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Abstract
Spatial associationmeasures for univariate static spatial data are widely used. Suppose
the data is in the form of a collection of spatial vectors, say Xrt where r = 1, . . . , R
are the regions and t = 1, . . . , T are the time points, in the same temporal domain of
interest. Using Bergsma’s correlation coefficient ρ, we construct a measure of similar-
ity between the regions’ series. Due to the special properties of ρ, unlike other spatial
association measures which test for spatial randomness, our statistic can account for
spatial pairwise independence. We have derived the asymptotic distribution of our
statistic under null (independence of the regions) and alternate cases (the regions are
dependent) when, across t the vector time series are assumed to be independent and
identically distributed. The alternate scenario of spatial dependence is explored using
simulations from the spatial autoregressive and moving average models. Finally, we
provide application to modelling and testing for the presence of spatial association in
COVID-19 incidence data, by using our statistic on the residuals obtained after model
fitting.

Keywords Bergsma’s correlation · Spatial association measure · U -statistic · Spatial
autoregressive model · Spatial moving average model
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1 Introduction

The primary reason behind the development of spatial association measures is the
realization that it is unrealistic to assume stationarity over space. Many prominent
researchers have developed such measures. One of the most widely used measures is
Moran’s I (Moran 1948), which is based on a global covariance representation. Cliff
and Ord (1972) generalized Moran’s work by demonstrating how one can test resid-
uals of regression analysis for spatial randomness. They have worked out moments
of Moran’s I and its distributional properties under varying sampling assumptions.
Geary’s c (Geary 1954) is anothermeasure that has a global differences representation.

Anselin (1995) introduced local measures of spatial association (LISA) to detect
variations across space in the presence of spatial heterogeneity. Getis (2007, 2008)
provide excellent reviews on the study of spatial autocorrelation. Getis and Ord (2010)
introduced a family of statistics G to detect the local clusters of dependence. Using
estimates of spatial autocorrelation coefficients in regression models is a widely used
technique in spatial econometrics, see (Anselin 1988).

The conventional measures of spatial association are designed for static spatial data
where there is only one observation per region. Suppose we have spatio-temporal data
on a single variable at different time points across R spatial units, yielding concurrent
spatial time series {Xrt }, t = 1, . . . , T , r = 1, . . . , R. In this case, only a few
measures of spatio-temporal dependence are available in the literature. Martin and
Oeppen (1975), Shao-Kuan et al. (2013) and Gao et al. (2019) etc., have extended
univariate Moran’s I to the Spatio-temporal Moran’s I . Dubé and Legros (2013) have
formulated the idea of constructing a spatio-temporal weights matrix by joining two
independently constructed spatial and temporal proximity matrices. In Sect. 2.1 we
give a brief discussion on general spatial association measures and their components.

Any spatial measure of association requires a measure of similarity between the
recorded observations of a random variable, along with a choice of a spatial proximity
matrix which accounts for the amount of geographical closeness between the regions.
Some of the commonly used similarity measures are the Euclidean distance, Frechet
distance, and Pearson’s correlation.

We make a novel choice for the similarity measure. Bergsma (2006) introduced a
correlation coefficient ρ between X and Y (both univariate), as a measure of indepen-
dence such that, ρ = 0 if and only if X and Y are independent. Incidentally it is also a
special case of “distance correlation" (Székely et al. 2007) which is defined for multi-
variate X and Y . From the comparative analysis of Bergsma’s statistics ρ̂ (estimate of
ρ based on a sample), against other prominent statistics for testing of independence
(see the arxiv article Kappara et al. 2022), it is known that ρ̂ performs as well or better
than its competitors, both in terms of power and computing efficiency. Due to these
attractive features, we use it as a similarity measure. In Sect. 2.2 we give in brief the
required background on this measure.
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In Sect. 3, we use the pairwise ρ of the regions, and different choices for the spatial
proximity matrices, to define a class of spatial association measures SB , and an appro-
priate estimate S̃B of SB . The finite sample distributional properties of global indices
of spatial association are challenging to obtain in general. Often, the evaluation of the
significance of these spatial association measures relies on either assuming normality
or adopting a randomization approach. In the context of spatio-temporal analysis, the
above mentioned studies employ empirical methods to assess the significance of the
proposed measures.

In Sects. 3.1 and 3.2, we study the asymptotic distribution of S̃B as the length
of time increases, assuming that the observations over time are i.i.d., while at any
fixed time, they are either dependent across the regions (the non-null case) or are
pairwise independent (the null case). In the first case, S̃B is asymptotically normal
with appropriate centering, and a scaling by T 1/2. In the second case, T S̃B (note
the different scaling, and since all pairwise ρ are 0, there is no centering) has an
asymptotic distribution that involves an infinite sum of weighted i.i.d. centered chi-
square variables. In both cases, the distribution depends on the unknown underlying
distribution of the observations, especially through the eigenvalues of appropriate
kernel functions. The case of large number of regions (R → ∞) is beyond the scope
of our work.

At present no distributional properties are known for S̃B when the observations are
temporally dependent. This issue is important, especially from the point of view of
applications. The asymptotic distribution of S̃B may be obtainable, at least for some
easy spatial dependent models, with some amount of additional work. However, it
is also clear that for more complex spatial models, this would require a substantial
amount of work. We have considered two well-known spatially dependent models,
only through simulations.

Section 4 reports all our simulation results. These show that for reasonably large
number of observations, the actual finite sample distributions arewell approximated by
the asymptotic distributions. It is also seen that these measures and their distributions
are sensitive to the choice of a spatial proximity matrix, but are not sensitive to the
nature of the underlying distributions. As mentioned above, we have explored the
empirical distribution of S̃B for the spatial autoregressive and the spatial moving
average models.

Since the primary objective of this manuscript is to provide a global measure of
independence, any local version of our statistic has not been considered.A local version
can be easily developed and its asymptotic properties can be spelt out along the lines
of the global statistics that we have considered.

In spite of the fact that the (limit) distribution of our statistic has been derived only
when the observations are iid across the time index t , the statistic can be fruitfully
used for model fitting purposes even when temporal dependence is present. This is
done by first removing the temporal dependence through appropriate modelling and
then using the measure on the residual series. In Sect. 5, we have presented such an
application in a spatio-temporal modelling of the monthly time series COVID-19 data
for the 14 districts of the state of Kerala in India.

While it may be pertinent to consider larger number of spatial locations in some
situations, one should be cautious of the potential adverse effect of a large value of
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R on our ability to identify dependence. It is possible that spatial dependence exists
only locally and an overall measure may fail to identify it. Care also needs to be taken
while choosing the proximity measure when a large number of regions are involved.
See (Kappara et al. 2023) for an instance where we found a diminished sensitivity of
the measure when R is large and the inverse distance proximity matrix is used.

Often there are situations where multivariate observations are available on each
spatial unit. It would be interesting to ask if our approach could be extended to these
situations. Noting that the distance covariance measure is available when X and Y are
multivariate and that it reduces to κ when X and Y are univariate, this seems to be
quite feasible. However, whether the distributional properties would still be possible
to obtain remains to be seen.

2 Materials andmethods

As mentioned in the introduction, in Sect. 2.1 we give a brief discussion on general
spatial association measures and their components. In Sect. 2.2 we give a brief back-
ground on Bergsma’s measure of covariance κ and correlation ρ. In Sect. 2.3, we
describe the estimate of κ and ρ borrowed from Kappara et al. (2022). In the next
section we shall use this estimate to develop the global measure of association.

2.1 Spatial association statistics

Suppose the study area is divided into R (geographical) units over which a variable
is observed. Spatial association refers to the relationship between the values of the
variable with respect to the proximity of the regions. The two building blocks of a
spatial association statistic are two matrices, W and S.

The spatial proximity matrix W = ((wi j ))1≤i, j≤R is based on the proximity
(typically geographical proximity) of the units, and provides the spatial component.
Larger weights are assigned to the pairs of regions that are spatially “more related".
Getis andOrd (2010) suggests three different types ofW matrices: (i) amatrix based on
some theoretical notion of spatial association, such as a distance decline function, (ii)
a matrix based on a geometric indicator of spatial nearness, such as the representation
of contiguous spatial units, and (iii) a matrix which uses a descriptive expression of
the spatial association that already exists within the data set. It is always assumed that
wi i = 0 for all i . The most commonly used W is the adjacency matrix where,

wi j =
{
1 if regions i and j are adjacent localities,

0 otherwise.

Other popular choices are to take di j as the Euclidean distance, or some other distance,
between the centroids of regions i and j , and then wi j = d−1

i j , wi j = d−2
i j , or the

Gaussian weights wi j = exp(−d2i j ). One may refer to Bhattacharjee et al. (2021) for
a discussion on choice of appropriate distance measure for COVID-19 data from the
Indian subcontinent.
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ThematrixW is often row-standardized, so that each row sum in the matrix is equal
to one. We would be working with W which are row-standardized. This will turn out
to be a crucial point in our data analysis later.

The second component is a similarity matrix S. Suppose that we have a series
of observations Xi

T = {xim,m = 1, . . . , T } at each region i = 1, 2, . . . , R at T
time points. The similarity matrix S is defined as S := ((simi j )), where simi j is
some measure of similarity between XT

i and XT
j . For example, it could be the sample

covariance between XT
i and XT

j . Note that these values are dependent only on any
possible non-spatial relationship across the space.

Any choice of W and S yields a global spatial autocorrelation index

( R∑
i, j=1

wi j
)−1

R∑
i, j=1

wi j simi j . (2.1)

When the matrices S and W have similar structures, that is, they have high or low
values together for the same pair of units i and j , we can say that there is a high degree
of spatial association.

When the observations XT
i are univariate with single observation per spatial unit,

then the well-known Moran’s I (Moran 1948) uses the covariance as a similarity
measure. On the other hand, Gearcy’s c (Geary 1954 uses squared differences as the
similarity.

2.2 Ameasure of independence

We now discuss the similarity measure that we shall use later to develop our spatial
measure of association. This measure is going to be Bergsma’s correlation coefficient
ρ, with a corresponding covariance κ that has the special property of being equal to
zero if and only if the variables are independent. For details on its background and
properties, see (Bose et al. 2023). Here we briefly give the definition of κ and ρ and
their estimators, using the notations of the above article.

Let Z1, Z2 be i.i.d. with distribution F which has finite mean. Define

gF (z) := EF [ |z − Z | ], (2.2)

g(F) := EF [ |Z1 − Z2| ] = EF [ gF (Z) ], (2.3)

hF (z1, z2) = −1

2

[ |z1 − z2| − gF (z1) − gF (z2) + g(F)
]
. (2.4)

Note that

EhF (Z1, Z2) = 0 whenever Z1, Z2 are i.i.d. F . (2.5)

Now, let F1 and F2 be themarginal distributions of a bivariate random variable (X ,Y ).
Let (X1,Y1) and (X2,Y2) be i.i.d copies of (X ,Y ). Then Bergsma’s covariance and
correlation coefficient between X and Y are defined respectively by
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κ = κ(X ,Y ) := E[ hF1(X1, X2)hF2(Y1,Y2) ], and

ρ = ρ(X ,Y ) := κ(X ,Y )√
κ(X , X)κ(Y ,Y )

. (2.6)

2.3 Estimates of �

Suppose we have n observations (xi , yi ), 1 ≤ i ≤ n from a bivariate distribution F12.
Bergsma has given two estimators of κ namely κ̃ , and κ̂ respectively based on some
U and V -statistics with estimated kernels, and studied their distributional properties
under independence. In Kappara et al. (2022), a third estimate κ∗ was introduced,
and the properties of all three covariance estimates κ̃ , κ̂ κ∗ was discussed under
dependence as well as independence. In particular, their asymptotic normality was
established under dependence.

Simulation results in Kappara et al. (2022) show that the V -statistic based estimate
κ̂ has an upward bias. Performance-wise, κ̃ had an edge in computation time over the
other two estimators. Therefore, we shall use the U -statistic based estimate κ̃ and the
corresponding correlation ρ̃ in our subsequent developments.

Note that the kernel function hF defined in Equation (2.4), depends on the unknown
distribution function F . Its sample analogue is given by h̃ F̂ ,

h̃ F̂ (zi , z j ) = −1

2

[
|zi − z j | − n

n − 1
(
1

n

n∑
k=1

|zi − zk | + 1

n

n∑
k=1

|zk − z j |

− 1

n2

n∑
k,l=1

|zk − zl |)
]
, (2.7)

where F̂ is the sample distribution function. The U -statistic type estimator of κ is
defined as,

κ̃ = κ̃(x, y) :=
(
n

2

)−1 ∑
1≤i< j≤n

h̃ F̂1
(Xi , X j )h̃ F̂2

(Yi ,Y j ), and

ρ̃ = ρ̃(x, y) := κ̃(x, y)√
κ̃(x, x)κ̃(y, y)

, (2.8)

where F̂1 and F̂2 are the sample distribution functions of the {Xi } and {Yi } respectively.
Kappara et al. (2022) proved that if the pairs {(Xi ,Yi )} are i.i.d. withEF12 [X2

1Y
2
1 ] <

∞, then as n → ∞, n1/2
(
κ̃ − κ

)
is asymptotically normal with mean 0 and some

variance δ1. The crucial step in the proof of the above result which we shall need later,
is that the leading term of κ̃ is a U -statistics, whose first projection is say H1, and

n1/2
(
κ̃ − κ

) = 1

2
n−1/2

n∑
i=1

H1(Xi ,Yi ) + Rn, where Rn
P−→ 0. (2.9)
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To describe H1 and δ1, let

gF12(x, y) := EF12

[ |x − X1| |y − Y1|
]
,

g(F12) := EF12

[
gF12(X2,Y2)

] = EF12

[ |X2 − X1| |Y2 − Y1|
]
.

μ1 := g(F1), μ2 := g(F2), μ12 := g(F12), and

μ3 := EF12

[
gF1(X)gF2(Y )

]
.

Let (X1,Y1), (X2,Y2), (X3,Y3) be i.i.d. Then H1(·, ·) and δ1 are given by

H1(x, y) =
[
gF12(x, y) − μ12 + μ1(gF2(y) − μ2) + μ2(gF1(x) − μ1) − gF1(x)gF2(y)

−EF12 [ |X2 − x | |Y2 − Y3| ] − EF12 [ |X2 − X3| |Y2 − y| ] + 3μ3

]
,

δ1 = 1

4
V(H1(X1, Y1)).

When κ = 0, that is X and Y are independent, the first projection H1 in (2.9) is zero. In
this case, Bergsma (2006) obtained the asymptotic distributions of κ̃ and κ̂ . Kappara
et al. (2022), gave a detailed proof of the above result, along with the asymptotic
distribution of κ∗. Again, the crucial step in that proof is to identify the leading term
of the estimators, in terms of the second projections of the relevantU -statistics. Indeed,

κ̃ =
(
n

2

)−1 ∑
1≤i< j≤n

hF1(Xi , X j )hF2(Yi ,Y j ) + Rn, where nRn
P−→ 0. (2.10)

Later we shall use this weak expansion to find the asymptotic distribution of our spatial
association measure when the regions are assumed to be pairwise independent.

3 The SB measure of association

We now use κ as a similarity measure for the
(R
2

)
pairs of regions to develop a global

measure of spatial association. The estimate for this globalmeasure is directly obtained
by using the corresponding estimates κ̃ . We provide the asymptotic distribution of this
statistic under dependence and pairwise independence of the regions, in Sects. 3.1
and 3.2 respectively.

So suppose there are R regions and let Xi denote a variable corresponding to the
region i = 1, . . . , R. Then we can use the similarity measure ρ, to define a global
spatial association measure (Spatial Bergsma) as

SB := S−1
0

R∑
i, j=1

wi jρ(Xi , X j ), where S0 =
R∑

i, j=1

wi j . (3.1)
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Note that

S0 = R, whenever W is row-standardized. (3.2)

Further, ρ(Xi , X j ) = ρ(X j , Xi ) and wi i = 0 for all i, j = 1, . . . , R. Therefore,

SB = S−1
0

∑
1≤i< j≤R

(wi j + w j i )ρ(Xi , X j ). (3.3)

Now, suppose that we have observations Xi
T = {xim,m = 1, . . . , T }, such that the

vectors (xim, 1 ≤ i ≤ R), are i.i.d. for m = 1, · · · , T , with marginal distributions Fi ,
1 ≤ i ≤ R. Let κ̃ (i j) = κ̃(XT

i , XT
j ), and ρ̃(i j) denote the κ̃ and ρ̃, calculated for the

pair of variables (XT
i , XT

j ) using Equations (2.7) and (2.8).
We define a U -statistic based estimate of SB as

S̃B := S−1
0

∑
1≤i< j≤R

(wi j + w j i )ρ̃
(i j), (3.4)

where,

ρ̃(i j) = ρ̃(XT
i , XT

j ) = κ̃(XT
i , XT

j )√
κ̃(XT

i , XT
i )κ̃(XT

j , X
T
j )

. (3.5)

Further, with a given spatial proximity ((wi j )), we can compute this Spatial Bergsma
statistic S̃B using Equation (3.4). The R code for the computation of S̃B is given in
the Appendix.

3.1 Asymptotic normality of S̃B under possible dependence

The finite sample distributional properties of global indices are challenging to obtain
in general. Usually, additional assumption of normality is made for this purpose,
or a randomization approach is used. When T is large, asymptotic distributions are
also used. Tiefelsdorf and Boots (1995) showed that the accuracy of the asymptotic
distribution of global indices depend heavily on the spatial proximity matrix W and
the number of regions R.

Similar to the other global indices, it is impractical to obtain the exact distribution of
SB for fixed T and hence we focus on asymptotic results. The asymptotic normality of
S̃B , as T → ∞ can be established under appropriate assumptions. This is worked out
below. This normal distribution turns out to be degenerate when the variables across
regions are pairwise independent. This case is discussed in the next section.

Writing Equation (3.4) explicitly we get

S̃B = 1

S0

∑
1≤i< j≤R

(wi j + w j i )
κ̃(XT

i , XT
j )[

κ̃(XT
i , XT

i )κ̃(XT
j , X

T
j )

]1/2 . (3.6)
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Define an
(R
2

) × 1 column vector C, and a 1 × (R
2

)
row vector d as

C :=
(
κ̃ (i j), 1 ≤ i < j ≤ R

)�
,

d :=
( (wi j + w j i )

S0
[
κ̃(XT

i , XT
i )κ̃(XT

j , X
T
j )

]1/2 , 1 ≤ i < j ≤ R
)
.

Then we can rewrite Equation (3.6) as

S̃B = dC.

Define the centered and scaled column vector,

C̃ :=
(√

T
(
κ̃ (i j) − κ(i j)), 1 ≤ i < j ≤ R

)�
.

Define S̃B,st after required centering and scaling of S̃B as,

S̃B,st := dC̃. (3.7)

We shall refer to S̃B,st as standarized S̃B . Note that for every i , Xi
T , T ≥ 1 are i.i.d.

By an application of the SLLN it follows that,

κ̃(XT
i , XT

i )
a.s−→ EhFi (Xi , Xi )

2

=
∞∑
k=0

(
λ

(i)
k

)2
. (3.8)

Hence

d
a.s.−−→

(
(wi j + w j i )

S0
[ ∑∞

k=0

(
λ

(i)
k

)2]1/2[ ∑∞
k=0

(
λ

( j)
k

)2]1/2 , 1 ≤ i < j ≤ R

)
= a (say).

(3.9)

Recall that S0 = R if W is row-standardized.
We are now ready to state the asymptotic normality result for the SB statistic. We

use the notation H (i j)
1 to denote the kernel function H1 corresponding to the regions

(i, j).

Theorem 1 Suppose that the vectors {(xim, 1 ≤ i ≤ R)},m = 1, · · · , T are i.i.d. such
that V(H1

(i j)(xim, x jm)) < ∞, for all pairs (i, j). Then as T → ∞,

S̃B,st = dC̃
D−→ N (0, a��a).

where a is as in (3.9) and the covariance matrix � is defined in the proof given below.
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Proof Note that

κ̃ (i j) = κ̃(XT
i , XT

j ) (3.10)

=
(
T

2

)−1 ∑
1≤m<n≤T

h̃ F̂i
(xim, xin)h̃ F̂ j

(x jm, x jn). (3.11)

For any pair of regions (i, j), by arguments given in Equation (2.9)

√
T (κ̃(i j) − κ(i j)) = 1

2
T−1/2

T∑
m=1

H1
(i j)(xim, x jm

) + R(i j)
T , where R(i j)

T
P−→ 0.

(3.12)

Hence by the multivariate central limit theorem,

C̃(R2)×1 =
(√

T
(
κ̃ (i j) − κ(i j), 1 ≤ i < j ≤ R

)
D−→ N

(
0, �(R2)×(R2)

)
, (3.13)

where, � = ((σi1 j1,i2 j2))1≤i1< j1≤R,1≤i2< j2≤R is the covariance matrix with

σi1 j1,i2 j2 = 1

4
COV

(
H1

(i1 j1)
(
xi1m, x j1m

)
, H1

(i2 j2)
(
xi2m, x j2m

))
. (3.14)

For i1 = i2 = i and j1 = j2 = j ,

σi1 j1,i2 j2 = 1

4
V

(
H1

(i j)(xim, x jm
)) = δ1

(i j). (3.15)

Therefore by Equations (3.13) and (3.9), S̃B,st = dC̃
D−→ N (0, a��a), completing

the proof. 	


3.2 Asymptotic distribution of S̃B under spatial pairwise independence

Now, suppose that the regions are pairwise independent, that is, κ̃ (i j) = 0 for all
1 ≤ i < j ≤ R. Then it is known that δ1

(i j) given in (3.15) is 0 for all i �= j , and
the limit distribution in the above result is degenerate at 0. In this case, we have the
following asymptotic distribution result.

Theorem 2 Suppose that the vectors (xim, 1 ≤ i ≤ R) are i.i.d. for 1 ≤ m ≤ T .
Further, for any 1 ≤ i �= j ≤ R, xim and x jm are independent. Let Fi be the marginal
distribution of xim. Suppose that hFi is square integrable with the eigen decomposition
(in the L2 sense),

hFi (x, y) =
∞∑
k=1

λ
(i)
k g(i)

k (x)g( j)
k (y). (3.16)
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Then as T → ∞,

T S̃B
D−→ 1

S0

∑
1≤i< j≤R

[(
wi j + w j i

) ∞∑
k,l=0

λ
(i)
k[ ∞∑

t=0

(
λ

(i)
t

)2]1/2
λ

( j)
l[ ∞∑

t=0

(
λ

( j)
t

)2]1/2
(
Z2
ik, jl − 1

)]
,

(3.17)

where {Zik, jl}, are i.i.d. standard normal variables, and S0 = R if W is row-
standardized.

Proof Recall from (3.6) that,

S̃B = 1

S0

∑
1≤i< j≤R

(
wi j + w j i

) κ̃(XT
i , XT

j )√
κ̃(XT

i , XT
i )κ̃(XT

j , X
T
j )

. (3.18)

Further we have

κ̃ (i j) = κ̃(XT
i , XT

j ) =
(
T

2

)−1 ∑
1≤m<n≤T

h̃ F̂i
(xim, xin)h̃ F̂ j

(x jm, x jn). (3.19)

As mentioned earlier, due to independence, the first projections H (i j)
1 in (3.12) are

zero. We now use the second projections from Equation (2.10). We can write,

κ̃ (i j) =
(
T

2

)−1 ∑
1≤m<n≤T

hFi (xim, xin)hFj (x jm, x jn) + R(i j)
T , where T R(i j)

T
P−→ 0.

Nowwe can follow the proof of the general theorem on the asymptotic distribution of a
U -statistic with a general degenerate kernel. The difference is that nowwe have several
degenerate U -statistics. Each of them converges by the limit theorem for degenerate
U -statistics. See for example (Bose and Chatterjee 2018). We need to ensure the joint
convergence of these statistics, and argue the independence of the {Zik, jl} across i, j .
We outline the arguments below.

Using (3.2), we can write the following approximate equation for κ̃ calculated for
any pair of regions, i.e., κ̃ (i j) as follows:

T κ̃ (i j) � 2

T

[ ∑
1≤m<n≤T

hFi (xim, xin)hFj (x jm, x jn)
]

= 2

T

[ ∑
1≤m<n≤T

[ ∞∑
k=0

λ
(i)
k g(i)

k (xim)g(i)
k (xin)

] [ ∞∑
k=0

λ
( j)
k g( j)

k (x jm)g( j)
k (x jn)

] ]

= 1

T

T∑
m,n=1

[ ∞∑
k=0

λ
(i)
k g(i)

k (xim)g(i)
k (xin)

] [ ∞∑
k=0

λ
( j)
k g( j)

k (x jm)g( j)
k (x jn)

]
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− 1

T

T∑
m=1

[ ∞∑
k=0

λ
(i)
k g(i)

k (xim)g(i)
k (xim)

] [ ∞∑
k=0

λ
( j)
k g( j)

k (x jm)g( j)
k (x jm)

]
= T1 − T2 (say).

Note that {g(i)
k (·)} and {g( j)

l (·)} are orthonormal functions. We explain in brief the
convergence of the two terms. The second term equals

T2 = 1

T

T∑
m=1

[ ∞∑
k=0

λ
(i)
k g(i)

k (xim)g(i)
k (xim)

] [ ∞∑
l=0

λ
( j)
l g( j)

l (x jm)g( j)
l (x jm)

]

a.s.−−→
( ∞∑
k=0

λ
(i)
k

)( ∞∑
l=0

λ
(i)
l

)
.

The first term equals,

T1 = 1

T

T∑
m,n=1

[ ∞∑
k=0

λ
(i)
k g(i)

k (xim)g(i)
k (xin)

] [ ∞∑
l=0

λ
( j)
l g( j)

l (x jm)g( j)
l (x jn)

]

=
∞∑

k,l=1

λ
(i)
k λ

( j)
l

[ 1
T

T∑
m,n=1

g(i)
k (xim)g(i)

k (xin)g
( j)
l (x jm)g( j)

l (x jn)
]

=
∞∑

k,l=1

λ
(i)
k λ

( j)
l

[( 1√
T

T∑
m=1

g(i)
k (xim)g( j)

l (x jm)
)( 1√

T

T∑
n=1

g(i)
k (xin)g

( j)
l (x jn)

)]

D−→
∞∑

k,l=0

λ
(i)
k λ

( j)
l Z2

ik, jl .

Therefore we have, for every pair i < j ,

T κ̃ (i j) D−→
∞∑

k,l=0

λ
(i)
k λ

( j)
l

(
Z2
ik, jl − 1

)
,

where Zik, jl , 1 ≤ k, l < ∞ are independent standard normal variables.
Moreover, when we consider the joint convergence of T κ̃ (i j), 1 ≤ i < j ≤ R,

due to the pairwise independence XT
i and XT

j , and the orthonormality of {g(i)
k (·)}

and {g( j)
l (·)}, the variables Zik, jl are all independent of each other. Incidentally, only

pairwise independence is being used here. That is,

(
T κ(i j), 1 ≤ i < j ≤ R

)
D−→

( ∞∑
k,l=0

λ
(i)
k λ

( j)
l

(
Z2
ik, jl − 1

)
, 1 ≤ i < j ≤ R

)
.

(3.20)
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Now, in the denominator of (3.18) we have terms of the form κ̃(XT
i , XT

i ) that
converge to constants given in Equation (3.8).

From Equations (3.20) and (3.8) we obtain that (3.17) holds, completing the proof.
	


It may be noted that the limit distribution of S̃B given in Equation (3.17) depends
on {Fi } through the eigenvalues {λ(i)

k } given by Equation (3.16). For most distribu-
tions, these cannot be computed in a closed form. However, they can be numerically
approximated. Moreover, even though the limit distribution depends on the underly-
ing parent distributions through the eigenvalues {λ(i)

k }, the self-normalisation of the
eigenvalues in the limit distribution (see Equation (3.17)) hints at a robustness of the
limiting behavior against changes in the underlying distributions. This is borne out by
the simulations in the next section.

In the special case where {Xi1, i = 1, . . . , R} have a common distribution F , we
have Fi ≡ F for all i . Let (λ(i)

k , g(i)
k ) ≡ (λk, gk) for all 1 ≤ i ≤ R. Then

T S̃B
D−→ 1

S0

∞∑
k=0

λ2k

∑
1≤i< j≤R

[(
wi j + w j i

) ∞∑
k,l=0

λkλl
(
Z2
ik, jl − 1

)]
. (3.21)

4 Simulation study

We now explore various distributional aspects of the S̃B statistic through simulations.
Since we are going to explore the COVID-19 data from the 14 districts of the state
of Kerala in India in the next section, we choose R = 14. We assume that we have
observations over a reasonable length of time, and choose T = 50. For a spatially
extended simulation with large number of regions, see (Kappara et al. 2023).

We use three different spatial proximity matrices: (i) the lag-1 adjacency matrix of
the districts (i.e. regions) (ii) distance matrix of these districts, using the average of
latitude and longitude of the district headquarters, and (iii) linear connectivity matrix,
which is a lag-1 adjacency matrix with the regions arranged in a line. The third W
matrix is motivated by the almost linear geographical organization of the districts of
Kerala from North-West to South-East.

The S̃B statistic is studied by simulating it under various scenarios in the absence
and presence of spatial association. This requires obtaining samples so that we can
apply formulae (3.1) and (3.3). Note that S0 = R since we are working with row-
standardized W matrices.

In Sect. 4.1, we study the distributions under the null case of no dependence between
the regions and also validate the asymptotic approximations obtained in (3.17) and
(3.21). Note that to use the finite-discrete approximation of the asymptotic distribution,
we would require the eigenvalues of the kernels for the corresponding distributions.

Then in Sect. 4.2 we study the S̃B statistic in presence of spatial dependence, using
two well-known spatial processes, namely spatial autoregression and spatial moving
average.
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Fig. 1 Simulated null distribution of T S̃B , T = 50, R = 14 for 10, 000 replicates, for six distributions.
Proximity matrices W : lag-1 adjacency (left), inverse distance (middle), and linearly arranged spatial units
(right)

4.1 Null case of spatial independence

In this simulation exercise, we have used a common choice of the distribution F for all
R spatial locations–six different choices for F , namely normal, uniform, exponential,
Laplace, logistic, and chi-square were explored. The eigenvalues {λk} are readily
available for these cases. Empirical null distributions of T S̃B were obtained using
10,000 replicates of the estimates of S̃B , under spatial pairwise independence and
these six choices of F .

From Fig. 1 we observe that under the null scenario of spatial independence, the
finite sample distribution of T S̃B does not depend in any significant way on the dis-
tributional assumptions. However, there are visible effects of the spatial proximity
matrices.

Next we validate the asymptotic behaviour of T S̃B stated in Theorem 2. As men-
tioned earlier this would require discrete approximations using eigenvalues. For the
detailed procedure of this discrete approximation method, see (Kappara et al. 2022).
We consider the finite sum based on 100 eigenvalues to approximate the asymptotic
null distributions.

This theoretical asymptotic distribution is computed for the case where all regions
have identical distribution (normal in this illustration). This is then compared with the
simulated empirical distribution generated under the same assumption of normality
for all regions.

For each choice of spatial proximity matrix, we have approximated the null distri-
butions, as described in (3.21), based on 10, 000 samples, see Fig. 2.

Figure 2 illustrates that evenwith only T = 50, and 100 eigenvalues, the asymptotic
distribution provides a good approximation to the (empirical) null distribution. Also,
as before, the underlying distributional assumption appears to be less critical than the
choice of the spatial proximity matrix.
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Fig. 2 Comparison of simulated null (black-solid line) and asymptotic null distributions (red-dashed-line)
of T S̃B with 10, 000 replicates, based on finite discrete approximation using 100 eigenvalues for asymptotic
distribution, withW matrices: lag-1 adjacency (left), inverse distance (middle), and linearly arranged spatial
units (right)

4.2 Spatial dependence case

In order to illustrate the behaviour of S̃B under the presence of spatial dependence, we
consider the following two general forms of spatial dependence models to simulate
spatially dependent data. In simulations, we maintain the assumptions on the data
given in Theorem 1, that the observations are i.i.d. across the time points.

1. Spatial moving average (SMA) dependence:

y = (I + θW )ε. (4.1)

2. Spatial autoregressive (SAR) dependence:

y = (I − θW )−1ε, (4.2)

where, θ is the spatial dependence parameter, W (row standardized) corresponds to
the assumed spatial proximity, and ε is a vector of standard normal variates throughout
the simulations. Under both the models, θ = 0 refers to the null case of no spatial
association. Note that ( Anselin and Florax (2012)) gives collection of some other
spatial dependence models of higher orders.

We consider a range of values for the spatial dependence parameter θ , namely 0, 0.1,
0.25, 0.5, 0.75, and 0.9 in this illustration. We continue to use the same three choices
of spatial proximity matrices described earlier, namely lag-1, inverse distance, and
linear connectivity. As before we have simulated spatially autocorrelated vectors of
length T = 50 at R = 14 locations.

For each choice of the W matrix and the dependence parameter θ , under the two
spatial dependence models the S̃B was simulated 10,000 times. In Fig. 3 we show the
distribution of S̃B under SMA and SAR models.
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Fig. 3 Empirical distributions of S̃B , R=14, T=50, 10, 000 replicates, with sample mean overlayed, depen-
dence parameter θ on x-axis under SMA model (top), SAR model (bottom). Proximity matrices: lag-1
adjacency (left), inverse distance (middle), and linearly arranged spatial units (right)

The box plots in Fig. 3 show the distinct and monotone departure of S̃B from its null
behaviour under the presence of spatial dependence. Incidentally, row-standardization
of W is crucial to yield this monotonicity.

It appears that as spatial association increases, the distribution seems to become
more symmetric around the median. To confirm this, we study the skewness and
kurtosis of this measure in Fig. 4.

We see that for θ values close to 0, i.e., relatively close to the null, the distribution
of S̃B is moderately skewed. This observation is consistent with our result in Theorem
2 that under the null, T S̃B approximately has a distribution of a centered sum of
weighted chi-squares.

As the spatial parameter θ increases, the skewness decreases gradually, and kurto-
sis decreases and becomes close to 3 under lag-1 adjacency and linear connectivity
matrices (i.e. W1 and W3). This is consistent with the asymptotic normality result we
have obtained in Theorem 1.

Note that for lag-1 adjacency and the linearly arranged proximity matrices, the
proportion of sparsity are 0.77 and 0.87. In comparison, the inverse distanceW matrix
has a sparsity of 0.07 only. Clearly the sparsity of the W matrix also influences the
distribution of S̃B .

Overall we notice, from the Figs. 3 and 4, that the presence of spatial association
highly influences the first four moments of the distribution of S̃B .

5 COVID-19 application

In this section, we present an application of S̃B to the COVID-19 data from the Indian
state ofKerala in the southern part of India.We consider district-levelmonthlyCOVID-
19 data for the 14 districts of Kerala as of October 31, 2022. The data is obtained from
a crowd-sourced database https://data.incovid19.org/. We have the number of districts
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Fig. 4 Empirical skewness (left) and kurtosis (right) of S̃B , plotted against spatial dependence parameter
θ , under SMA model (top) and SAR model (bottom), with proximity matrix: lag-1 adjacency matrix (solid
line), inverse distance matrix (dashed line), and linearly arranged spatial units (dotted line) (R=14, T=50,
10, 000 replicates)

Fig. 5 District level COVID-19 time series data (square root of number of cases) for Kerala

R = 14 and the number of time points T = 29 (months). Figure5 presents the time
series of this COVID-19 incidence data.

We present the analyses here using the lag-1 adjacency matrix motivated by the
works of Bhattacharjee et al. (2021). In its current form, the S̃B statistic measures
spatial association in absence of temporal pattern. However, COVID-19 data naturally
has temporal dependence. In order tomeaningfully apply thismeasure, first appropriate
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temporal models are applied to the data, and then the residuals are considered for
assessing spatial dependence.

Apart from measuring spatial dependence, we would also assess the significance
of such an S̃B measure. For that, we use the asymptotic null distributions presented
in Sect. 3.2 and obtain an empirical p-value of the corresponding T S̃B value. Further,
using bootstrap technique we also present confidence intervals.

FromFig. 5we observe a strong temporal pattern in the COVID-19 incidence. How-
ever, it is also apparent that there is a (spatial) consistency in this temporal behaviour.

To capture these features, we explore three models, with the first one being only
temporal, and other two involving spatio-temporal modelling. By nature, the first two
models are endogenous (viz. temporal AR model and spatio-temporal autoregressive
model), and the third one is exogenous (viz. a spatio-temporal-gravity model).

Let xit=number of new cases for the i th district during the time period t =
1, . . . , 29(= T ), i = 1, . . . , 14(= R). Then the models are defined as follows.

AR(3)Model.Here we fit the AR(3) models to each of the 14 district-level time series
separately and extract the residuals from each series. The model is defined as,

xit = β
(i)
0 + β

(i)
1 xi(t−1) + β

(i)
2 xi(t−2) + β

(i)
3 xi(t−3) + εi t . (5.1)

Here the superscript (i) in the parameters β represent parameters of the AR model
fitted to the time series from the i-th district, i = 1, . . . , 14(= R).

Spatio-temporal Model-1. In this model we assume that for a given region i , the
count for the t th month depend on the count for the (t − 1)th month of that region
along with all the Ni neighbors of that region. That is, we regress each district’s time
series on its own past at lag-1 and the past of its spatial neighbors. Thus the model
involves both temporal and spatial covariates.

We further assume that the count response variable follows either a Poisson distri-
bution or a Negative Binomial distribution with meanμi t . Then the linear predictor for
log-mean has the following form with the spatial and temporal autoregressive terms;

log(μi t ) = β
(i)
0 + β

(i)
1 xi(t−1) +

∑
j∈Ni

β
(i)
2, jwi j x j(t−1),

t = 1, . . . , 29, j = 1, . . . , 14. (5.2)

Again, the superscript (i), for the β parameters, indicates that the model is for the time
series from the i th district, i = 1, . . . , 14(= R). Here too the models are fitted to the
time-series from individual regions and residuals are extracted.

Spatio-temporal Model-2. The third model is an application of a specialized spatio-
temporal model proposed in Bhattacharjee et al. (2021). All covariates in this model
are exogenous. They include spatial-variates, temporal-variates, and covariates such
as air passenger traffic data, that includes both spatial and temporal information. This
model is fitted simultaneously to all R time series due to shared parameters/covariates
in the model.
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Fig. 6 Autocorrelation of residuals: Model 5.1 (top left), Model 5.2 (top right), Model 5.3 with inverse
distance decay (bottom left), and exponential decay (bottom right) with 95% threshold

The state of Kerala has four operational airports at Trivandrum, Calicut, Cochin and
Kannur. The data on passenger traffic at these airports have been obtained from theAir-
port Authority of India (AAI) source https://www.aai.aero/en/business-opportunities/
aai-traffic-news. We will denote the covariates for this model as follows:

dik is the (Euclidean) distance between the i-th district center and the k-th airport.

X1kt is the number of passengers arriving at the k-th airport at the t-th time point.

X2 and X3 are two numerical variables containing the geographical location of each
district head quarter (i.e. longitude and latitude respectively).

X4 is a categorical variable for the T time points.

Once again we assume the response variable xit of COVID-19 incidence follows a
negative binomial distribution, where the linear predictor for log-mean is given by,

logμi t = β0 +
4∑

k=1

β1,k f (dik)X1kt + β2X2 + β3X3 +
T∑
t=1

β4,t I{X4=t}. (5.3)

The first part of the model with parameters β1,k is adopted in the spirit of gravity
models and explains the effect of the volume of air passenger traffic on the district-level
COVID-19 incidence.The (inverse) distancebetween airports anddistrict headquarters
is captured by a distance decay function. Based on the results from Bhattacharjee et al.
(2021), we use two decay functions, the inverse decay f (d) = 1/d, and exponential
decay f (d) = exp(−d).

In Fig. 6 we present the autocorrelation functions from the 14 districts under these
three models (with two distance decay functions for the third model). From the resid-
ual autocorrelations plot from an AR(3) model in Fig. 6 we observe that, in spite of
fitting the models separately for the 14 districts, the residuals behave similarly. This
strengthens the idea of applying spatio-temporal models to this data.
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Table 1 Results on S̃B from the fitted models for COVID-19 incidence data

Model S̃B CI p-value

AR(3) model 0.85 (0.7278, 0.9858) 0.0127

ST model-1 0.78 (0.6163, 0.9126) 0.0182

ST model-2 ( f (d) = 1/d) 0.09 (0, 0.0972) 0.3578

ST model-2 ( f (d) = exp(−d)) 0.14 (0, 0.1530) 0.3103

From Fig. 6, we also observe that the strong clustered pattern of the autocorrelation
functions seems to dissipate with applications of the two spatio-temporal models. It
appears to be most de-clustered for the spatio-temporal model-2.

All four sets of autocorrelation plots in Fig. 6 are within the 95% threshold for all R
time-series residuals. Therefore for practical purposes,we can assumean i.i.d. structure
within each of the residual series from the R = 14 districts. Thus the statistic S̃B can
be computed based on these residuals, and we can apply our distributional results.

The above observations are further confirmed by carrying out a test of significance
for the S̃B statistics (see Table 1).

For the spatio-temporal model-2 (with either distance function), we are unable to
reject the null hypothesis of no spatial association. Thuswe can conclude that the resid-
uals obtained from this model are spatially pairwise independent. Therefore Model
(5.3) satisfactorily explains the spatial and temporal incidence pattern of COVID-19
in Kerala.

Based on the overall conclusion on spatial association (lack thereof in the residuals
after applying the spatio-temporal model with the exponential decay model 5.3), we
further investigated the presence of individual pairwise dependence, if any. Accord-
ingly in Fig. 7 we present the pairwise Bergsma correlations (see Bergsma 2006) for
the 14 districts based on the residuals obtained from Model 5.3.

As was shown for the S̃B statistic, for the ρ̃ statistics also it is possible to assess
significance (using an empirically derived cutoff of ρ̃ > 0.17). By applying such a
test, we conclude pairwise independence of most pairs of districts. There appear to be
a few sporadic significant pairs, which may be due to some yet unknown factor(s).

6 Discussion

We have used a specific correlation measure and its estimate to define a global spa-
tial measure of association. This measure is asymptotically normal when we have
observations that are i.i.d. over time but are spatially dependent. In the absence of spa-
tial dependence, more precisely when there is only pairwise spatial independence, the
estimate has an asymptotic distribution involving an infinite sum of weighted i.i.d. chi-
square variables. In both cases, the distribution depends on the unknown underlying
distribution of the observations, especially through the eigenvalues of appropriate
kernel functions.
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Fig. 7 Pairwise estimated Bergsma correlations for the residuals from the spatio-temporal Model (5.3) with
exponential distance decay

Simulations show that for a reasonably large number of observations, the actual
finite sample distributions are well approximated by the asymptotic distributions. It
is also seen that these measures and their distributions are sensitive to the choice
of a spatial proximity matrix, but are not sensitive to the nature of the underlying
distributions.

At present, no distributional properties are known for the association estimate when
the observations are also temporally dependent. In spite of this, the measure can be
used for model-fitting purposes even in the presence of temporal dependence. This is
done by first removing the temporal dependence through appropriate modelling and
then using the measure on the residual series.

We have presented such an application for spatio-temporal modelling of COVID-19
data on the monthly time series data of the 14 districts of the Indian state of Kerala.

While considering a larger number of spatial locations may be useful in some
cases, one should be cautious of their potential adverse effect on our ability to identify
dependence. It is possible that spatial dependence exists only locally and an overall
measure may fail to identify it. Further care needs to be taken in choosing a distance
measure when working with a large number of regions. See (Kappara et al. 2023) for
an instance where we find a diminished sensitivity of the measure when R is large and
the inverse distance proximity matrix is used.
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Another possible topic of investigation could be to consider situations where multi-
variate observations are available on each spatial unit. This may be feasible given that
the distance covariance measure when X and Y are multivariate reduces to κ when
X and Y are univariate. However, whether the distributional properties would still be
possible to obtain remains to be seen.
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Appendix: R code

We give below two R codes. The first is for theU -statistic based estimate of Bergsma
correlation. Input for this first code is bivariate data in the form of two vectors, x and
y. The second is a code for computing the S̃B statistic. For this data is to be given in
the format of a matrix with T rows (time points) and R columns (locations), and an
R × R Spatial proximity matrix.
Bergsma’s ρ̃

rho_tilde <- function(x,y)
{
n = length(x)
X = matrix( replicate(n, x), nrow = n); Dx = abs( X - t(X))
Y = matrix( replicate(n, y), nrow = n); Dy = abs( Y - t(Y))
A1 = apply(Dx,1,mean)
A2 = apply(Dy,1,mean)
B1 = mean(A1)
B2 = mean(A2)
Dx1 = sweep(Dx,1,(n/(n-1))*A1)
Dx2 = sweep(Dx1,2,(n/(n-1))*A1)
Hx = (-1/2)*(Dx2 +(n/(n-1))*B1)
Dy1 = sweep(Dy,1,(n/(n-1))*A2)
Dy2 = sweep(Dy1,2,(n/(n-1))*A2)
Hy = (-1/2)*(Dy2 +(n/(n-1))*B2)
Hxy = Hx*Hy
I = matrix(1,n,n)
I[lower.tri(I,diag=TRUE)] = 0
r_tilde = sum(I*Hxy)/(sqrt(sum(I*Hx*Hx)*sum(I*Hy*Hy))) #
computing rho_tilde return(r_tilde)
}

S̃B statistic

SB <- function(data, W){
r_curl = matrix(0, ncol(data), ncol(data))
for(i in 1:ncol(data)){
for(j in i:ncol(data)){
r_curl[i,j] = rho_tilde(data[,i], data[,j])
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r_curl[j,i] = r_curl[i,j]
}}
Spatial_AI = sum(W*r_curl)/sum(W)
return(Spatial_AI)
}
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