}
] = Pθ [−u{Y1 − Y2 + β} ≤ Y1 ≤ −l{Y1 − Y2 + β}] , where Yi = Xi −
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Fig. 1 Frequentist coverage probability of the ad hoc interval (1 − α = 0.95, σ 2
1 = σ 2

2 = 1) as a function
of β = θ1 − θ2 for varying σm

θi ∼ N (0, σ 2
i ), i = 1, 2, are independent. Setting Z = Y1−Y2√

σ 2
1 +σ 2

2

and Z ′ = γ
(
Y1 −

σ 2
1√

σ 2
1 +σ 2

2

Z
)
, we obtain (Z , Z ′)T ∼ N2(0, I2). Now, by conditioning, we have

C(θ) = P

⎡

⎣γ

⎛

⎝−u

{√
σ 2
1 + σ 2

2 Z + β

}
− σ 2

1√
σ 2
1 + σ 2

2

Z

⎞

⎠

≤ Z ′ ≤ γ

⎛

⎝−l

{√
σ 2
1 + σ 2

2 Z + β

}
− σ 2

1√
σ 2
1 + σ 2

2

Z

⎞

⎠

⎤

⎦

= E
Z

⎡

⎣P

⎡

⎣γ

⎛

⎝−u

{√
σ 2
1 + σ 2

2 Z + β

}
− σ 2

1√
σ 2
1 + σ 2

2

Z

⎞

⎠

≤ Z ′ ≤ γ

⎛

⎝−l

{√
σ 2
1 + σ 2

2 Z + β

}
− σ 2

1√
σ 2
1 + σ 2

2

Z

⎞

⎠

⎤

⎦

⎤

⎦ ,

which yields (8). �


As a first example, Fig. 1 presents the frequentist coverage probability of the ad
hoc interval for σ1 = σ2 = 1, a 0.95 nominal level and varying σm .
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While the maximum coverage appears to decrease in σm , the overall discrepancy
between frequentist coverage and credibility for β ≥ 0 tends to diminish as σm
increases. The coverage of Iah(X) at β = 0 also appears to increase as σm increases
(although it seems to remain below the nominal level 1 − α). The same ordering
occurs for negative values of β, which is understandable as larger values of σm cor-
relate with more uncertainty on the bound β ≥ 0, which in turn becomes reflected
in the posterior distribution. Moreover, we have limβ→∞ C(θ) = 1 − α. This can
be shown in the same way as in Remark 3.3 below for σm → ∞ since we have
limd→∞ u(d) = − limd→∞ l(d) = σ1zα/2. We noted similar overall behaviour of
Iah(X) for other nominal levels such as 0.80, 0.90 and 0.99.

Remark 3.3 Without recourse to the additional information provided by X2, a bench-
mark confidence interval for θ1 is given by X1 ± zα/2σ1. This interval arises from
Iah(X) by takingσm → ∞ in (2) and (7), yielding limσ 2

m→∞ π(u|x) = φ(u), ∀u ∈ R.

Accordingly, one infers that limσm→∞ C(θ) = 1− α, ∀θ ∈ R
2, and this is illustrated

in Fig. 1 (for θ1 ≥ θ2 mostly) with the flattening out around the nominal level observed
as σm increases.

We also consider the credibility P[θ1 ∈ Iah(X)|x] of the ad hoc interval, also given
by

P[U ∈ [l(d), u(d)]|x] =
∫ u(d)

l(d)

π(u|x)du,

where l(d) = E[U |x] − zα/2
√
V(U |x) and u(d) = E[U |x] + zα/2

√
V(U |x).

Figure 2 presents the credibility as a function of d = x1 − x2 of the ad hoc interval
with 1 − α = 0.95, and σ 2

1 = σ 2
2 = 1 for varying values of σm . Examining Fig. 2,

we notice that the credibility flattens out around the nominal level as σm increases,
as was the case for the coverage probability, which is justified here by the fact that
π(u|x) → φ(u) as σ 2

m → ∞. For all values of σm , the exact credibility is remarkably
close to the nominal level, with slightly higher credibility for positive d. Such closeness
was equally observed for other nominal levels and other settings of σ 2

1 and σ 2
2 .

3.2 Credible sets defined in terms of a spending function

The ad hoc procedure previously considered creates a credible set which is centered
at the mean of the posterior distribution and which extends on either side of the mean
by equal amounts. Given the asymmetry of the posterior density, it is justifiable to
consider throwing out α1 in one tail and α2 in the other tail such that α1 + α2 = α.
As above, exact credibility will not be achieved for all x , but it turns out for practical
purposes to be close to nominal credibility (see Fig. 4). This idea of discarding unequal
amounts in the tails is referred to as a spending function in Ghashim et al. (2016), and
previously in Marchand and Strawderman (2013). We consider the situation where we
discard kα in the left tail and (1−k)α in the right tail. The adjustment in this direction
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Fig. 2 Credibility of the ad hoc interval (1 − α = 0.95, σ 2
1 = σ 2

2 = 1) as a function of d = x1 − x2 for
varying σm

with k < 1/2 is motivated by a relatively smaller coverage for β = θ1 − θ2 closer to
0 (see Fig. 1).

Definition 3.4 Let E(U |x) and V(U |x) denote respectively the posterior expectation
and variance of U given by Lemma 2.5. The ad hoc Bayes credible interval for θ1 =
σ1U + X1 defined in terms of a spending function is given by

I ′
ah(X) = [X1 + l ′(X1 − X2), X1 + u′(X1 − X2)], (9)

where l ′(d) = σ1E(U |x) − zkα σ1
√
V(U |x) and u′(d) = σ1E(U |x) + z(1−k)α σ1√

V(U |x), with zα = �−1 (1 − α).

Theorem 3.2 holds for general u(d) and l(d), so Eq. (8) holds here for all values
of k. Figure 3 presents the frequentist coverage probability of the ad hoc interval for
σ1 = σ2 = 1, σm = 0, a 0.95 nominal level and varying values of k in the spending
function.

Similarly to previous results, it is easy to show that limβ→∞ C(θ) = 1 − α for all
k. The coverage at β = 0 appears to be a decreasing function of k. Further numerical
exploration suggests that C(0) ≥ 1 − α for k ≤ 1/4, even for various other values of
1−α. Moreover, for small values of k, the minimum coverage is no longer attained at
β = 0. It would be interesting to investigate theoretically if the coverage has a local
minimum after the initial peak or if it decreases monotonically towards the limiting
value of (1 − α). If the latter were true, then the coverage would always be above
the nominal value whenever C(θ) > 1 − α for θ1 − θ2 = 0. Further illustration and
observations about the coverage at β = 0 are provided by Drew (2021).

Figure 4 presents the credibility as a function of d = x1 − x2 of the ad hoc interval
for σ1 = σ2 = 1, σm = 0, a 0.95 nominal level and varying values of k.
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Fig. 3 Frequentist coverage probability of the ad hoc interval (1 − α = 0.95, σ 2
1 = σ 2

2 = 1, and σ 2
m = 0)

as a function of β = θ1 − θ2 for varying values of k in the spending function

Fig. 4 Credibility of the ad hoc interval (1 − α = 0.95, σ 2
1 = σ 2

2 = 1, and σ 2
m = 0) as a function of

d = x1 − x2 for varying values of k in the spending function

The overall credibility appears to be the best when k = 1/2, and decrease as k
decreases. That being said, for all values of k plotted here, the credibility remains
extremely close to the nominal level. For the sake of further comparison, Table 1 gives
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Table 1 Approximatemaximumcredibility discrepancy for the ad hoc interval with k = 1/4 in the spending
function, σ1 = σ2 = 1 and σm = 0

1 − α 0.80 0.90 0.95 0.99

Maximum discrepancy 0.0049 0.00065 0.0014 0.0017

an approximate maximum discrepancy of the credibility for k = 1/4 and varying
values of 1 − α.

Remark 3.5 Unsurprisingly, the credible intervals Iad(X) and I ′
ad(X) typically lead to

shorter intervals in comparison to the non-informative case σm → ∞. The expected
length of these credible intervals is further studied in Drew (2021) and illustrated for
various settings of σ 2

m and the spending function (i.e., k).

4 Concluding remarks

For estimating the suspected larger (θ1) of two normal means (θ1 and θ2), we have
studied the frequentist risk performance of Bayesian point and interval estimators
associated with non-informative prior densities of the form:

π(θ1, θ2|m) = 1[m,∞)(θ1 − θ2), m ∼ N (0, σ 2
m).

Firstly, we establish for all σm > 0 the minimaxity of the Bayesian point estimator
of θ1 under squared error loss and when the supremum risk is taken on θ1 ≥ θ2, thus
extending the previously known result for σm = 0. Secondly, we provide ample evi-
dence of satisfactory, or even excellent, frequentist performance of Bayesian credible
sets for the same priors as measured on the set of parameter values θ1 ≥ θ2, with such
procedures capitalizing on the additional information available for θ2. In doing so, we
have elicited how the frequentist probability of coverage varies with the difference
β = θ1−θ2, as well as vary according to the choice of the hyperparameter σm ranging
from the “no-useful additional information case” (σm → ∞) to the certain constraint
θ1 ≥ θ2 (σm = 0). Moreover, we have further illustrated the role of a spending func-
tion in the construction of the Bayesian credible set and how its setting can give rise
to even better frequentist coverage probability.

The findings of this paper also apply to situations where m ∼ N (ξ, σ 2
m) in (1)

with ξ �= 0. Indeed for such a case, we can set X ′
1 = X1 − ξ and θ ′

1 = θ1 − ξ

so that point and interval estimates of θ ′
1 based on (X ′

1, X2) with θ ′
1 − θ2 ≥ m′,

m′ =d m−ξ ∼ N (0, σ 2
m), translate to point and interval estimates of θ1. For instance,

he above strategy will generate point estimates θ̂1(x) = θ̂ ′
1(x

′
1, x2) + ξ . Theorem

2.10’s minimaxity result will then apply to the parametric restriction θ1 − θ2 ≥ ξ , and
Section 3’s study of frequentist coverage probability which pertains to β ′ = θ ′

1 − θ2
will equate to β = θ1 − θ2 ≥ ξ .

The results of this paper do leave open several interesting questions about analyti-
cally derived lower bounds on coverage probabilities which bring into play the model
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variances, the choice of σm , as well as the spending function setting. It would be par-
ticularly interesting to proceed with an analysis for an unknown variances extension
of model (1). Finally, although we have focussed on a relatively simple two-parameter
problem with normal observables, we do believe that the ideas or techniques put forth
can be adapted to a wider range of settings, namely the incorporation of uncertainty
on a parametric restriction and the use of a spending function in the construction of
Bayesian credible sets.
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