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Abstract
In this work, we introduce the random weighting method to the nonlinear regression
model and study the asymptotic properties for the randomly weighted least squares
estimator with dependent errors. The results reveal that this new estimator is consis-
tent. Moreover, some simulations are also carried out to show the performance of the
proposed estimator.
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1 Introduction

Consider the nonlinear regression model:

Xn = gn(θ) + ξn, n ≥ 1, (1.1)

where Xn is observed, {gn(θ)} is a known sequence of continuous functions possibly
nonlinear in θ ∈ �, a closed interval on the real line, and {ξn, n ≥ 1} is a sequence
of random errors with zero mean. The nonlinear regression models have significant
advantages over the linear models. The main one is that the nonlinear regression
models have essentially fewer unknown parameters. Also, the parameters of nonlinear
models have the meaning of physical variables while the linear parameters are usually
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devoid of physical significance. Therefore, it is of great interest to study the nonlinear
regression model. In most of studies devoted to the problems of regression analysis in
the past decades, the central place is occupied by the least squaresmethod of estimation
of parameters, which has a protracted history. Let

Qn(θ) = 1

n

n∑

i=1

ω2
i (Xi − gi (θ))2,

where {ωi } is a known sequence of positive numbers. An estimator θn is said to be an
ordinary least squares estimator (OLSE, for short) of θ if it minimizes Qn(θ), that is,
Qn(θn) = infθ∈� Qn(θ).

The study of asymptotic properties of the OLSE for parameters in nonlinear regres-
sionmodels has been themain subject of investigation. It is challenging in investigating
this model since the OLSE non-linearly entering in a regression function parameters
can not be found in an explicit form, which complicates the description of its mathe-
matical properties. Hence, on introducing into statistics the use of nonlinear regression
analysis it is necessary to overcome a series of mathematical difficulties which do not
have analogues in the linear theory. For the OLSE of the nonlinear model based on
i.i.d. random errors, Jennrich (1969) established the asymptotic normality, Malinvaud
(1970) investigated the consistency, andWu (1981) established the necessary and suf-
ficient condition for the strong consistency, and so on. In particular, Ivanov (1976)
obtained the following result on large deviation for the OLSE with ωi ≡ 1 based on
i.i.d. random errors.

Theorem 1.1 Let {ξn, n ≥ 1} be i.i.d. random variables with E |ξ1|p < ∞ for some
p ≥ 2. Suppose there exist some constants 0 < c1 ≤ c2 < ∞ such that

c1(θ1 − θ2)
2 ≤ 1

n

n∑

i=1

(gn(θ1) − gn(θ2))
2 ≤ c2(θ1 − θ2)

2, for any θ1, θ2 ∈ �, n ≥ 1.

Then for every ρ > 0 and for all n ≥ 1, it has

P(n1/2|θn − θ0| > ρ) ≤ cρ−p,

where θ0 is the true parameter such that θ0 ∈ interior of� and c is a positive constant
independent of n and p.

Prakasa Rao (1984) extended Theorem 1.1 from i.i.d. case to some dependent cases
such as ϕ-mixing and α-mixing assumptions. Hu (2002) extended Theorem 1.1 to
martingale differences, ϕ-mixing and negative association (NA, for short) assump-
tions under supi≥1 E |ξi |p < ∞ for some p > 2 without identical distribution.
Hu (2004) further considered the large deviation result under the moment condition
supi≥1 E |ξi |p < ∞ for some 1 < p ≤ 2. Yang and Hu (2014) obtained some general
results on the large deviation, which can also be available under some cases satisfying
supi≥1 E |ξi |p = ∞ for some p > 1; Yang et al. (2017) established some large devia-
tion results under extended negatively dependent (END, for short) random errors, and
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so on. However, a new challenge will emerge if the errors are heteroscedastic, i.e.,
estimating the variances of the errors is not an easy work.

It is well known that the bootstrap is a very excellent method, which has been used
comprehensively in many statistical models including nonlinear regression model.
One can see Staniewski (1984) for example. As an alternative approach, the random
weighting method, or Bayesian bootstrap method, has received increasing attentions
by scholars since it was originally suggested by Rubin (1981). The random weight-
ing method is motivated by the bootstrap method and can be regarded as a kind of
smoothing of bootstrap. Instead of re-sampling from the original data set, the random
weighting method propels us to generate a group of random weights directly from the
computer and then use them to weight the original samples. In comparison with the
bootstrapmethod, the randomweightingmethod has advantages such as the simplicity
in computation, the suitability for large samples, and there is no need to know the dis-
tribution function. Therefore, this method was adopted in various statistical models.
For more details, we refer the readers to Zheng (1987), Gao et al. (2003), Xue and Zhu
(2005), Fang and Zhao (2006), Barvinok and Samorodnitsky (2007), Gao and Zhong
(2010), and so forth.

However, to the best of our knowledge, there is no literature considering the ran-
domly weighted estimation in nonlinear regression models. In this paper, the random
weighting method is adopted for the first time to the least squares estimation in non-
linear regression models. Now we are at a position to present this method.

Definition 1.1 (cf. Ng et al. 2011) Let (W1, · · · ,Wn) be a random vector withWi ≥ 0
and

∑n
i=1 Wi = 1. Then the Dirichlet probability density function of (W1, · · · ,Wn)

is defined as

f (w1, · · · , wn) = 	(α0)∏n
i=1 	(αi )

n∏

i=1

w
αi−1
i ,

where αi > 0, α0 = ∑n
i=1 αi , wi ≥ 0,

∑n−1
i=1 wi ≤ 1 and wn = 1 −∑n−1

i=1 wi . This
distribution is denoted by Dir(α1, · · · , αn).

By virtue of the concept of Dirichlet distribution, we can propose the randomly
weighted least squares estimator of θ as follows. Let

Hn(θ) =
n∑

i=1

Wi (Xi − gi (θ))2, (1.2)

whereWi ’s are independent of ξi ’s and the random vector W = (W1, · · · ,Wn) obeys
theDirichlet distribution Dir(4, 4, . . . , 4), namely,

∑n
i=1 Wi = 1 and the joint density

of W1, · · · ,Wn−1 is

f (w1, · · · , wn−1) = 	(4n)

(	(4))n
w3
1 · · ·w3

n−1(1 − w1 − · · · wn−1)
3,
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where (w1, · · · , wn−1) ∈ Dn−1 and Dn−1 = {(w1, · · · , wn−1) : wi ≥ 0, i =
1, . . . , n − 1,

∑n−1
i=1 wi ≤ 1}. An estimator θ̂n is said to be a randomly weighted

least squares estimator (RWLSE, for short) of θ if θ̂n = arg infθ∈� Hn(θ).
Since independence assumption is usually implausible in reality, we will adopt a

relatively broad dependence, i.e., END assumption in the sequel. The concept of END
random variables was introduced by Liu (2009) as follows.

Definition 1.2 A finite collection of random variables X1, X2, · · · , Xn is said to be
END if there exists a constant M > 0 such that both

P(X1 > x1, X2 > x2, · · · , Xn > xn) ≤ M
n∏

i=1

P(Xi > xi )

and

P(X1 ≤ x1, X2 ≤ x2, · · · , Xn ≤ xn) ≤ M
n∏

i=1

P(Xi ≤ xi )

hold for all real numbers x1, x2, · · · , xn . An infinite sequence {Xn, n ≥ 1} is said to
be END if every finite sub-collection is END.

Liu (2009) provided some examples satisfying END structure, one of which shows
that if X1, X2, · · · , Xn are dependent according to a multivariate copula function
C(u1, · · · , un)with absolutely continuous distribution functions F1, · · · , Fn , the joint
copula density c(u1, · · · , un) = ∂nC(u1,··· ,un)

∂u1···∂un exists and be uniformly bounded in the
whole domain, then {Xn, n ≥ 1} are END. If we take M = 1, then the END structure
degenerates to negatively orthant dependent (NOD, for short) structure which was
introduced by Lehmann (1966) (cf. also Joag-Dev and Proschan 1983). The END
structure can reflect not only a negative dependence structure but also a positive one to
some extent. Liu (2009) pointed out that the END random variables can be regarded as
negatively or positively dependent and provided some interesting examples to support
this idea. Joag-Dev and Proschan (1983) also pointed out that negatively associated
(NA, for short) random variables are NOD but the inverse is not necessarily true, thus
NA random variables are also END. Hence, the consideration of END structure is
reasonable and of great interest. Many applications have been found for END random
variables. For example, Liu (2010) studied the sufficient and necessary conditions of
moderate deviations for END random variables with heavy tails; Chen et al. (2010)
established the strong law of large numbers for END random variables and gave
their applications to risk theory and renewal theory; Shen (2011) established some
exponential probability inequalities for END random variables and presented some
applications; Wang and Wang (2013) investigated the precise large deviations for
random sums of END real-valued random variables with consistent variation; Wang
et al. (2014) proved some results on complete convergence of END random variables;
Lita da Silva (2015) established the almost sure convergence for sequences of END
random variables; Wang et al. (2015) and Yang et al. (2018) studied the complete
consistency of the estimator of nonparametric regressionmodels based on END errors;
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Wu et al. (2019) investigated the complete f -moment convergence for END random
variables, and so on.

For the proposed RWLSE above-mentioned, we establish two general results on
large deviation for RWLSE of the parameter θ with p > 2, and respectively, 1 <

p ≤ 2 under END errors. As direct corollaries, the rates of complete consistency,
strong consistency, and weak consistency are obtained, which reflect that the proposed
RWLSE is a consistent estimator of θ . The numerical analysis reveals that the RWLSE
performs as well as the OLSE in heteroscedastic nonlinear regression models, where
sometimes the former one is better. As we have pointed out earlier, it is not easy
to estimate the variances of heteroscedastic errors, this paper provides an alternative
method to estimate the parameters in a heteroscedastic nonlinear regression model.

Throughout this paper, the symbol C represents some positive constant which can
be different in different places. C(p),C ′(p),C1(p),C2(p), · · · are some positive
constants depending only on p. Let I (A) be the indicator function of the event A
and �x	 denote the integer part of x . Denote x+ = x I (x ≥ 0), x− = −x I (x < 0).
log n = ln max(x, e), where ln x represents the natural logarithm of x .

The rest of this paper is organized as follows: The main results are stated in Sect. 2.
The numerical analysis is provided in Sect. 3. The proofs of the main results are
presented in Sect. 4. Some lemmas for proving the main results are given in Appendix.

2 Main results

The main results on large deviations are presented as follows.

Theorem 2.1 Let p > 2. In model (1.1), assume that {ξn, n ≥ 1} is a sequence of
END random errors with zero mean and E |ξn|p < ∞ for each n ≥ 1. If there exist
positive numbers λn ≤ �n for each n ≥ 1, such that

λn |θ1 − θ2| ≤ |gi (θ1) − gi (θ2)| ≤ �n |θ1 − θ2|, for any θ1, θ2 ∈ �, 1 ≤ i ≤ n, n ≥ 1,

(2.1)

then there exists a positive constant C(p) depending only on p such that for all ρ > 0
and each n ≥ 1,

P(n1/2|θ̂n − θ0| > ρ) ≤ C(p)
[
n−1λ

−p
n np + n−p/2(�n/λ

2
n)

p(np + ∇np)
]
ρ−p,

(2.2)

where np =∑n
i=1 E |ξi |p and ∇np = (∑n

i=1 Eξ2i

)p/2
.

Theorem 2.2 Let 1 < p ≤ 2. In model (1.1), assume that {ξn, n ≥ 1} is a sequence of
END random errors with zero mean and E |ξn|p < ∞ for each n ≥ 1. If (2.1) holds,
then there exists a positive constant C ′(p) depending only on p such that for all ρ > 0
and each n ≥ 1,
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P(n1/2|θ̂n − θ0| > ρ) ≤ C ′(p)(�n/λ
2
n)

pn−p/2npρ
−p. (2.3)

Remark 2.1 It is easy to see that if supn≥1 E |ξn|p < ∞ for some p > 2, Theorem 2.1
extends Theorem 1.1 from i.i.d assumption to END random errors with not necessarily
identical distribution. Similarly, if supn≥1 E |ξn|p < ∞ for some 1 < p ≤ 2, then
Theorem 2.2 also extends the corresponding result of Hu (2004).

Remark 2.2 Yang and Hu (2014) also established the similar results for OLSE of θ

with NOD errors. By taking λn = c1,�n = c2 for some 0 < c1 ≤ c2, we point out that
the conditions in Theorem 2.1 and the corresponding result of Yang and Hu (2014)
do no imply each other. For example, n−1∑n

i=1 E |ξi |p > n−p/2∑n
i=1 E |ξi |p but

n−p/2
(∑n

i=1 Eξ2i

)p/2 ≤ n−p/2
(∑n

i=1(E |ξi |p)2/p
)p/2

.However, if supn≥1 E |ξn|p <

∞ for some p > 2, they are equivalent. Hence, our results extend the corresponding
ones of Yang and Hu (2014).

By Theorem 2.1, we can obtain the result concerning the rate of complete consis-
tency and strong consistency as follows.

Corollary 2.1 In model (1.1), assume that {ξn, n ≥ 1} is a sequence of END random
errors with zero mean and supn≥1 E |ξn|p < ∞ for some p > 2. If (2.1) holds with
λn = c1 and �n = c2 for some 0 < c1 ≤ c2 < ∞, then for any ε > 0,

∞∑

n=1

P(|θ̂n − θ0| > εn1/p−1/2
√
log n) < ∞,

and thus

|θ̂n − θ0| = o
(
n1/p−1/2

√
log n

)
a.s., as n → ∞.

ByTheorem 2.2, we can also obtain the following result on rate of weak consistency
of the RWLSE θ̂n .

Corollary 2.2 In model (1.1), assume that {ξn, n ≥ 1} is a sequence of END random
errors with zero mean and supn≥1 E |ξn|p < ∞ for some 1 < p ≤ 2. If (2.1) holds
with λn = c1 and �n = c2 for some 0 < c1 ≤ c2 < ∞, then

|θ̂n − θ0| = OP

(
n1/p−1

)
.

In particular, if p = 2, then for any positive sequence {τn, n ≥ 1} satisfying τn = o(n),

√
τn|θ̂n − θ0| P−→ 0.
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3 Some examples and numerical analysis

3.1 Some examples

In this subsection, we present some examples for the RWLSE of nonlinear regression
models.

Example 3.1 Consider the linear model

Xi = θ + ξi , i = 1, 2, . . . , n, θ ∈ �, (3.4)

where {ξn, n ≥ 1} is a sequence of END random errors with zero mean and E |ξn|p <

∞ for each n ≥ 1. Obviously, (2.1) holds with λn = �n = 1. Hence, Theorems 2.1
and 2.2 follows from E |ξn|p < ∞ with p > 2 and respectively, 1 < p ≤ 2.

Example 3.2 Consider the Michaelis-Menten model (see Sieders and Dzhaparidze
(1987)) or Miao and Tang (2021) for example)

V (v, L, N ) = Lv

N + v
,

which is used to describe the relation between the velocity V of an enzyme reaction
and the concentration v of the substrate. The parameter L denotes themaximal reaction
velocity and the parameter N implies the chemical affinity. Based on the model above,
for each concentration vi , there is a measurement of the velocity Vi with error ξi , i.e.,

Xi = Vi (vi , L, N ) = Lvi

N + vi
+ ξi , i ≥ 1. (3.5)

Assume that the parameter set (L, N ) ∈ � is a bounded open set in the positive
quadrant. Consider the following simple form of model (3.5)

Xi = gi (N ) + ξi = 1

N−1 + iμ
+ ξi , (3.6)

which follows from (3.5) by assuming N/L is known (without loss of generality, we
may assume that N/L = 1) and letting vi = i−μ, 0 < μ < min{(p − 1)/(4p), 1/8},
where p > 1. It is easy to see that

c3n
−2μ|N1 − N2| ≤ |gi (N1) − gi (N2)| = |N1 − N2|

(1 + N1iμ)(1 + N2iμ)

≤ c4|N1 − N2|, 1 ≤ i ≤ n

for some 0 < c3 ≤ c4 < ∞. Assume further that {ξn, n ≥ 1} is a sequence of END
random errors with zero mean and E |ξn|p < ∞ for each n ≥ 1, then Theorems 2.1
and 2.2 hold. Moreover, by choosing ρ = n1/2ε, we can obtain the weak consistency
for p > 1 and strong consistency for some p large enough.
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Table 1 Mean and variance of the RWLSE under END errors for homoscedastic Models 1 and 2

sample size Model 1 Model 2

E(θ̂ ) Var [√n(θ̂ − θ)] E(N̂ ) Var [√n(N̂ − N )]
50 1.0011 0.6651 0.2213 1.8789

100 1.0016 0.6444 0.2237 1.7445

200 0.9981 0.6740 0.2117 1.7273

400 1.0011 0.5743 0.2000 1.8365

800 1.0016 0.6985 0.2024 1.7128

1600 0.9991 0.6811 0.2004 1.8366

3.2 Numerical analysis

In this section, we will carry out some simulations to study the finite sample perfor-
mance of the RWLSE in the homoscedastic and heteroscedastic nonlinear regression
models. The data are generated from model (3.4) (denoted as Model 1) and (3.6)
(denoted as Model 2) respectively. For Model 1, set θ = 1 and for Model 2, set
N = 1/5. Set the sample size n = 50, 100, 200, 400, 800, 1600. Let (ε1, · · · , εn) ∼
Nn(0, �) with

� =

⎛

⎜⎜⎜⎜⎜⎜⎜⎝

1 −0.3 0 · · · 0

−0.3 1 −0.3
. . .

...

0 −0.3 1
. . . 0

...
. . .

. . .
. . . −0.3

0 · · · 0 −0.3 1

⎞

⎟⎟⎟⎟⎟⎟⎟⎠

. (3.7)

The weights W ∼ Dir(4, 4, · · · , 4), and the generation method of W is refer to
Narayanan (1990).

We first use the RWLSE to estimate θ for Model 1 and N for Model 2 with
homoscedasticity, i.e., ξi = εi for each 1 ≤ i ≤ n. Repeat the procedure 1000
times and calculate the mean and variance of the estimator. The results are given in
Table 1. We can see that θ̂ for Model 1 is unbiased, while N̂ for Model 2 is asymp-
totically unbiased. The trend that Var [√n(θ̂ − θ)] and Var [√n(N̂ − N )] are finite
indicates that the convergence rate of the RWLSE is asymptotically O(n−1/2). To
compare the RWLSE to the OLSE under END errors, we further present the the mean
and variance of the OLSE in Table 2. The results show that there are no intrinsic
difference between the mean of the two estimators. The mean and the variance of the
RWLSE are slightly inferior to those of the OLSE in both the two models.

We now consider the heteroscedastic case, i.e., ξi = [
1 + (−1)i (i−1)

n

]
εi for each

1 ≤ i ≤ n. Other settings are the same as above. The results are given in Table 3 and
Table 4. The mean and the variance of the RWLSE are better than those of the OLSE
in Model 1 but slightly weaker in Model 2. However, the convergence rates of the two
estimators are almost the same. Note that in our simulation, the heteroscedasticity is
known. However, in many realistic applications, it is not easy to estimate the variance
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Table 2 Mean and variance of the OLSE under END errors for homoscedastic Models 1 and 2

sample size Model 1 Model 2

E(θ̂ ) Var [√n(θ̂ − θ)] E(N̂ ) Var [√n(N̂ − N )]
50 1.0001 0.4477 0.2229 1.1344

100 1.0030 0.4202 0.2037 0.9986

200 0.9995 0.4125 0.2065 1.1544

400 1.0003 0.4301 0.2023 1.0640

800 1.0007 0.3789 0.2020 0.9500

1600 1.0004 0.3770 0.2005 1.1707

Table 3 Mean and variance of the RWLSE under END errors for heteroscedastic Models 1 and 2

sample size Model 1 Model 2

E(θ̂ ) Var [√n(θ̂ − θ)] E(N̂ ) Var [√n(N̂ − N )]
50 0.9867 1.2515 0.2811 6.2218

100 0.9975 1.2795 0.2273 4.4603

200 1.0038 1.2632 0.2202 3.6783

400 1.0015 1.5081 0.2078 4.3282

800 0.9989 1.4841 0.2078 4.3502

1600 1.0006 1.5372 0.2035 4.4674

Table 4 Mean and variance of the OLSE under END errors for heteroscedastic Models 1 and 2

sample size Model 1 Model 2

E(θ̂ ) Var [√n(θ̂ − θ)] E(N̂ ) Var [√n(N̂ − N )]
50 1.0074 2.1632 0.2464 2.8356

100 1.0065 2.5308 0.2251 2.8470

200 0.9974 3.4748 0.2107 2.6467

400 1.0027 3.7136 0.2088 2.8344

800 1.0015 3.3483 0.2013 2.7371

1600 1.0021 4.7489 0.2039 2.6418

of the errors if they are heteroscedastic. Therefore, our simulation results show that
the RWLSE has a good performance without estimating the variance of the errors first,
which provide us an alternative choice when dealing with similar issues.

4 Proofs of themain results

Proof of Theorem 2.1 Denote

�n(θ1, θ2) =
n∑

i=1

Wi (gi (θ1) − gi (θ2))
2, Vn(θ) =

n∑

i=1

Wiξi (gi (θ) − gi (θ0)),

123



560 Y. Wu et al.

and

Un(θ) = Vn(θ)

�n(θ, θ0)
, θ �= θ0.

Note from
∑n

i=1 Wi = 1 and (2.1) that

�n(θ, θ0) ≥ λ2n(θ − θ0)
2. (4.1)

For all ω ∈ (|θ̂n − θ0| > ε), where ε > 0 is arbitrary, we have that θ̂n �= θ0 and thus

n∑

i=1

Wiξ
2
i =

n∑

i=1

Wi (Xi − gi (θ0))
2 ≥

n∑

i=1

Wi (Xi − gi (θ̂n))
2

=
n∑

i=1

Wi (Xi − gi (θ0))
2 + 2

n∑

i=1

Wi (Xi − gi (θ0))(gi (θ0) − gi (θ̂n))

+
n∑

i=1

Wi (gi (θ0) − gi (θ̂n))
2

=
n∑

i=1

Wiξ
2
i − 2Un(θ̂n)�n(θ̂n, θ0) + �n(θ̂n, θ0),

which together with �n(θ̂n, θ0) > 0 impliesUn(θ̂n) ≥ 1/2. Hence, (|θ̂n − θ0| > ε) ⊆
(Un(θ̂n) ≥ 1/2). Via choosing ε = ρn−1/2, we have

P(n1/2|θ̂n − θ0| > ρ) ≤ P

(
sup

|θ−θ0|>ρn−1/2
|Un(θ)| ≥ 1/2

)

≤ P

(
sup

|θ−θ0|>ρ

|Un(θ)| ≥ 1/2

)

+P

(
sup

ρn−1/2<|θ−θ0|≤ρ

|Un(θ)| ≥ 1/2

)
. (4.2)

By Cauchy’s inequality, we can see that for all θ �= θ0,

|Vn(θ)|2
�n(θ, θ0)

=
[∑n

i=1 Wiξi (gi (θ) − gi (θ0))
]2

∑n
i=1 Wi (gi (θ) − gi (θ0))2

≤
n∑

i=1

Wiξ
2
i . (4.3)

Observing that
∑n

i=1 Wi = 1 and f (x) = |x |r is a convex function for all r ≥ 1, we
have by p > 2 and Lemma A.3 that

E

(
n∑

i=1

Wiξ
2
i

)p/2

≤ E

(
n∑

i=1

Wi |ξi |p
)

=
n∑

i=1

EWi E |ξi |p = 1

n

n∑

i=1

E |ξi |p.

(4.4)
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Moreover, we obtain by (4.1) that

sup
|θ−θ0|>ρ

|Un(θ)| = sup
|θ−θ0|>ρ

|Vn(θ)|
�
1/2
n (θ, θ0)�

1/2
n (θ, θ0)

≤ (λnρ)−1 sup
|θ−θ0|>ρ

|Vn(θ)|
�
1/2
n (θ, θ0)

.

(4.5)

Hence, it follows from (4.3)–(4.5) and Markov’s inequality that

P

(
sup

|θ−θ0|>ρ

|Un(θ)| ≥ 1/2

)
≤ P

(
n∑

i=1

Wiξ
2
i ≥ λ2nρ

2

4

)

≤
(

2

λnρ

)p

E

(
n∑

i=1

Wiξ
2
i

)p/2

≤ C1(p)npn
−1λ

−p
n ρ−p. (4.6)

For m = 0, 1, 2, . . . , �n1/2	, let θ(m) = θ0 + ρ

n1/2
+ mρ

�n1/2	 and ρm = θ(m) − θ0 =
ρ

n1/2
+ mρ

�n1/2	 . It follows from (4.1) again that

sup
ρm<θ−θ0≤ρm+1

|Un(θ)| ≤ sup
ρm<θ−θ0≤ρm+1

|Vn(θ)|
λ2n(θ − θ0)2

≤ sup
ρm<θ−θ0≤ρm+1

|Vn(θ)|
λ2nρ

2
m

≤ |Vn(θ(m))|
λ2nρ

2
m

+ sup
θ(m)<θ1,θ2≤θ(m+1)

|Vn(θ2) − Vn(θ1)|
λ2nρ

2
m

.

Hence, it yields that

P

(
sup

ρm<θ−θ0≤ρm+1

|Un(θ)| ≥ 1/2

)
≤ P

(
|Vn(θ(m))| ≥ 1

4
λ2nρ

2
m

)

+P

(
sup

θ(m)<θ1,θ2≤θ(m+1)
|Vn(θ2) − Vn(θ1)| ≥ 1

4
λ2nρ

2
m

)
.

(4.7)

By Lemma A.3 and Stirling’s approximation, we have that for each 1 ≤ i ≤ n, when
n is sufficiently large,

EW p
i = 	(4n)	(4 + p)

	(4n + p)	(4)
≈ 	(4 + p)

	(4)
·

√
2π(4n − 1)

( 4n−1
e

)4n−1

√
2π(4n + p − 1)

(
4n+p−1

e

)4n+p−1

≤ C

(
4n − 1

4n + p − 1

)4n−1

n−p ≤ Cn−p. (4.8)

Note that 0 = EWi Eξi = EWiξi = EWiξ
+
i − EWiξ

−
i for 1 ≤ i ≤ n and

from Lemma A.1 that {Wnξ
+
n − EWnξ

+
n , n ≥ 1} and {Wnξ

−
n − EWnξ

−
n , n ≥ 1} are
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still sequences of END random variables with zero mean. Hence, applying Markov’s
inequality, Lemma A.2, (2.1) and (4.8), one can easily obtain that

P

(
|Vn(θ(m))| ≥ 1

4
λ2nρ

2
m

)
≤
(

4

λ2nρ
2
m

)p

E |Vn(θ(m))|p

=
(

4

λ2nρ
2
m

)p

E

∣∣∣∣∣

n∑

i=1

Wiξi (gi (θ(m)) − gi (θ0))

∣∣∣∣∣

p

≤ 2p−1
(

4

λ2nρ
2
m

)p

E

∣∣∣∣∣

n∑

i=1

(Wiξ
+
i − EWiξ

+
i )(gi (θ(m)) − gi (θ0))

∣∣∣∣∣

p

+2p−1
(

4

λ2nρ
2
m

)p

E

∣∣∣∣∣

n∑

i=1

(Wiξ
−
i − EWiξ

−
i )(gi (θ(m)) − gi (θ0))

∣∣∣∣∣

p

≤ C

(
4

λ2nρ
2
m

)p
{

n∑

i=1

E |Wiξi |p|(gi (θ(m)) − gi (θ0))|p

+
(

n∑

i=1

E |Wiξi |2(gi (θ(m)) − gi (θ0))
2

)p/2
⎫
⎬

⎭

≤ C

(
4�n

λ2nρ
2
m

)p

|θ(m) − θ0|p
⎧
⎨

⎩

n∑

i=1

EW p
i E |ξi |p +

(
n∑

i=1

EW 2
i Eξ2i

)p/2
⎫
⎬

⎭

≤ C2(p)(�n/λ
2
n)

pρ
−p
m n−p(np + ∇np). (4.9)

Similarly, we also obtain by Lemma A.2, (2.1) and (4.8) that for all θ1, θ2 ∈ � and n
large enough,

E |Vn(θ2) − Vn(θ1)|p = E

∣∣∣∣∣

n∑

i=1

Wiξi (gi (θ2) − gi (θ1))

∣∣∣∣∣

p

≤ C�
p
n |θ2 − θ1|p

⎧
⎨

⎩

n∑

i=1

EW p
i E |ξi |p +

(
n∑

i=1

EW 2
i Eξ2i

)p/2
⎫
⎬

⎭

≤ C�
p
n n

−p(np + ∇np)|θ2 − θ1|p =: C(n, p)|θ2 − θ1|p.
Hence, taking r = 1 + α = p, C = C(n, p), ε = ρ/�n1/2	, a = λ2nρ

2
m/4, and

γ ∈ (2, p + 1) in Lemma A.4, we obtain

P

(
sup

θ(m)<θ1,θ2≤θ(m+1)
|Vn(θ2) − Vn(θ1)| ≥ 1

4
λ2nρ

2
m

)

= P

(
sup

θ(m)<θ1,θ2≤θ(m)+ρ/�n1/2	
|Vn(θ2) − Vn(θ1)| ≥ 1

4
λ2nρ

2
m

)
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≤ 8C�
p
n n−p(np + ∇np)

(p + 1 − γ )(p + 2 − γ )

(
8γ

γ − 2

)p (
ρ

�n1/2	
)p ( 4

λ2nρ
2
m

)p

≤ C3(p)(�n/λ
2
n)

pρ pρ
−2p
m n−3p/2(np + ∇np). (4.10)

Noting that ρ0 = ρn−1/2, ρm > mρn−1/2 and p > 2, we obtain by (4.7), (4.9) and
(4.10) that

P

(
sup

ρn−1/2<θ−θ0≤ρ

|Un(θ)| ≥ 1/2

)

≤
�n1/2	−1∑

m=0

P

(
sup

ρm<θ−θ0≤ρm+1

|Un(θ)| ≥ 1/2

)

≤
�n1/2	−1∑

m=0

P

(
|Vn(θ(m))| ≥ 1

4
λ2nρ

2
m

)

+
�n1/2	−1∑

m=0

P

(
sup

θ(m)<θ1,θ2≤θ(m+1)
|Vn(θ2) − Vn(θ1)| ≥ 1

4
λ2nρ

2
m

)

≤
�n1/2	−1∑

m=0

[
C2(p)(�n/λ

2
n)

pρ
−p
m n−p(np + ∇np)

+C3(p)(�n/λ
2
n)

pρ pρ
−2p
m n−3p/2(np + ∇np)

]

≤ [C2(p) + C3(p)] (�n/λ
2
n)

p(np + ∇np)n
−p/2ρ−p

+(�n/λ
2
n)

p(np + ∇np)n
−p/2ρ−p

�n1/2	−1∑

m=1

(
C2(p)

mp
+ C3(p)

m2p

)

≤ C4(p)(�n/λ
2
n)

p(np + ∇np)n
−p/2ρ−p. (4.11)

Similarly, we also have

P

(
sup

ρn−1/2<θ0−θ≤ρ

|Un(θ)| ≥ 1/2

)
≤ C5(p)(�n/λ

2
n)

p(np + ∇np)n
−p/2ρ−p.

(4.12)

The desired result (2.2) follows from (4.2), (4.6), (4.11) and (4.12) immediately. ��
Proof of Theorem 2.2 The proof is similar to that of Theorem2.1. Thus,we only present
the differences. It follows from (4.1) that
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sup
|θ−θ0|>ρ

|Un(θ)| = sup
|θ−θ0|>ρ

|Vn(θ)|
�n(θ, θ0)

≤ sup
|θ−θ0|>ρ

∑n
i=1 Wi |ξi | · �n|θ − θ0|

λ2n(θ − θ0)2

≤ �n

λ2nρ

n∑

i=1

Wi |ξi |. (4.13)

Therefore, we have by (4.8), (4.13) and Cr -inequality that

P

(
sup

|θ−θ0|>ρ

|Un(θ)| ≥ 1/2

)
≤ P

(
n∑

i=1

Wi |ξi | ≥ λ2nρ

2�n

)

≤
(
2�n

λ2nρ

)p

E

(
n∑

i=1

Wi |ξi |
)p

≤
(
2�n

λ2nρ

)p

n p−1
n∑

i=1

EW p
i E |ξi |p

≤ C6(p)(�n/λ
2
n)

pnpn
−1ρ−p. (4.14)

ApplyingMarkov’s inequality, theMarcinkiewicz-Zygmund inequality inLemmaA.2,
(2.1) and (4.8), we can also obtain that for all n large enough,

P

(
|Vn(θ(m))| ≥ 1

4
λ2nρ

2
m

)
≤
(

4

λ2nρ
2
m

)p

E

∣∣∣∣∣

n∑

i=1

Wiξi (gi (θ(m)) − gi (θ0))

∣∣∣∣∣

p

≤ C

(
4

λ2nρ
2
m

)p n∑

i=1

E |Wiξi |p|(gi (θ(m)) − gi (θ0))|p

≤ C

(
4�n

λ2nρ
2
m

)p

|θ(m) − θ0|p
n∑

i=1

EW p
i E |ξi |p

≤ C7(p)(�n/λ
2
n)

pρ
−p
m n−pnp, (4.15)

and

E |Vn(θ2) − Vn(θ1)|p = E

∣∣∣∣∣

n∑

i=1

Wiξi (gi (θ2) − gi (θ1))

∣∣∣∣∣

p

≤ C�
p
n |θ2 − θ1|p

n∑

i=1

EW p
i E |ξi |p

≤ C�
p
n n

−pnp|θ2 − θ1|p.

Hence, analogous to the proof of (4.10), we have
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P

(
sup

θ(m)<θ1,θ2≤θ(m+1)
|Vn(θ2) − Vn(θ1)| ≥ 1

4
λ2nρ

2
m

)

≤ 8C�
p
n n−pnp

(p + 1 − γ )(p + 2 − γ )

(
8γ

γ − 2

)p (
ρ

�n1/2	
)p ( 4

λ2nρ
2
m

)p

≤ C8(p)(�n/λ
2
n)

pρ pρ
−2p
m n−3p/2np. (4.16)

Analogous to the proof of (4.11), we obtain by (4.7), (4.15) and (4.16) that

P

(
sup

ρn−1/2<θ−θ0≤ρ

|Un(θ)| ≥ 1/2

)

≤
�n1/2	−1∑

m=0

P

(
|Vn(θ(m))| ≥ 1

4
λ2nρ

2
m

)

+
�n1/2	−1∑

m=0

P

(
sup

θ(m)<θ1,θ2≤θ(m+1)
|Vn(θ2) − Vn(θ1)| ≥ 1

4
λ2nρ

2
m

)

≤
�n1/2	−1∑

m=0

[
C7(p)(�n/λ

2
n)

pρ
−p
m n−pnp + C8(p)(�n/λ

2
n)

pρ pρ
−2p
m n−3p/2np

]

≤ [C7(p) + C8(p)] (�n/λ
2
n)

pnpn
−p/2ρ−p

+(�n/λ
2
n)

pnpn
−p/2ρ−p

�n1/2	−1∑

m=1

(
C7(p)

mp
+ C8(p)

m2p

)

≤ C9(p)(�n/λ
2
n)

pnpn
−p/2ρ−p. (4.17)

Similarly, we also have

P

(
sup

ρn−1/2<θ0−θ≤ρ

|Un(θ)| ≥ 1/2

)
≤ C10(p)(�n/λ

2
n)

pnpn
−p/2ρ−p.(4.18)

Combining (4.2), (4.14), (4.17), and (4.18), we obtain (2.3) immediately. ��
Proof of Corollary 2.1 Taking ρ = εn1/p

√
log n in Theorem 2.1, we have that

∞∑

n=1

P(n1/2|θ̂n − θ0| > ρ) =
∞∑

n=1

P(|θ̂n − θ0| > εn1/p−1/2
√
log n)

≤ C
∞∑

n=1

n−1 log−p/2 n < ∞,

which together with the Borel-Cantelli lemma yields the rate of strong consistency. ��
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Proof of Corollary 2.2 Noting that supn≥1 E |ξn|p < ∞ for some 1 < p ≤ 2, we
may assume that np ≤ 1 for each n ≥ 1. Hence, for any ε > 0, taking ρ =(
C ′(p)

ε

)1/p
n1/p−1/2 in Theorem 2.2, we have

P

(
|θ̂n − θ0| >

(
C ′(p)

ε

)1/p

n1/p−1

)
= P

(
n1/2|θ̂n − θ0| >

(
C ′(p)

ε

)1/p

n1/p−1/2

)

≤ C ′(p)n1−p/2 ε

C ′(p)
n−1+p/2 = ε.

The second conclusion follows immediately by choosingρ = ε
√
n/τn in Theorem2.2.

This completes the proof. ��

5 Conclusions

In this work, we mainly consider the following nonlinear regression model:

Xn = gn(θ) + ξn, n ≥ 1, (5.1)

where Xn is observed, {gn(θ)} is a known sequence of continuous functions possibly
nonlinear in θ ∈ �, and {ξn, n ≥ 1} is a sequence of random errors with zero mean.

The nonlinear regressionmodel not only has essentially fewer unknown parameters,
but also has the meaning of physical variables while the linear parameters are usually
devoid of physical significance. Therefore, it is of great interest to study the nonlinear
regression model.

In this work, in view of the concept of Dirichlet distribution, we introduce the
randomweightingmethod to the nonlinear regressionmodel and propose the randomly
weighted least squares estimator of θ as follows:

θ̂n = arg inf
θ∈�

n∑

i=1

Wi (Xi − gi (θ))2, (5.2)

whereWi ’s are independent of ξi ’s and the random vector W = (W1, · · · ,Wn) obeys
the Dirichlet distribution Dir(4, 4, . . . , 4).

In this work, we establish the asymptotic properties for the randomly weighted least
squares estimator with END errors. The results reveal that this new estimator is con-
sistent. Moreover, some simulations are also carried out to show the superiority to the
ordinary least squares estimator, especially in a heteroscedastic nonlinear regression
model.
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6 Appendix

Lemma A.1 Let (W1, · · · ,Wn) ∼ Dir(α1, · · · , αn) for each n ≥ 1 and {ξn, n ≥ 1}
is a sequence of nonnegative END random variables. Then {Wnξn, n ≥ 1} is still a
sequence of END random variables.

Proof It follows fromExample 5.4 ofBlock et al. (1982) that {Wn, n ≥ 1} is a sequence
of nonnegative NOD random variables, which is independent of {ξn, n ≥ 1}. Hence,
for any real numbers z1, · · · , zn , we have by Definition 1.2 and the properties of NOD
random variables (see in Bozorgnia et al. (1996) or Lemmas 1.1 and 1.2 of Wang et al.
(2011) for example) that

P (W1ξ1 ≤ z1, · · · ,Wnξn ≤ zn)

=
∫

· · ·
∫

I (w1y1 ≤ z1, · · · , wn yn ≤ zn) dFW1,··· ,Wn ,ξ1,··· ,ξn (w1, · · · , wn, y1, · · · , yn)

=
∫

· · ·
∫

I (w1y1 ≤ z1, · · · , wn yn ≤ zn) dFW1,··· ,Wn (w1, · · · , wn) dFξ1,··· ,ξn (y1, · · · , yn)

=
∫

· · ·
∫

P (w1ξ1 ≤ z1, · · · , wnξn ≤ zn) dFW1,··· ,Wn (w1, · · · , wn)

≤ M
∫

· · ·
∫

P(w1ξ1 ≤ z1) · · · P(wnξn ≤ zn)dFW1,··· ,Wn (w1, · · · , wn)

= ME

[
Fξ1

(
z1
W1

)
· · · Fξn

(
zn
Wn

)]
≤ ME

[
Fξ1

(
z1
W1

)]
· · · E

[
Fξn

(
zn
Wn

)]

= M
∫ ∫

I (w1y1 ≤ z1)dFW1 (w1)dFξ1 (y1) · · ·
∫ ∫

I (wn yn ≤ zn)dFWn (wn)dFξn (yn)

= M
∫ ∫

I (w1y1 ≤ z1)dFW1,ξ1 (w1, y1) · · ·
∫ ∫

I (wn yn ≤ zn)dFWn ,ξn (wn, yn)

= MP (W1ξ1 ≤ z1) · · · P(Wnξn ≤ zn) .

Similarly, we also have that

P (W1ξ1 > z1, · · · ,Wnξn > zn) ≤ MP (W1ξ1 > z1) · · · P(Wnξn > zn) .

Therefore, {Wnξn, n ≥ 1} is still a sequence ofENDrandomvariables byDefinition 1.2
again. ��
Lemma A.2 Let {ani , 1 ≤ i ≤ n, n ≥ 1} be an array of real numbers and {Xn, n ≥ 1}
be a sequence of END random variables with EXn = 0 and E |Xn|p < ∞ for each
n ≥ 1 and some p > 1. Then there exist positive constants Cp and C ′

p depending only
on p such that

123



568 Y. Wu et al.

E

∣∣∣∣∣

n∑

i=1

ani Xi

∣∣∣∣∣

p

≤ Cp

⎡

⎣
n∑

i=1

E |ani Xi |p +
(

n∑

i=1

Eani X
2
i

)p/2
⎤

⎦ , if p ≥ 2,

E

∣∣∣∣∣

n∑

i=1

ani Xi

∣∣∣∣∣

p

≤ C ′
p

n∑

i=1

E |ani Xi |p, if 1 < p < 2.

Proof Noting that ani = a+
ni −a−

ni for each 1 ≤ i ≤ n, n ≥ 1, the Rosenthal inequality
above is a direct consequence of Corollary 3.2 in Shen (2011) by using Cr -inequality.
The second inequality, i.e., Marcinkiewicz-Zygmund inequality can be obtained by
the first one and the method used in the proof of Theorem 2.1 in Chen et al. (2014).
The details are omitted. ��
Lemma A.3 Let (Y1, · · · ,Yn) ∼ Dir(α1, · · · , αn) and α0 = ∑n

i=1 αi . Then for any
p > 0 and each 1 ≤ i ≤ n,

EY p
i = 	(α0)	(αi + p)

	(α0 + p)	(αi )
.

Proof Without loss of generality, we only need to show EY p
1 = 	(α0)	(α1+p)

	(α0+p)	(α1)
. By

Definition 1.1 and some standard calculation, we have that

EY p
1 = 	(α0)∏n

i=1 	(αi )

∫ 1

0
yα1+p−1
1 dy1

∫ 1−y1

0
yα1−1
2 dy2 · · ·

×
∫ 1−∑n−2

i=1 yi

0
yαn−1−1
n−1

(
1 −

n−1∑

i=1

yi

)αn−1

dyn−1

= 	(α0)∏n
i=1 	(αi )

∫ 1

0
yα1+p−1
1 dy1

∫ 1−y1

0
yα1−1
2 dy2 · · ·

×
∫ 1−∑n−3

i=1 yi

0
yαn−2−1
n−2

(
1 −

n−2∑

i=1

yi

)αn−1+αn−1

dyn−2

∫ 1

0
η

αn−1−1
n−1 (1 − ηn−1)

αn−1dηn−1

= 	(α0)∏n
i=1 	(αi )

∫ 1

0
yα1+p−1
1 dy1

∫ 1−y1

0
yα1−1
2 dy2 · · ·

×
∫ 1−∑n−3

i=1 yi

0
yαn−2−1
n−2

(
1 −

n−2∑

i=1

yi

)αn−1+αn−1

dyn−2 · 	(αn−1)	(αn)

	(αn−1 + αn)

= · · · = 	(α0)∏n
i=1 	(αi )

· 	(α1 + p)
∏n

i=2 	(αi )

	(α0 + p)
= 	(α0)	(α1 + p)

	(α0 + p)	(α1)
,

where the second equality above follows by letting ηn−1 = yn−1/
(
1 −∑n−2

i=1 yi
)
. ��

Lemma A.4 (cf. Hu 2004) Let (�,F , P) be a probability space, [T1, T2] be a closed
interval on the real line. Assume that V (θ) = V (ω, θ) (θ ∈ [T1, T2], ω ∈ �) is a
stochastic process such that V (ω, θ) is continuous for allω ∈ �. If there exist numbers
α > 0, r > 0 and C = C(T1, T2) < ∞ such that
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E |V (θ1) − V (θ2)|r ≤ C |θ1 − θ2|1+α, for any θ1, θ2 ∈ [T1, T2],

then for any ε > 0, a > 0, θ0, θ0 + ε ∈ [T1, T2], and γ ∈ (2, 2 + α), it has

P

(
sup

θ0≤θ1,θ2≤θ0+ε

|V (θ1) − V (θ2)| ≥ a

)
≤ 8C

(α − γ + 2)(α − γ + 3)

(
8γ

γ − 2

)r εα+1

ar
.
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