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Abstract
Beta regression models are employed to model continuous response variables in the
unit interval, like rates, percentages, or proportions. Their applications rise in sev-
eral areas, such as medicine, environment research, finance, and natural sciences. The
maximum likelihood estimation is widely used to make inferences for the param-
eters. Nonetheless, it is well-known that the maximum likelihood-based inference
suffers from the lack of robustness in the presence of outliers. Such a case can bring
severe bias andmisleading conclusions. Recently, robust estimators for beta regression
models were presented in the literature. However, these estimators require non-trivial
restrictions in the parameter space, which limit their application. This paper develops
new robust estimators that overcome this drawback. Their asymptotic and robustness
properties are studied, and robust Wald-type tests are introduced. Simulation results
evidence the merits of the new robust estimators. Inference and diagnostics using the
new estimators are illustrated in an application to health insurance coverage data. The
new R package robustbetareg is introduced.

Keywords Beta regression · Lq -likelihood · Outliers · Proportional data · Robust
estimators · Robust inference

1 Introduction

Beta regression is a flexible and popular tool for modeling proportions, rates, and
other continuous response variables restricted to the open unit interval. Beta regression
models are employed to model the relationship between predictors and a continuous
response variable that is assumed to follow a beta distribution. The beta regression
model with constant precision was introduced by Ferrari and Cribari-Neto (2004) and
was extended in various directions. For instance, in Smithson and Verkuilen (2006)
and Simas et al. (2010), both the mean and precision parameters are modeled using
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predictors. There are numerous applications involving beta regression in different
areas such as medicine (Guolo and Varin 2014; Swearingen et al. 2011), environment
research (Silva et al. 2015), finance (Cook et al. 2008), and natural sciences (Geissinger
et al. 2022).

The probability density function of the beta distribution in the mean-precision
parameterization is

f (y;μ, φ) = 1

B(μφ, (1 − μ)φ)
yμφ−1(1 − y)(1−μ)φ−1, 0 < y < 1, (1)

where 0 < μ < 1,φ > 0, and B(·, ·) is the beta function, andwewrite y ∼ Beta(μ, φ).
We have E (y) = μ and Var (y) = μ(1− μ)/(1+ φ), hence μ is the mean parameter
and φ can be interpreted as a precision parameter. If μφ > 1 and (1 − μ)φ > 1, the
beta density (1) is bounded, has a single mode in (0, 1), and decreases to zero as y ↓ 0
or y ↑ 1. When μφ < 1 or (1 − μ)φ < 1, the beta density is unbounded at one or
both boundaries.

The beta regression model considered here is defined as follows. Let y1, . . . , yn be
independent random variables such that yi ∼ Beta(μi , φi ), for i = 1, . . . , n, with

gμ(μi ) = X�
i β, (mean submodel)

gφ(φi ) = Z�
i γ , (precision submodel)

(2)

where β = (β1, . . . , βp1)
� and γ = (γ1, . . . , γp2)

� are vectors of unknown regres-
sion coefficients (p = p1+p2 < n); X i = (xi1, . . . , xip1)

� and Zi = (zi1, . . . , zip2)
�

are vectors of the covariates, and θ = (β�, γ �)� ∈ R
p is the unknown parameter vec-

tor. The link functions gμ : (0, 1) → R and gφ : (0,∞) → R are strictly increasing
and, at least, twice differentiable.

The maximum likelihood approach is usually employed for estimating θ . However,
the maximum likelihood estimator (MLE) is highly sensitive to outliers. Recently,
Ghosh (2019) and Ribeiro and Ferrari (2022) proposed robust estimators for the beta
regression model (1)–(2). These estimators require suitable restrictions in the param-
eter space. If all the beta densities in model (1)–(2) are bounded, the robust estimators
and their respective asymptotic covariance matrices are well-defined. Note that the
boundedness of all the beta densities assumption requires implicit, non-trivial restric-
tions in the parameter space of the regression parameters β and γ . Moreover, these
restrictions depend on the covariate vectors X i and Zi for all i = 1, . . . , n. If the
restrictions are not satisfied, relevant numerical problems may arise when employing
the robust estimators in empirical applications.

This paper introduces two new robust estimators for the beta regression model
(1)–(2). They are derived using methods similar to those employed by Ghosh (2019)
and Ribeiro and Ferrari (2022), with the advantage of not requiring restrictions in the
parameter space.

The remaining of this paper is organized as follows. Section2 briefly describes
the estimators developed by Ghosh (2019) and Ribeiro and Ferrari (2022). Section3
presents two new robust estimators that overcome the limitations of the current robust
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estimators. Robustness and asymptotic properties of the new estimators and the new
package robustbetareg are also presented in Sect. 3. Section4 shows simulation
results that evidence the merits of the new estimators over the MLE and the current
robust estimators. An application of the proposed methods is discussed in Sect. 5. The
paper closes with some remarks and directions for future works.

2 Current robust estimators

Ghosh (2019) proposed the minimum density power divergence estimator (MDPDE)
for the beta regressionmodel, a robust estimator based on the density power divergence
that involves a tuning constant, α ≥ 0 (Basu et al. 1998; Ghosh and Basu 2013). It
solves the estimating equation

n∑

i=1

[
U(yi ; θ) fθ (yi ;μi , φi )

α − Ei,1−α(θ)
] = 0,

where fθ (yi ;μi , φi ) denotes the beta density (1) with μi and φi given by (2),
U(yi ; θ) = ∇θ log( fθ (yi ;μi , φi )), and Ei,1−α(θ) = E [U(yi ; θ) fθ (yi ;μi , φi )

α].
The factor fθ (yi ;μi , φi )

α acts as the weight of the i-th observation in the estima-
tion procedure. If α = 0, we have the maximum likelihood estimator. Choices of
α ∈ (0, 1) leads to a robust procedure because observations that are inconsistent with
the postulated model receive smaller weights. If α ≥ 1, the estimator is highly robust
but severely inefficient. Hence, from now on, we will restrict α ∈ [0, 1). The role
of Ei,1−α(θ) is to center the weighted score, ensuring Fisher-consistency. However,
Ei,1−α(θ) is not well-defined unless μiφi > α/(1 + α) and (1 − μi )φi > α/(1 + α).
Moreover, the asymptotic covariance matrix of the MDPDE is not well-defined unless
μiφi > 2α/(1 + 2α) and (1 − μi )φi > 2α/(1 + 2α) (see Ribeiro and Ferrari (2022)
for details).

Ribeiro and Ferrari (2022) proposed an estimator based on the maximization of a
reparameterized Lq -likelihood. The Lq -likelihood (Ferrari and Yang 2010) is

�q(θ) =
n∑

i=1

Lq ( fθ (yi ;μi , φi )) , (3)

where q = 1 − α ∈ (0, 1] is the tuning constant and Lq(u) = (u1−q − 1)/(1 − q),
for q ∈ (0, 1), and Lq(u) = log(u), for q = 1. The estimator that comes from the
maximization of (3) solves the estimating equation

n∑

i=1

U(yi ; θ) fθ (yi ;μi , φi )
α = 0.

Note that the estimating function is not unbiased unless α = 0, hence the resulting esti-
mator is not Fisher-consistent. In Ghosh (2019), the Fisher-consistency is achieved by
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centering the weighted score. Ribeiro and Ferrari (2022) obtained a Fisher-consistent
estimator through a reparametrization of the Lq -likelihood, named surrogate maxi-
mum likelihood estimator (SMLE). The estimating equation is given in Ribeiro and
Ferrari (2022, eq. (10)); it is not well-defined unless μiφi > α and (1 − μi )φi > α.
Also, the validity of its asymptotic covariance matrix requires thatμiφi > 2α/(1+α)

and (1 − μi )φi > 2α/(1 + α).
A sufficient condition for the MDPDE and the SMLE and their respective asymp-

totic covariancematrices to bewell-defined is that all the beta densities inmodel (1)–(2)
are bounded. Under such assumption, the MDPDE and the SMLE have good proper-
ties such as B-robustness, V-robustness, and asymptotic normality. A crucial issue for
the use of the proposed estimators is the choice of the tuning constant. Higher values
of α increase robustness and decrease efficiency. Ribeiro and Ferrari (2022) developed
an effective data-driven algorithm for selecting the optimal α. Simulation results and
real data applications in Ribeiro and Ferrari (2022) evidence the superior performance
of these estimators relative to the MLE for datasets containing outlier observations.

The findings in Ghosh (2019) and in Ribeiro and Ferrari (2022) are guaranteed for
bounded beta densities but not necessarily otherwise. As we will show later, simula-
tions for unbounded beta densities reveal serious numerical problems of the MDPDE
and the SMLE. In the next section we propose alternative robust estimators which
have the advantage of being well-defined for all beta densities.

3 Robust estimators through the logit transformation

The limitation of the MDPDE and the SMLE discussed in the previous section comes
from the fact that the beta densities are not closed under power transformations. Given
a density v and a constant ξ ∈ (0,∞), the power transformations is

v(ξ)(y) = v(y)ξ∫
v(y)ξdy

∝ v(y)ξ , ∀y in the support,

provided that
∫

v(y)ξdy < ∞. For the beta density (1),

f (y;μ, φ)ξ ∝ yξ(μφ−1)(1 − y)ξ [(1−μ)φ−1],

which is integrable for all ξ ∈ (0,∞) if and only ifμφ ≥ 1 and (1−μ)φ ≥ 1. Hence,
the class of the bounded beta densities is closed under power transformations, unlike
the complete class of the beta densities.

To overcome this problem, consider the logit transformation y� = log[y/(1− y)].
If y ∼ Beta(μ, φ), the density function of y� is given by

h(y�;μ, φ) = 1

B(μφ, (1 − μ)φ)

e−y�(1−μ)φ

(1 + e−y�
)φ

, y� ∈ R.

Thedistributionof y� is called exponential generalizedbeta of the second type (Kerman
and McDonald 2015) and we write y� ∼ EGB(μ, φ). Note that h(y�;μ, φ)ξ ∝
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h(y�;μ, ξφ), for all y� ∈ R, μ ∈ (0, 1), and φ, ξ > 0. That is, the class of the EGB
densities is closed under power transformations.

We will construct robust estimators for the parameters of the beta regression model
(1)–(2) using the density function of the logit transformed response variable. These
estimators are based on Ghosh (2019) and Ribeiro and Ferrari (2022) methods and
will be described in the following.

Let y�
i = log[yi/(1 − yi )], where yi , for i = 1, . . . , n, follow the postulated beta

regression model (1)–(2). We denote the density function of y�
i by hθ (·;μi , φi ). The

first proposed robust estimator, named logit minimum density power divergence esti-
mator (LMDPDE), minimizes the empirical version of the density power divergence
given by

Hn(θ) = 1

n

n∑

i=1

Vi (y
�
i ; θ),

where

Vi (y
�
i ; θ) = Ki,1+α(θ) − 1 + α

α
hθ (y

�
i ;μi , φi )

α,

and

Ki,1+α(θ) =
∫ ∞

−∞
hθ (y

�;μi , φi )
1+αdy� = B(μiφi (1 + α), (1 − μi )φi (1 + α))

B(μiφi , (1 − μi )φi )1+α
,

for 0 ≤ α < 1. Note that the integral is finite for all 0 ≤ α < 1. The estimating
equation ∇θHn(θ) = 0 is given by

n∑

i=1

[U(yi ; θ)hθ (y
�
i ;μi , φi )

α − Ei,1−α(θ)] = 0, (4)

in which

U(yi ; θ) =
(

φi
(y�

i − μ�
i )

g′
μ(μi )

X�
i ,

μi (y�
i − μ�

i ) + (y†i − μ
†
i )

g′
φ(φi )

Z�
i

)�
,

Ei,1−α(θ) = E
[
U(yi ; θ)hθ (y

�
i ;μi , φi )

α
] =

(
γ

(1+α)
1,i X�

i , γ
(1+α)
2,i Z�

i

)�
,

where y†i = log(1 − yi ),

γ
(α)
1,i = φiKi,α(θ)

g′
μ(μi )

(μ�
i,α − μ�

i ), γ
(α)
2,i = Ki,α(θ)

g′
φ(φi )

[μi (μ
�
i,α − μ�

i ) + (μ
†
i,α − μ

†
i )],
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withμ�
i = E(y�

i ) = ψ(μiφi )−ψ((1−μi )φi ),μ
†
i = E(y†i ) = ψ((1−μi )φi )−ψ(φi ),

μ�
i,α = ψ(μiφi,α)−ψ((1−μi )φi,α),μ†

i,α = ψ((1−μi )φi,α)−ψ(φi,α),ψ(·)denoting
the digamma function, and φi,α = φiα.

The weight of the i-th observation in the estimating equation (4) of the LMD-
PDE is hθ (y�

i ;μi , φi )
α . In contrast, the corresponding weight for the MDPDE

is fθ (yi ;μi , φi )
α . If α = 0, hθ (y�

i ;μi , φi )
α = 1 and Ei,1−α(θ) = 0, for all

i = 1, . . . , n; hence the LMDPDE coincides with the MLE. Unlike the estimating
function of the MDPDE, that of the LMDPDE is well-defined for all α ∈ [0, 1) and
θ ∈ R

p.
The second robust estimator is based on Ribeiro and Ferrari (2022) method, and

is named logit surrogate maximum likelihood estimator (LSMLE). The Lq -likelihood
based on the density hθ (·;μi , φi ) is given by (3) with fθ (yi ;μi , φi ) replaced by
hθ (y�

i ;μi , φi ). As expected, the estimator that comes from the maximization of the
Lq -likelihood is not Fisher-consistent. In otherwords, the estimating function is biased.
Since the class of the EGB densities is closed under power transformations, Fisher-
consistency can be achieved by maximizing the Lq -likelihood in the parametrization
τ1/(1−α)(θ) (Ferrari and La Vecchia 2012; La Vecchia et al. 2015), where τω(θ) :
� �−→ � is a continuous function satisfying hτω(θ)(y�;μ, φ) = h(ω)

θ (y�;μ, φ), for
all y� ∈ R. The LSMLE is the maximizer of

�∗
1−α(θ) =

n∑

i=1

L1−α

(
h

(
1

1−α

)

θ (y�
i ;μi , φi )

)
,

where h

(
1

1−α

)

θ (y�
i ;μi , φi ) = hθ

(
y�
i ;μi , φi,(1−α)−1

)
, with 0 ≤ α < 1, and μi and

φi satisfying (2). Note that hθ

(
y�
i ;μi , φi,(1−α)−1

)
is the density function of the logit

transformation of a variable that follows a modified beta regression model with mean
and precision submodels given respectively by

g∗
μ(μi ) = gμ(μi ) = X�

i β, g∗
φ(φi ) = gφ(φi,1−α) = Z�

i γ ,

which will be denoted by h∗
θ (y

�
i ;μi , φi ). Thus, the LSMLE is the maximizer of

�∗
1−α(θ) =

∑

i∈℘

L1−α

(
h∗

θ (y
�
i ;μi , φi )

)
.

It solves the estimating equation

n∑

i=1

U∗(y�
i ; θ)h∗

θ (y
�
i ;μi , φi )

α = 0, (5)
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where U∗(y�
i ; θ) = ∇θ log h∗

θ (y
�
i ;μi , φi ) is the modified score vector for the i-th

observation given by

U∗(y�
i ; θ) =

(
φi

(y�
i − μ�

i )

g′
μ(μi )

X�
i , (1 − α)−1μi (y�

i − μ�
i ) + (y†i − μ

†
i )

g′
φ(φi,1−α)

Z�
i

)�
.

In the Supplementary Material (Section 1) we show that the LSMLE is Fisher-
consistent.

Asymptotic normality. Let θ̂α = (β̂
�
α , γ̂ �

α )� and θ̃α = (β̃
�
α , γ̃ �

α )� be the LMDPDE
and the LSMLE, respectively, for fixed α ∈ [0, 1). Since they are M-estimators,

under suitable regularity conditions1, we have that θ̂α
a∼ N(θ, V 1,α(θ)) and θ̃α

a∼
N(θ , V 2,α(θ)), where

a∼ denotes asymptotic distribution,

V 1,α(θ) = �−1
1,α(θ)�1,α(θ)�−1

1,α(θ), V 2,α(θ) = �−1
2,α(θ)�2,α(θ)�−1

2,α(θ),

and the expressions for� j,α(θ) and� j,α(θ), j = 1, 2, are given in the Appendix; see
the Supplementary Material (Section 2) for details. The covariance matrices V 1,α(θ)

and V 2,α(θ) are well-defined for all α ∈ [0, 1) and θ ∈ R
p unlike those of the

SMLE andMDPDE (Ribeiro and Ferrari 2022). In addition, the asymptotic covariance
matrices are equal to the asymptotic covariance matrix of the MLE for α = 0.

Robustness properties. In the context of robust estimators, the influence function
plays an important role. Introduced by Hampel (1974), the influence function repre-
sents the first-order measure of the effect on the asymptotic bias caused by a slight
contamination in a data point. Since the LMDPDE and the LSMLE are M-estimators,
their influence functions are respectively given by

IF(y�; θ̂α) = �−1
1,α(θ)[U(y; θ)hθ (y

�;μ, φ)α − E1−α(θ)],
IF(y�; θ̃α) = �−1

2,α(θ)U∗(y�; θ)h∗
θ (y

�;μ, φ)α,

where E1−α(θ) = E
[
U(y; θ)hθ (y�;μ, φ)α

]
. The influence functions of the LMD-

PDE and the LSMLE are bounded, that is they are B-robust. We also extend the
robustness analysis to the change-of-variance function, which measures the bias on
the covariance matrix due to an infinitesimal contamination in a data point. We show
that the change-of-variance functions of the LMDPDE and the LSMLE are bounded,
that is they are V-robust (Hampel et al, 2011, Section 2.5); see the Supplementary
Material, Section 3, for details. These robustness properties do not hold for the MLE
and are guaranteed for theMDPDE and SMLE for bounded beta densities; see Ribeiro
and Ferrari (2022).

1 Specific regularity conditions required for the large sample properties of minimum power divergence
estimators in non-i.i.d. settings are outlined in Ghosh and Basu (2013). However, it is worth noting that
some of these conditions are particularly intricate to confirm within specific models. Similar conditions for
surrogate maximum likelihood estimators may be stated. Remarkably, as of our current knowledge, they
have not been explicitly listed in the statistical literature.
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Robust Wald-type tests. Let m : Rp → R
d , with d ≤ p, be a continuously differ-

entiable function of θ . Assume that its Jacobian d × p matrix, Jm(θ), has rank d.
Consider the null hypothesis m(θ) = η0, for a fixed η0 ∈ R

d , to be tested against a
two sided alternative. Let

Wj,α(θ) = (m(θ) − η0)
� [

Jm(θ)V j,α(θ)Jm(θ)�
]−1

(m(θ) − η0),

for j = 1, 2. The Wald-type test statistics that use the LMDPDE and the LSMLE
are, respectively, given by W1,α (̂θα) and W2,α (̃θα). Under the null hypothesis, both
statistics are asymptotically χ2

d -distributed. They coincide with the usual Wald test
statistic if α = 0.

Selecting the tuning constant.Ribeiro and Ferrari (2022, Section 3) proposed a data-
driven algorithm to select the tuning constant for the MDPDE and the SMLE. The
idea is to select α, in an ordered grid from α = 0 to α = αmax, that is closest to
zero such that the estimates of the parameters are sufficiently stable, ensuring full
efficiency for non-contaminated data. If the algorithm does not reach stability up to
αmax, it returns the MLE (α = 0). Here, the algorithm is implemented for selecting α

for the LMDPDE and the LSMLE.
For the sake of completeness, we provide the steps of the Ribeiro and Ferrari (2022)

algorithm. Let α0 = 0 < α1 < α2 < · · · ≤ 1 be an ordered grid of values for α, and
let zαk be the vector of standardized estimates with tuning constant αk , i.e.,

zαk =
(

θ̂1αk√
n se(θ̂1αk )

, · · · ,
θ̂
p
αk√

n se(θ̂ p
αk )

)�
,

where se(·) denotes the asymptotic standard error.
We define the standardized quadratic variation (SQV) for θ̂αk as SQVαk =

p−1||zαk − zαk+1 ||. If SQVαk is small, the estimation with α = αk and α = αk+1
are similar.

1. Define an ordered, equally spaced grid for α: α0 = 0 < α1 < α2 < · · · ≤ αm1 =
0.2.

2. if the stability condition SQVαk < L , where L > 0 is a pre-defined threshold,
holds for all k = 0, 1, . . . ,m1 − 1, set the optimal value of α at α∗ = α0 = 0;
otherwise, set αstart at the next point in the grid after the smallest αk for which the
stability condition is not satisfied;

3. define a new ordered, equally spaced grid for α starting from αstart: α0 = αstart <

α1 < α2 < · · · < αm , where αm ≤ αmax;
4. if the stability condition is satisfied for all k = 0, 1, . . . ,m − 1, set the optimal

value of α at α∗ = α0 = αstart; otherwise, set αstart at the next point in the grid
after the smallest αk for which the stability condition does not hold;

5. repeat steps 3–4 until achieving stability of the estimates in the current grid or
reaching the maximum value of α, αmax;

6. if αmax is reached without stability in the last grid, repeat steps 3-5 with αstart = 0;
7. if αmax is reached again without stability in the last grid, set α∗ = 0.
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Ribeiro and Ferrari (2022) suggest setting αmax = 0.5, L = 0.02, the grid spacings
at 0.02 (hence m1 = 10), and m = 3; refer to Section 3 in their paper for further
details. These values are employed in our simulations and application.

R implementation.To enhance the practical utility of the current and proposed estima-
tors, we developed the new R package robustbetareg, which is readily accessible
on CRAN (https://CRAN.R-project.org/package=robustbetareg). Currently, four types
of robust estimators are supported in the package: SMLE, MDPDE, LSMLE, and
LMDPDE. The tuning constant may be fixed or selected by the data-driven algorithm
presented in the previous paragraph. In addition, diagnostic tools associated with the
fitted model, such as the residuals and goodness-of-fit statistics, are implemented.
Robust Wald-type tests are available. Detailed instructions for utilizing the package
and its functions, including model fitting, can be found within the package manual
(Queiroz et al. 2022).

4 Simulation studies

In this section, we evaluate the performance of the robust estimators and the MLE for
the beta regression model (1)–(2). We employ the logit and the logarithmic link func-
tions for the mean and precision submodels, respectively. Both submodels include
an intercept, i.e., xi,1 = zi,1 = 1, i = 1, . . . , n. The sample sizes are set at
n = 40, 80, 160, and 320. The covariate values for the mean submodel are set
for the sample size n = 40 as random draws from a standard uniform distribution
and replicated twice, four times and eight times for the other values of n. For the
non-constant precision scenario, the covariate values for the mean submodel are used
in the precision submodel. All the covariate values are kept constant over all the simu-
lated samples. We consider non-contaminated and contaminated samples with a fixed
contamination rate, namely 5%. All simulations were carried out using the R software
(R Core Team 2022), and the results are based on 1000 Monte Carlo replications.
The codes used to compute all the estimators are the same, with the corresponding
maximization functions and respective score vectors and covariance matrices. Thus,
the implementations have similar efficiency. The codes to reproduce all the simulation
results are available at https://github.com/ffqueiroz/RobustBetareg.

We consider three different scenarios. Figure1 shows scatter plots of a sample
generated under each scenario for n = 40.

Scenario A: bounded beta densities; constant precision. The parameters are set at
β1 = −1, β2 = −2 and γ1 = 5. The possible values for μ range in (0.05, 0.27)
and φ = exp(5) ∼= 148. For the contaminated samples, we replace the observations
generated with the 5% smallest means by observations generated with mean μ′

i =
(1 + μi )/2. All the beta densities in this scenario are bounded.

Scenario B: unbounded beta densities; constant precision. The parameters are set at
β1 = −1, β2 = −5.5 and γ1 = 5. The possible values forμ range in (0.001, 0.27) and
φ = exp(5) ∼= 148. For the contaminated samples, the observations generated with
the 5% highest means are replaced by observations generated with mean μ′

i = 0.002.
Some beta densities in this scenario are unbounded.
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Fig. 1 Scatter plots of contaminated samples generated as in Scenarios A, B, and C with n = 40. The
contaminated observations are represented by solid black circles

Scenario C: unbounded beta densities; varying precision. The parameters are set
at β1 = −3, β2 = 7.5, γ1 = 1, and γ2 = 2. The possible values for μ and φ

range in (0.05, 0.98) and φ ∈ (2.7, 20.1), respectively. For the contaminated samples,
the observations generated with the 5% highest means are replaced by observations
generated with μ′

i = exp (β1)/(1+ exp (β1)) ∼= 0.05 and φ′
i = exp(γ1 + γ2) ∼= 20.1.

Some beta densities in this scenario are unbounded.
First, we run simulations for the three scenarios with n = 40 for fixed values of the

tuning constant α ranging from 0 to 0.05 incremented by 0.05. For each α value, we
compute the failure rate over the 1000 simulated samples for the robust estimates: the
MDPDE, the SMLE, the LMDPDE, and the LSMLE. We consider a failure whenever
the optimization algorithm for computing the estimate does not reach convergence or
the asymptotic standard error can not be calculated. In Scenario A, no sample resulted
in failure for any of the estimators. Recall that all the beta densities in this scenario are
bounded. Figure2 displays plots of the failure rates for Scenarios B and C. The failure
rate of SMLE and the MDPDE tend to increase as α grows, more so in Scenario C. In
contrast, for the new robust estimators, the failure rate is equal (or close) to zero for
all values of α, both under non-contaminated or contaminated data. The high failure
rate of SMLE and MDPDE has a theoretical reason. In fact, for beta densities that are
not bounded, the SMLE and MDPDE may not even be well defined, unlike LSMLE
and LMDPDE. This limitation of SMLE and MDPDE is reflected in our simulation
results. Simulations for the other sample sizes reveal a similar pattern.

We now report simulation results using the data-driven algorithm for selecting
the optimum value of α proposed by Ribeiro and Ferrari (2022). Figures3, 4, and
5-6 display the boxplots of the parameter estimates using the MLE, the SMLE, the
MDPDE, the LSMLE, and the LMDPDE under Scenarios A, B, and C, respectively.

The MLE is highly affected by contaminated observations for all the scenarios and
presents a severe bias. For instance, the maximum likelihood estimates of γ1 in Sce-
nario B are around its true value, 5, for the non-contaminated data and around 2 for the
contaminated data. In Scenario A, all the robust estimators present good performances
for both contaminated and non-contaminated data. They behave similarly to the MLE
under non-contaminated samples. Recall that all the beta densities in this scenario are
bounded. In Scenarios B and C, which include unbounded beta densities, the MDPDE
and the SMLE do not behave well for the non-contaminated data. In these cases, for
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Fig. 2 Plots of the failure rate versus the tuning constant α for Scenario B (left) and Scenario C (right) for
non-contaminated samples (first row) and contaminated samples (second row): SMLE (triangle), MDPDE
(square), LSMLE (circle), and LMDPDE (star)

almost all the samples, the selected optimum tuning constants are zero, resulting in
non-robust estimates. It happens because the optimization fails; hence, the algorithm
does not reach stability in the estimates and returns the MLE. In contrast, the LMD-
PDE and the LSMLE perform well in the presence and absence of contamination.
Also, these estimators have similar behavior. For samples of moderate and large sizes
(n = 80, 160, 360), the performances of the LMDPDE and LSMLE are excellent.
The simulation results indicate that the proposed estimators (LMDPDE and LSMLE)
are robust in the presence of outliers, unlike the MLE. Also, the MDPDE and SMLE
may not be useful in scenarios involving unbounded beta densities. In general, in the
presence of contamination, the robustness obtained through the new proposed esti-
mators comes at the cost of a slight increase in variability, especially in small sample
sizes (n = 40).

The data-driven algorithm to select the tuning constant α had an excellent perfor-
mance for the LMDPDE and the LSMLE (see Fig. 7). The selected optimum α is zero
for the LMDPDE and the LSMLE for non-contaminated data, except for a few sam-
ples when n = 40. Recall that α = 0 corresponds to the MLE. For the contaminated
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Fig. 3 Boxplots of estimates of β1 (first row), β2 (second row), and γ1(third row) for the MLE and the
robust estimators. The red dashed line represents the true parameter value

Fig. 4 Boxplots of estimates of β1 (first row), β2(second row), and γ1(third row) for the MLE and the
robust estimators. The red dashed line represents the true parameter value
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Fig. 5 Boxplots of estimates of β1 (first row) and β2(second row) for the MLE and the robust estimators.
The red dashed line represents the true parameter value

Fig. 6 Boxplots of estimates of γ1 (first row) and γ2(second row) for the MLE and the robust estimators.
The red dashed line represents the true parameter value

data, the selected optimum values of α are around 0.1 for Scenarios A and B and
around 0.15 for Scenario C. Hence, the algorithm can identify the need to use a robust
procedure. In Scenario A, the MDPDE and the SMLE behave like the LMDPDE and
the LSMLE. On the other hand, for Scenarios B and C, the selected optimum α values
for the MDPDE and the SMLE are close to zero for both non-contaminated and con-
taminated data. This happens because the algorithm does not achieve stability under
contaminated data for most of the samples.

We now report the empirical levels of the Wald test (that uses the MLE) and the
robustWald-type test based on theLMDPDEand theLSMLE.The considered nominal
level is 5%. The null hypotheses considered for Scenarios A and B are H1

0 : β2 = β0
2 ,

H2
0 : (β1, β2) = (β0

1 , β
0
2 ), and H3

0 : (β1, β2, γ1) = (β0
1 , β

0
2 , γ

0
1 ). For Scenario C, we

setH4
0 : (β2, γ2) = (β0

2 , γ
0
2 ), H5

0 : (β1, β2, γ2) = (β0
1 , β

0
2 , γ

0
2 ), andH6

0 : γ2 = γ 0
2 . The

values of the parameters fixed at the null hypotheses are those used in the simulations
above. The results are shown in Table 1. For non-contaminated data, the empirical
levels of all the tests are close to the nominal levels. For contaminated data, the usual
Wald test presents a type I error close to 100%, being highly unreliable. In contrast,
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Fig. 7 Boxplots of the optimal values for the tuning parameter α for the robust estimators under Scenario
A (first row), B (second row), and C (third row)

the robust Wald-type tests show to be reasonably reliable, with only slight inflation in
the type I error relatively to non-contaminated situations.

Overall, our simulations suggest that the new robust estimators proposed in this
paper, namely the LSMLE and the LMDPDE, exhibited the same performance as
the SMLE and the MDPDE for bounded beta densities (Scenario A). For unbounded
beta densities, as in Scenarios B and C, the MDPDE and the SMLE are unreliable,
presenting severe bias for contaminated data. For all the scenarios, the new estimators
behave as the MLE for non-contaminated data and prove to be robust in the presence
of contamination. Hence, practitioners should employ the new proposed estimators in
real data applications.

5 An application to health insurance coverage data

We shall now present and discuss an application of the new robust estimators to health
insurance coverage data collected by the Institute of Applied Economic Research
(Instituto de Pesquisa Econômica Aplicada, IPEA). The dataset includes information
on 80 cities in the state of São Paulo, Brazil, in 2010. This application’s dataset and R
codes are available at https://github.com/ffqueiroz/RobustBetareg.
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Table 1 Empirical null levels of
Wald-type tests under Scenarios
A, B, and C at the 5% nominal
level

Estimator n Non-cont. Cont.

H1
0 H2

0 H3
0 H1

0 H2
0 H3

0

Scenario A

MLE 40 0.05 0.06 0.07 0.88 0.98 1.00

80 0.06 0.06 0.06 1.00 1.00 1.00

160 0.05 0.06 0.06 1.00 1.00 1.00

320 0.05 0.05 0.05 1.00 1.00 1.00

LMDPDE 40 0.05 0.06 0.07 0.07 0.07 0.08

80 0.06 0.06 0.06 0.07 0.07 0.07

160 0.05 0.06 0.06 0.06 0.06 0.07

320 0.05 0.05 0.05 0.06 0.06 0.07

LSMLE 40 0.05 0.06 0.07 0.08 0.08 0.09

80 0.06 0.06 0.06 0.07 0.07 0.07

160 0.05 0.06 0.06 0.06 0.06 0.07

320 0.05 0.05 0.05 0.06 0.06 0.06

Scenario B

MLE 40 0.07 0.08 0.08 1.00 1.00 1.00

80 0.05 0.06 0.06 1.00 1.00 1.00

160 0.05 0.06 0.07 1.00 1.00 1.00

320 0.06 0.07 0.08 1.00 1.00 1.00

LMDPDE 40 0.07 0.07 0.08 0.07 0.10 0.10

80 0.06 0.06 0.06 0.07 0.09 0.09

160 0.05 0.06 0.07 0.06 0.07 0.08

320 0.06 0.07 0.08 0.08 0.10 0.10

LSMLE 40 0.07 0.08 0.08 0.09 0.12 0.12

80 0.06 0.06 0.06 0.08 0.09 0.09

160 0.05 0.06 0.07 0.06 0.07 0.09

320 0.06 0.07 0.08 0.08 0.10 0.10

Estimator n Non-cont. Cont.

H4
0 H5

0 H6
0 H4

0 H5
0 H6

0

Scenario C

MLE 40 0.08 0.08 0.08 1.00 1.00 1.00

80 0.08 0.07 0.06 1.00 1.00 1.00

160 0.06 0.06 0.05 1.00 1.00 1.00

320 0.05 0.05 0.06 1.00 1.00 1.00

LMDPDE 40 0.08 0.08 0.08 0.13 0.13 0.12

80 0.08 0.07 0.06 0.12 0.10 0.10

160 0.05 0.06 0.05 0.11 0.12 0.09

320 0.04 0.05 0.06 0.07 0.08 0.08

LSMLE 40 0.08 0.08 0.08 0.12 0.12 0.11

80 0.08 0.07 0.06 0.11 0.10 0.09
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Table 1 continued Estimator n Non-cont. Cont.

H4
0 H5

0 H6
0 H4

0 H5
0 H6

0

160 0.06 0.06 0.05 0.10 0.09 0.09

320 0.05 0.05 0.05 0.07 0.07 0.07

The response variable (y) is the health insurance coverage index (HIC). The covari-
ates are the percentage of the total population who lives in the city’s urban zone (Urb)
and the per capita gross domestic product (GDP). We consider the beta regression
model (1)–(2) with gμ(·) and gφ(·) being the logit and the log functions, respectively.
First, both covariates and an intercept are included in the mean and precision sub-
models. We fit the model using the MLE and the robust estimators. The Wald-type
tests based on all the estimators agree that the covariate Urb is not significant for the
precision submodel (p-value greater than 0.3 for all the tests); see the Supplementary
Material, Section 4. The postulated reduced model is the beta regression model with

log

(
μi

1 − μi

)
= β1 + β2Urbi + β3GDPi ,

log(φi ) = γ1 + γ2GDPi ,

for i = 1, . . . , 80. For somevalues ofα, theSMLEandMDPDEcouldnot be computed
and the data-driven algorithm for selecting α did not reach stability and returned α = 0
(MLE). The estimates and standard errors for the LSMLE and LMDPDE are similar.
Here, we present the results for the LSMLE and those for the LMDPDE are shown
in the Supplementary Material (Section 4). Table 2 presents the estimates, asymptotic
standard errors, z-statistics (estimate divided by the asymptotic standard error), and
asymptotic p-values of the Wald-type tests of nullity of coefficients. It also reports
the results without observation #1, which is the most evident outlier. This observation
corresponds to a city with an atypical value for HIC, around 0.98.

For the full data, the data-driven algorithm for selecting the optimum α returned
α = 0.06 for both LMDPDE and LSMLE, indicating that a robust fit is needed. For
the data without observation #1, the algorithm returned α = 0 (MLE) for both the
new robust estimators. As we observe in Table 2, the MLE is highly influenced by
observation #1. For instance, the estimated coefficient for Urb in the mean submodel
moves from 3.429 (full data) to 4.854 (reduced data). Additionally, the covariate GDP
in the precision submodel is non-significant (p-value equal to 0.648) for the full
data and highly significant (p-value equal to 0.003) for the reduced data. In contrast,
the results based on the LSMLE are not impacted by the exclusion of the outlier
observation. The results for the LSMLE for the full data are close to those for the
MLE for the reduced data.

Following Ribeiro and Ferrari (2022), Fig. 8 presents the normal probability plots
with simulated envelopes of residuals for the MLE and the LSMLE and the plot
of estimated weights against residuals for the LSMLE. We consider the ‘standard-
ized weighted residual 2’ proposed by Espinheira et al. (2008). The residual plots of
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Table 2 Estimates, asymptotic standard errors (Std. error), z-stat, and asymptotic p-values for the full and
reduced data

MLE for the full data LSMLE for the full data

Estimate Std. error z-stat p-value Estimate Std. error z-stat p-value

Mean submodel

Intercept −4.429 0.629 −7.037 0.000 −5.992 0.518 −11.562 0.000

Urb 3.429 0.706 4.857 0.000 4.884 0.581 8.410 0.000

GDP 0.010 0.003 3.535 0.000 0.013 0.003 4.652 0.000

Precision submodel

Intercept 2.086 0.229 9.115 0.000 3.332 0.229 14.573 0.000

GDP −0.002 0.005 −0.456 0.648 −0.013 0.004 −2.934 0.003

MLE without observation #1 LSMLE without observation #1

Estimate Std. error z-stat p-value Estimate Std. error z-stat p-value

Mean submodel

Intercept −5.978 0.508 −11.777 0.000 −5.978 0.508 −11.777 0.000

Urb 4.854 0.569 8.538 0.000 4.854 0.569 8.538 0.000

GDP 0.013 0.003 4.721 0.000 0.013 0.003 4.721 0.000

Precision submodel

Intercept 3.391 0.229 14.816 0.000 3.391 0.229 14.816 0.000

GDP −0.013 0.004 −3.003 0.003 −0.013 0.004 −3.003 0.003

the MLE clearly evidence the lack of fit of the maximum likelihood estimation. As
expected, observation #1 is highlighted as an outlier for both theMLE and the LSMLE
fits. The residual plots for the LSMLE suggest a suitable fit for all the observations
except for case #1. In fact, this observation receives a weight close to zero for the
LSMLE fit.

6 Concluding remarks

This paper introduces two new robust estimators for the beta regression models: the
LSMLE and the LMDPDE. The proposed estimators overcome the limitations of
the current robust estimators, the SMLE and the MDPDE. Simulation results and a
real data application evidence the excellent performance of the new estimators even in
situations where the existing estimators fail. The new robust estimators present similar
behavior and are easily implemented. The new R package robustbetareg allows
practitioners to apply the proposed estimators, as well as the current estimators, in
their applications. The package manual contains several examples illustrating how to
analyse new datasets using these estimators.

The development of robust estimators for inflated beta regression models (Ospina
and Ferrari 2012) is a natural, although non-trivial, extension of our work. The second
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Fig. 8 Normal probability plotswith simulated envelope of the residuals forMLE (first column) andLSMLE
(second column) and plot of estimated weights for LSMLE (third column). The plots in the second row are
zoomed versions of those in the first row

and third authors have been working on this topic. The findings will be reported
elsewhere.

Supplementary Information The online version contains supplementary material available at https://doi.
org/10.1007/s00184-024-00949-1.
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A Appendix

The matrices �1,α(θ) and �1,α(θ) used in the covariance matrix of the LMDPDE are

�1,α(θ) =
[
X�γ

(1+α)
11 X X�γ

(1+α)
12 Z

Z�γ
(1+α)
12 X Z�γ

(1+α)
22 Z

]
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and

�1,α(θ) =
⎡

⎣ X�
[
γ

(1+2α)
11 − γ

(1+α)
1

2]
X X�

[
γ

(1+2α)
12 − γ

(1+α)
1 γ

(1+α)
2

]
Z

Z�
[
γ

(1+2α)
12 − γ

(1+α)
1 γ

(1+α)
2

]
X Z�

[
γ

(1+2α)
22 − γ

(1+α)
2

2]
Z

⎤

⎦ ,

where γ
(α)
j = diag{γ (α)

j,i ; i = 1, . . . , n}, for j = 1, 2, γ
(α)
11 = diag{γ (α)

11,i ; i =
1, . . . , n}, γ (α)

12 = diag{γ (α)
12,i ; i = 1, . . . , n}, γ (α)

22 = diag{γ (α)
22,i ; i = 1, . . . , n}, with

γ
(α)
11,i = φ2

i Ki,α(θ)

[g′
μ(μi )]2

[
vi,α + (μ�

i,α − μ�
i )

2
]
,

γ
(α)
12,i = φiKi,α(θ)

g′
μ(μi )g′

φ(φi )

{
μi

[
vi,α + (μ�

i,α − μ�
i )

2
]

− ψ ′((1 − μi )φi,α)

+(μ�
i,α − μ�

i )(μ
†
i,α − μ

†
i )

}
,

γ
(α)
22,i = Ki,α(θ)

[g′
φ(φi )]2

{
μ2
i ψ

′(μiφi,α) + (1 − μi )
2ψ ′((1 − μi )φi,α) − ψ ′(φi,α)

+
[
μi (μ

�
i,α − μ�

i ) + (μ
†
i,α − μ

†
i )

]2}
,

and vi,α = ψ ′(μiφi,α) + ψ ′((1 − μi )φi,α).
For the LSMLE, the matrices �2,α(θ) and �2,α(θ) are given by

�2,α(θ) = −
[
(1 − α)X�B1T2

μ	2VX X�B1TμT∗
φCZ

Z�B1TμT∗
φCX (1 − α)−1Z�B1T∗

φ
2DZ

]

and

�2,α(θ) =
[

X�B2T2
μ	2V 1+αX (1 − α)−1X�B2TμT∗

φC1+αZ
(1 − α)−1Z�B2TμT∗

φC1+αX (1 − α)−2Z�B2T∗
φ
2D1+αZ

]
,

where B j = diag{bi, j ; i = 1, . . . , n}, j = 1, 2,

bi,1 = B(μiφi , (1 − μi )φi )
1−α

B(μiφi,1−α, (1 − μi )φi,1−α)
,

bi,2 = B(μiφi,1+α, (1 − μi )φi,1+α)

B(μiφi , (1 − μi )φi )2αB(μiφi,1−α, (1 − μi )φi,1−α)
,

Tμ = diag{ti,μ; i = 1, . . . , n}, T∗
φ = diag{ti,φ; i = 1, . . . , n},

ti,μ = [
g′
μ(μi )

]−1
, ti,φ =

[
g′
φ(φi,1−α)

]−1
,
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	 = diag{φi ; i = 1, . . . , n}, V = diag{vi ; i = 1, . . . , n}, V 1+α = diag{vi,1+α; i =
1, . . . , n}, C = diag{ci ; i = 1, . . . , n}, C1+α = diag{ci,1+α; i = 1, . . . , n},

ci = φi
[
μiψ

′(μiφi ) − (1 − μi )ψ
′((1 − μi )φi )

]
,

ci,1+α = φi
[
μiψ

′(μiφi,1+α) − (1 − μi )ψ
′((1 − μi )φi,1+α)

]
,

D = diag{di ; i = 1, . . . , n}, D1+α = diag{di,1+α; i = 1, . . . , n},

di = μ2
i ψ

′(μiφi ) + (1 − μi )
2ψ ′((1 − μi )φi ) − ψ ′(φi ),

di,1+α = μ2
i ψ

′(μiφi,1+α) + (1 − μi )
2ψ ′((1 − μi )φi,1+α) − ψ ′(φi,1+α).
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