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Abstract
Survival analysis studies time to event data, also called survival data in biomedical
research. The main challenge in the analysis of survival data is to develop inferential
methods that take into account the incomplete information contained in censored
observations. The seminal paper of Kaplan and Meier (J Am Stat Assoc 53:457–
481,1958) gave a boost to the development of statistical methods for time to event
data subject to right censoring; methods that have been applied in a broad variety
of scientific fields including health, engineering and economy. A basic quantity in
survival analysis is the survival distribution: S(t) = P(T > t), with T the time to
event or, in case of a bivariate vector of lifetimes (T1, T2), S(t1, t2) = P(T1 > t1, T2 >

t2). Nonparametric estimation of these basic quantities received, since Kaplan and
Meier (J Am Stat Assoc 53:457–481,1958), considerable attention resulting in many
publications scattered over a large period of time and a large field of applications. The
purpose of this paper is to review, in a unified way, nonparametric estimation of S(t)
and S(t1, t2) for time to event data subject to right censoring. Interesting to realize is
that, in the multivariate setting, the form of the nonparametric estimator for S(t1, t2) is
determined by the actual censoring scheme. In this survey we focus, for the proposed
(implicitly) existing or new nonparametric estimators, on the asymptotic normality.
By doing so we fill some gaps in the literature by introducing some new estimators and
by providing explicit expressions for the asymptotic variances often not yet available
for some of the existing estimators.
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1 Introduction

Time to event is the time from a given origin to the occurrence time of the event of
interest. In many applied fields time to event data occur. Examples include duration
analysis (e.g. time to first job after graduation); reliability analysis (e.g. lifetime of
a mechanical component); survival analysis (e.g. time from onset to death). Other
applied fields include: economy, insurance, demography, biology, public health, epi-
demiology, veterinary medicine.

Within the context of survival analysis, ’survival data’ is standard terminology for
time to event data. The outcome of the event can be ’good’ (e.g. time to pain relief,
time to recovery, time to cure) or can be ’bad’ (e.g. time to first relapse, time to death,
time from diagnosis to onset).

Time to event data can be univariate (e.g. time from onset of virus infection to cure)
or multivariate (e.g. the lifetime of monozygotic male twins; time to blindness in left
and right eye in diabetic retinopathy patients; time to tumor in a litter-matched rats
(one treated and two control rats) tumorigenesis experiment).

The multivariate examples we mentioned are so called parallel multivariate data.
Parallel data sets follow several items/subjects/animals simultaneously. Other types
of multivariate data structures (such as longitudinal data, repeated measures data) are
discussed in Hougaard (2000). In this survey we focus on parallel multivariate data.

In this paper we focus on univariate and (parallel) bivariate survival data. Given
a survival time T ≥ 0 or given a bivariate survival vector (T1, T2) with T1 ≥ 0
and T2 ≥ 0, primary interest is often in estimating the survival distribution S(t) =
P(T > t) (univariate setting) and S(t1, t2) = P(T1 > t1, T2 > t2) (bivariate setting).
Survival data are (typically) subject to right censoring, for such data we review, in
Sect. 2 of the paper, nonparametric estimation of S(t) = P(T > t). In Sect. 3
we review nonparametric estimation for S(t1, t2) = P(T1 > t1, T2 > t2). After a
general introduction (Sect. 3.3), we discuss univariate censoring and one-component
censoring. We clearly explain how the censoring scheme determines the definition of
the nonparametric estimator and for each estimator we study the asymptotic normality
and give an explicit analytic expression for the asymptotic variance (contributing to
an open question in Hougaard (2000), p. 457, where he writes ’generally, expressions
for the variance are not available’).

The advantage of nonparametric estimation when compared to (semi)parametric
estimation is that no underlying model assumptions are made (i.e. the inference is
completely data driven). Also note that even if (semi)parametric models are used to
estimate the survival distribution, nonparametric estimators remain instrumental for
goodness-of-fit purposes.
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2 Nonparametric estimation of the univariate survival function

2.1 The right random censoringmodel

In survival analysis, the main object of interest is a nonnegative random variable T ,
called survival time (or lifetime, failure time, event time,...).

A typical feature is that T is not always observed. Instead of T one sometimes
observes some other nonnegative random variable C , called censoring time. In the
right random censorship model the observable variables are

Y = T ∧ C and δ = I (T ≤ C)

where a∧b = min(a, b) and where I is the indicator function, defined for every event
A as I (A) = 1 if and only if A holds and zero otherwise.

The right random censorship model assumes that

T and C are independent,

the independent censoring assumption. Let T1, . . . , Tn
i .i .d.∼ T be independent and

identically distributed (i.i.d.) random variables with distribution function F and sur-

vival function S = 1 − F and C1, . . . ,Cn
i .i .d.∼ C with distribution function G. The

observations in the model are (Yi , δi ), with Yi = Ti ∧ Ci and δi = I (Ti ≤ Ci ),

i = 1, . . . , n. We clearly have Y1, . . . ,Yn
i .i .d.∼ Y with distribution function H and

due to the independence assumption

1 − H(t) = (1 − F(t))(1 − G(t)). (1)

The estimation should therefore be based on (Yi , δi ), i = 1, . . . , n. For the uncensored
observations we define the following subdistribution function

H1(t) = P(Y ≤ t, δ = 1) = P(T ≤ t, T ≤ C)

=
t∫

0

∞∫

y−
G(dx)F(dy) =

t∫

0

(1 − G(y−))F(dy). (2)

We also introduce the following notation. For any distribution function L , the upper
endpoint of support is denoted by τL , i.e. τL = inf{t : L(t) = 1}. From (1) it follows
that τH = τF ∧ τG .

2.2 Identifiability

An important preliminary question is of course the identifiability of the survival func-
tion, i.e. the possibility of obtaining the survival function of T from the observations
on Y = T ∧ C and δ = I (T ≤ C).

Theorem 1 below shows that the independent censoring assumption on T and C is
sufficient for identifiability of the survival function of T . We refer to Tsiatis (1975)
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for the weaker assumption which says that knowledge of the copula function of T and
C is also sufficient. See also Ebrahimi et al. (2003).

Theorem 1 Assume that T and C are independent with continuous distribution func-
tions F and G. Then, for t < τH ,

S(t) = exp

⎧⎨
⎩−

t∫

0

H1(dy)

1 − H(y)

⎫⎬
⎭ .

Proof From (2) and the continuity of G we obtain

H1(t) =
t∫

0

(1 − G(y))F(dy).

Together with (1) this gives

H1(dy)

1 − H(y)
= F(dy)

1 − F(y)

or, for t < τH ,

1 − F(t) = exp

⎛
⎝−

t∫

0

H1(dy)

1 − H(y)

⎞
⎠ .

2.3 The Kaplan–Meier estimator

The classical nonparametric maximum likelihood estimator under right censoring for
the survival function is the estimator of Kaplan and Meier (1958), also called the
product-limit estimator (see Supplementary Material) or nonparametric maximum
likelihood estimator (see Johansen 1978). For values of t in the range of the data, it is
defined as

Ŝ(t) = 1 − F̂(t) =
n∏

i=1
Yi≤t,δi=1

(
1 − di

ni

)
(3)

with di the number of events and ni the number of subjects/objects at risk at time Yi ,
i = 1, . . . , n.

For continuous survival distributions we have that, with probability one, only one
event can happen at a time. We then have di = 0 for δi = 0 and di = 1 for δi = 1.
This is the situation that we consider in the sequel. In fact we assume that T and C
have continuous distribution functions.
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Hence the proposed estimator is a step function with jumps at the event times, i.e.
the Yi having δi = 1, i = 1, . . . , n.

The Kaplan–Meier estimator in (3) can then be rewritten as

Ŝ(t) =
n∏

i=1
Yi≤t,δi=1

(
1 − 1

ni

)

=
n∏

i=1
Y(i)≤t

(
1 − 1

n − i + 1

)δ(i)

I (t < Y(n))

(4)

with Y(1) ≤ . . . ≤ Y(n) the ordered Yi ’s and δ(1), . . . , δ(n) the corresponding indicators.
The Kaplan–Meier estimator can also be represented as a sum:

Ŝ(t) = 1 − F̂(t) =
n∑

i=1

�i I (Y(i) > t)

where �i is the jump at Y(i). We have

�i = Ŝ(Y(i)−) − Ŝ(Y(i)) =
i−1∏
j=1

(
n − j

n − j + 1

)δ( j)

−
i∏

j=1

(
n − j

n − j + 1

)δ( j)

= δ(i)

n − i + 1

i−1∏
j=1

(
n − j

n − j + 1

)δ( j)

= δ(i)

n

i−1∏
j=1

(
n − j + 1

n − j

)1−δ( j)

= δ(i)

n

1

1 − Ĝ(Y(i)−)

with Ĝ the Kaplan–Meier estimator for G, i.e. the Kaplan–Meier estimator based on
the sample (Yi , 1 − δi ), i = 1, . . . , n. Hence,

Ŝ(t) = 1

n

n∑
i=1

δ(i)

1 − Ĝ(Y(i)−)
I (Y(i) > t)

= 1

n

n∑
i=1

δi

1 − Ĝ(Yi−)
I (Yi > t)

≡ ŜRR(t),

which is the estimator of Robins and Rotnitzky (1992), also called the ‘inverse-
probability-of censoring weighted average’. See also Satten and Datta (2001).

Remark 1 The Robins-Rotnitzky estimator stems from the identifying equation
approach (see Suplementary Material).
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2.4 The Lin-Ying estimator

In this section we want to present an estimator which is new in the univariate case. It
has been proposed in the bivariate case by Lin and Ying (1993), but their simple idea
can also be used in the univariate situation.

If T and C are independent, then for t < τH , (1) implies

S(t) = 1 − H(t)

1 − G(t)

and a simple nonparametric estimator for S(t) is, for t < Y(n),

ŜLY (t) = 1 − Hn(t)

1 − Ĝ(t)
= 1

n

1

1 − Ĝ(t)

n∑
i=1

I (Yi > t)

where Hn(t) = n−1∑n
i=1 I (Yi ≤ t) is the empirical distribution function of

Y1, . . . ,Yn and Ĝ(t) is the Kaplan–Meier estimator for G(t). A nice feature of this
estimator is that it jumps at every observation Yi , i = 1, . . . , n. A drawback is that
ŜLY , as estimator of a monotone function S, is not guaranteed to be monotone.

Remark 2 To compare ŜRR(t) and ŜLY (t) note that the Lin-Ying estimator has
(1 − Ĝ(t))−1 in front of the summation whereas the Robins-Rotnizky estimator has
the weights δi

1−Ĝ(Yi−)
, i = 1, . . . , n, inside the sum.

2.5 Asymptotic behaviour of the Kaplan–Meier estimator

The asymptotic properties of the Kaplan–Meier estimator have been studied in great
detail in several papers. In this survey we restrict attention to uniform strong consis-
tency and asymptotic normality.

The oldest Glivenko-Cantelli type result is proved in Földes and Rejtő (1981).

Theorem 2 (Földes and Rejtő 1981)
Assume that T and C are independent and that F and G are continuous.
Then, for any t0 < τH = inf{t : 1 − H(t) = 0},

sup
0≤t≤t0

| Ŝ(t) − S(t) | = O(n−1/2(log log n)1/2) a.s.

Related important papers are Stute and Wang (1993b) and Gill (1994).

Theorem 3 (Lo and Singh 1986; Major and Rejtő 1988)
Assume that T and C are independent and that F and G are continuous.
Then, for any t < τH ,

Ŝ(t) = S(t) − 1

n

n∑
i=1

ξ(t; Yi , δi ) + Rn(t) a.s.
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with, for any t0 < τH ,

sup
0≤t≤t0

| Rn(t) | = O(n−1 log n) a.s.

The i.i.d. random variables ξ(t; Yi , δi ) in this representation are given by

ξ(t; Yi , δi ) = S(t)

⎧⎨
⎩−

Yi∧t∫

0

H1(dy)

(1 − H(y))2
+ I (Yi ≤ t, δi = 1)

1 − H(Yi )

⎫⎬
⎭

= S(t)

⎧⎨
⎩

t∫

0

I (Yi ≤ y) − H(y)

(1 − H(y))2
H1(dy) + I (Yi ≤ t, δi = 1) − H1(t)

1 − H(t)

−
t∫

0

I (Yi ≤ y, δi = 1) − H1(y)

(1 − H(y))2
H(dy)

⎫⎬
⎭ .

Moreover, we have

Eξ(t; Y , δ) = 0

Cov(ξ(t; Y , δ), ξ(t ′; Y , δ)) = S(t)S(t ′)
∫ t∧t ′

0

H1(dy)

(1 − H(y))2
.

(5)

The calculation of this covariance expression is long and tedious and can be found
in Breslow and Crowley (1974), Appendix, p. 450–452.

Corollary 1 Assume the conditions of Theorem 2. Then, for any t < τH ,

n1/2(Ŝ(t) − S(t))
d→ N

⎛
⎝0; S2(t)

t∫

0

H1(dy)

(1 − H(y))2

⎞
⎠ .

Remark 3 The Kaplan–Meier estimator has been extended to the regression case,
where next to the observations of (Y , δ) also another variable X , called covariate,
is observed. The pioneering paper on nonparametric estimation of the conditional
survival function S(t | x) = P(T > t | X = x) is Beran (1981). He studied the
conditional Kaplan–Meier estimator of S(t | x) defined by

Ŝ(t | x) =
n∏

i=1
Yi≤t,δi=1

(
1 − wni (t, hn)∑n

j=1 wnj (t, hn)I (Y j ≥ Yi )

)

=
n∏

i=1
Y(i)≤t

(
1 − wn(i)(t, hn)

1 −∑i−1
j=1 wn( j)(t, hn)

)δ(i)
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where Y(1) ≤ Y(2) ≤ . . . Y(n) are the ordered Y j ’s. Also δ( j) and wn( j)(t, hn) are the
censoring indicator and weight corresponding to that ordering.

The wni (t, hn) are some smoothing weights depending on a given probability den-
sity function (called kernel) and a nonnegative sequence {hn}, tending to 0 as n → ∞
(bandwidth sequence).

Note that wn(t, hn) = n−1 gives the classical Kaplan–Meier estimator as in (4).
Properties of the Beran estimator such as the generalization of the representation of
Lo and Singh (Theorem 3) are in González-Manteiga and Cadarso Suarez (1994), Van
Keilegom and Veraverbeke (1997).

Remark 4 TheKaplan–Meier estimator has also been extended to the case of dependent
censoring, that is T andC are allowed to be dependent. Then, instead of assuming that
P(T ≤ t,C ≤ c) = F(t)G(c) we assume that for a given copula C, P(T ≤ t,C ≤
c) = C(F(t),G(c)) (see Sklar’s theorem in Nelsen 2006).

For this more general setting identifiability is discussed in Tsiatis (1975). Further
important references include Zheng and Klein (1995) and Rivest and Wells (2001).
The regression case for dependent T andC is considered in Braekers and Veraverbeke
(2005).

2.6 Asymptotic behaviour of the Lin-Ying estimator

From Sect. 2.4 we have, for t < τH ,

ŜLY (t) − S(t) = 1 − Hn(t)

1 − Ĝ(t)
− 1 − H(t)

1 − G(t)

= 1

(1 − Ĝ(t))(1 − G(t))
{−(1−G(t))(Hn(t) − H(t))

+ (1−H(t))(Ĝ(t)−G(t))
}
. (6)

Theorem 4 Assume that T and C are independent and that F and G are continuous.
Then, for any t0 < τH ,

sup
0≤t≤t0

| ŜLY (t) − S(t) |= O(n−1/2(log log n)1/2) a.s.

Proof If t0 < τH , it follows from (6) and the uniform consistency of Ĝ that there exist
positive constants K1 and K2 such that

sup
0≤t≤t0

| ŜLY (t) − S(t) | ≤ K1 sup
0≤t≤t0

| Hn(t) − H(t) | +K2 sup
0≤t≤t0

| Ĝ(t) − G(t) | .

Apply the law of iterated logarithm result to the first term and the corresponding result
for the Kaplan–Meier estimator (see Theorem 2) to the second term.

Theorem 5 Assume that T and C are independent and that F and G are continuous.
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Then, for any t < τH ,

ŜLY (t) = S(t) − 1

n

n∑
i=1

ψLY (t; Yi , δi ) + R̃n(t) a.s.

with, for any t0 < τH ,

sup
0≤t≤t0

| R̃n(t) |= O(n−1 log n) a.s.

The i.i.d. random variables ψLY (t; Yi , δi ) are given by

ψLY (t; Yi , δi ) = 1

1 − G(t)
{I (Yi ≤ t) − H(t)}

−1 − F(t)

1 − G(t)

⎧⎨
⎩(1 − G(t))

⎡
⎣

t∫

0

I (Yi ≤ y) − H(y)

(1 − H(y))2
H0(dy)

+ I (Yi ≤ t, δi = 0) − H0(t)

1 − H(t)
−

t∫

0

I (Yi ≤ y, δi = 0) − H0(y)

(1 − H(y))2
H(dy)

⎤
⎦
⎫⎬
⎭

where H0(t) = P(Y ≤ t, δ = 0) is the subdistribution function of the censored
obervations.

Proof From (6) and the consistency of Ĝ (using a Slutsky argument) it follows by
linearization that ŜLY (t) − S(t) has the same asymptotic distribution as

− 1

1 − G(t)
{Hn(t) − H(t)} + 1 − F(t)

1 − G(t)

{
Ĝ(t) − G(t)

}
.

Plugging in the asymptotic representation of Theorem 3 for Ĝ − G gives the desired
result. This asymptotic representation for Ĝ − G is obtained from Theorem 3 by
interchanging the role of F and G and now 1 − δi in the role of δi .

Corollary 2 Assume the conditions of Theorem 5. Then, for any fixed t < τH ,

n1/2(ŜLY (t) − S(t))
d→ N (0;Var(ψLY (t; Y , δ)).

A long but rather straightforward calculation gives that

Var(ψLY (t; Y , δ)) = S2(t)

t∫

0

H1(dy)

(1 − H(y))2
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and

Cov(ψLY (t; Y , δ), ψLY (t ′; Y , δ)) = S(t)S(t ′)
t∧t ′∫

0

H1(dy)

(1 − H(y))2

which is exactly the same as for the Kaplan–Meier estimator.

Proof From the expression for ψLY (t; Y ; δ) in Theorem 5:

Var(ψLY (t; Y , δ)) = 1

(1 − G(t))2
H(t)(1 − H(t))

+(1 − F(t))2
t∫

0

H0(dy)

(1 − H(y))2

−2
1 − F(t)

1 − G(t)
E

⎧⎨
⎩I (Y ≤ t)

⎡
⎣

t∫

0

I (Y ≤ y) − H(y)

(1 − H(y))2
H0(dy)

+ I (Y ≤ t, δ = 0) − H0(t)

1 − H(t)
−

t∫

0

I (Y ≤ y, δ = 0) − H0(t)

(1 − H(y))2
H(dy)

⎤
⎦
⎫⎬
⎭

where we used the fact that E[ψLY (t; Y , δ)] = 0 in the covariance term.
Write the expectation above as E{(1) + (2) − (3)}.

E(1) = (1 − H(t))

t∫

0

H(y)

(1 − H(y))2
H0(dy)

E(2) = H0(t)

E(3) = (1 − H(t))

t∫

0

H0(y)

(1 − H(y))2
H(dy).

Now using H0(dy) = (1 − F(y))G(dy),

•
t∫

0

H(y)

(1 − H(y))2
H0(dy) =

t∫

0

1 − (1 − F(y))(1 − G(y))

(1 − F(y))(1 − G(y))2
G(dy)

=
t∫

0

1

1 − H(y)

G(dy)

1 − G(y)
+ ln(1 − G(t)) =

t∫

0

H0(dy)

(1 − H(y))2
+ ln(1 − G(t)).
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•
t∫

0

H0(y)

(1 − H(y))2
H(dy) =

t∫

0

H0(y)d

(
1

1 − H(y)

)

= H0(t)

1 − H(t)
−

t∫

0

1

1 − H(y)
H0(dy) = H0(t)

1 − H(t)
+ ln(1 − G(t)).

Hence, E{(1) + (2) − (3)} = (1 − H(t)

t∫

0

H0(dy)

(1 − H(y))2
.

Var(ψLY (t; Y , δ)) = 1

(1 − G(t))2

H(t)(1 − H(t)) − (1 − F(t))2
t∫

0

H0(dy)

(1 − H(y))2
.

Use H(y) = H0(y) + H1(y) to obtain

Var(ψLY (t; Y , δ) = (1 − F(t))2
t∫

0

H1(dy)

(1 − H(y))2

+ 1

(1 − G(t))2
H(t)(1 − H(t)) − (1 − F(t))2

t∫

0

H(dy)

(1 − H(y))2
.

Since
t∫
0

H(dy)
(1−H(y))2

= H(t)
1−H(t) , we have

Var(ψLY (t; Y , δ)) = (1 − F(t))2
t∫

0

H1(dy)

(1 − H(y))2
.

Remark 5 We are grateful to one of the referees for insisting on a further (very long)
calculation, in line with the calculations for the asymptotic variance, of the asymp-
totic covariance. Given that the asymptotic covariances of Lin-Ying estimator and the
Kaplan–Meier estimator coincide, the Lin-Ying process in t is first order asymptotic
equivalent with the Kaplan-Meier process in t .

3 Nonparametric estimation of the bivariate survival function

3.1 The bivariate right random censoringmodel

In the bivariate setting we have a vector (T1, T2) of nonnegative random variables,
subject to right random censoring by a vector (C1,C2) of nonnegative censoring
variables. The observable variables are (Y1,Y2) and (δ1, δ2) with, for j = 1, 2,

Y j = Tj ∧ C j and δ j = I (Tj ≤ C j ).
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The observations in the model are (Y1i ,Y2i , δ1i , δ2i ) with, for i = 1, . . . , n and j =
1, 2, Y ji = Tji ∧ C ji and δ j i = I (Tji ≤ C ji ) and (Y1i ,Y2i , δ1i , δ2i ) are i.i.d. as
(Y1,Y2, δ1, δ2). Note that (T1i , T2i ), i = 1, . . . , n, is an i.i.d. sequence with joint
distribution function F(t1, t2) and joint survival function S(t1, t2), and (C1i ,C2i ),
i = 1, . . . , n, is an i.i.d. sequence with joint distribution function G(t1, t2) and joint
survival function SG(t1, t2).

3.2 Identifiability

For the bivariate censoring model there is a result analogous to Theorem 1. It is due to
Langberg and Shaked (1982) and shows that the survival function of (T1, T2) is identi-
fiable under the assumption of independence of the vectors (T1, T2) and (C1,C2). We
refer to Pruitt (1993) for a discussion on possible other sufficient conditions (depending
on the type of data).

Theorem 6 (Langberg and Shaked 1982)
Assume that (T1, T2) and (C1,C2) are independent and that the marginal distri-

butions F1, F2,G1,G2 of T1, T2,C1,C2 are continuous. Then S(t1, t2) is identifiable
on the set � ∪ �̃, where

� = {(t1, t2) : t2 < τH2 , t1 < τH1(t2)}
�̃ = {(t1, t2) : t1 < τH1 , t2 < τH2(t1)}

with τH1 , τH2 , τH1(t2), τH2(t1) the right endpoints of support of H1(t) = P(Y1 ≤ t),
H2(t) = P(Y2 ≤ t), P(Y1 ≤ v | Y2 > t2), P(Y2 ≤ v | Y1 > t1).

For all (t1, t2) ∈ � we have

S(t1, t2) = exp

⎛
⎝−

t2∫

0

dP(Y2 ≤ u, δ2 = 1)

1 − H2(u)

⎞
⎠exp

⎛
⎝−

t1∫

0

dP(Y1 ≤ v, δ1 = 1 | Y2 > t2)

P(Y1 > v | Y2 > t2)

⎞
⎠

(7)

and for all (t1, t2) ∈ �̃ we have

S(t1, t2) = exp

⎛
⎝−

t1∫

0

dP(Y1 ≤ u, δ1 = 1)

1 − H1(u)

⎞
⎠ exp

⎛
⎝−

t2∫

0

dP(Y2 ≤ v, δ2 = 1 | Y1 > t1)

P(Y2 > v | Y1 > t1)

⎞
⎠ .

Proof We have, using independence of T2 and C2,

S(t1, t2) = P(T2 > t2)P(T1 > t1 | T2 > t2)
= P(T2 > t2)P(T1 > t1 | Y2 > t2).

(8)

From the assumptions and Theorem 1, we have that the first factor in (8) is equal to
the first factor in (7).
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From the assumptions it also follows that T1 | Y2 > t2 and C1 | Y2 > t2 are
independent and have continuous distributions. Apply again Theorem 1, to see that
the second factor in (8) is equal to the second factor in (7).

The second expression for S(t1, t2) for (t1, t2) ∈ �̃ follows similarly, starting from

S(t1, t2) = P(T1 > t1)P(T2 > t2 | Y1 > t1).

3.3 Bivariate extensions of the Kaplan–Meier estimator

Under the assumption of independence of the vector (T1, T2) and (C1,C2), several
nonparametric estimators for the survival function S(t1, t2) have been proposed in the
literature.

To obtain a nonparametric estimator of the survival function Dabrowksa (1988) has
used a two-dimensional product-limit approximation (see also Pruitt 1991). Prentice
and Cai (1992) used an approximation based on Peano series and van der Laan (1996)
has taken an approach based on nonparametric maximum likelihood ideas. A look
at the proposed solutions shows that bivariate censoring complicates nonparametric
inference and makes it a hard problem. All proposals have one or more drawbacks
such as, lack of monotonicity, non-uniqueness, slow rate of convergence, no analytic
variance expression. See also Gill (1992) and see Prentice and Zhao (2018) for an
excellent recent review with focus on these approaches. These complicated estimators
will not be discussed in this survey.

Our approach to study nonparametric estimation of S(t1, t2) given bivariate right
censored time to event data follows the inverse probability weighting (IPW) idea of
Robins and Rotnitzky (see also Burke 1988; Satten and Datta 2001; Lopez 2012).
After a general starting point, we consider specific bivariate censoring schemes and
for thesewework out the asymptotic distribution theory of the proposed nonparametric
estimators in detail.

Also the simpler nonparametric estimators we propose share some of the drawbacks
mentioned above. For example IPW estimators have been criticized for not using
all the information contained in the data, and the Lin-Ying type estimators do not
define a true distribution and are not necessarily monotone. Our estimators, however,
show remarkable good behaviour in concrete applied situations (see the simulations in
Geerdens et al. 2016; Abrams et al. 2021, 2023). Their performance can also depend
on the time region where they are used (Geerdens et al. 2016). It is clear that the finite
sample quality always needs to checked by detailed simulations (see e.g. Prentice and
Zhao (2018)).

As, for example, in Burke (1988), introduce the following subdistribution function

H11(t1, t2) = P(Y1 ≤ t1,Y2 ≤ t2, δ1 = 1, δ2 = 1).

We have, under independence of (T1, T2) and (C1,C2),

H11(t1, t2) = P(T1 ≤ t1, T2 ≤ t2, T1 ≤ C1, T2 ≤ C2)
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=
t1∫

0

t2∫

0

P(C1 ≥ y1,C2 ≥ y2)F(dy1, dy2)

=
t1∫

0

t2∫

0

SG(y1−, y2−)F(dy1, dy2).

Hence

F(dy1, dy2) = 1

SG(y1−, y2−)
H11(dy1, dy2)

or

S(t1, t2) =
∞∫

t1

∞∫

t2

1

SG(y1−, y2−)
H11(dy1, dy2). (9)

In the Supplementary Material we show how (9) can be obtained from the identifying
equation idea. This will also be demonstrated for (10) (Sect. 3.4) and (15) (Sect. 3.6).

An estimator for S(t1, t2) is obtained by plugging in appropriate estimators Ĥ11

for H11 and ŜG for SG . For Ĥ11 we can take

Ĥ11(t1, t2) = 1

n

n∑
i=1

δ1iδ2i I (Y1i ≤ t1,Y2i ≤ t2)

which gives

Ŝ(t1, t2) = 1

n

n∑
i=1

δ1iδ2i

ŜG(Y1i−,Y2i−)
I (Y1i > t1,Y2i > t2).

Since, in general C1 and C2 are not independent, there exists a (survival) copula C
such that SG(t1, t2) = C(SG1(t1), SG2(t2)) with SG j (t j ) = 1−G j (t j ) and G j (t j ) the
marginal distributions corresponding to G(t1, t2), j = 1, 2.

The presence of C complicates the situation. If C is known, SG can be estimated as

ŜG(t1, t2) = C(ŜG1(t1), ŜG2(t2))

where ŜG j (t j ) = 1 − Ĝ j (t j ) with Ĝ j (t j ) the Kaplan–Meier estimator of G j (t j ),
j = 1, 2.
The study of ŜG(t1, t2) in the general setting, although possible, is challenging

and an explicit expression for the asymptotic variance is hard to obtain (see p. 457
in Hougaard 2000). However, for specific censoring schemes, explicit estimators for
ŜG(t1, t2)—and hence for Ŝ(t1, t2)—can be given and the asymptotic normality of
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Ŝ(t1, t2) can be obtained with an explicit analytic expression for the asymptotic vari-
ance.

In the sequel we study in detail univariate censoring (Sects. 3.4 and 3.5) and one-
component censoring (Sects. 3.6–3.8).

3.4 Estimation of the bivariate survival function under univariate censoring

In this situation (T1, T2) is subject to right censoring by a single censoring variable C
with univariate distribution function G(c) = P(C ≤ c).

We assume that (T1, T2) and C are independent.
Denote Y1 = T1 ∧ C , Y2 = T2 ∧ C , δ1 = I (T1 ≤ C), δ2 = I (T2 ≤ C). Also, with

a ∨ b = max(a, b),

H11(t1, t2) = P(Y1 ≤ t1,Y2 ≤ t2, δ1 = 1, δ2 = 1)

= P(T1 ≤ t1, T2 ≤ t2, T1 ∨ T2 ≤ C)

=
t1∫

0

t2∫

0

[1 − G((y1 ∨ y2)−)] F(dy1, dy2).

As in Sect. 3.3 we obtain, for continuous G,

S(t1, t2) =
∞∫

t1

∞∫

t2

1

1 − G((y1 ∨ y2)−)
H11(dy1, dy2)

=
∞∫

t1

∞∫

t2

1

1 − G(y1 ∨ y2)
H11(dy1, dy2).

(10)

As empirical version for H11(t1, t2) we again use

Ĥ11(t1, t2) = 1

n

n∑
i=1

δ1iδ2i I (Y1i ≤ t1,Y2i ≤ t2).

To estimate G, we note that C is observed if T1 > C or T2 > C , i.e. T1 ∨ T2 >

C . Therefore G can be estimated by a Kaplan–Meier estimator Ĝ, calculated from
{Ci ∧ (T1i ∨ T2i ), I (Ci ≤ T1i ∨ T2i } = {Y1i ∨ Y2i , δmax

i } with δmax
i = 1 − δ1iδ2i .

The estimator for S(t1, t2) is

Ŝ(t1, t2) =
∞∫

t1

∞∫

t2

1

1 − Ĝ((y1 ∨ y2)−)
Ĥ11(dy1, dy2)

= 1

n

n∑
i=1

δ1iδ2i

1 − Ĝ((Y1i ∨ Y2i )−)
I (Y1i > t1,Y2i > t2).
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In the next theorem, the supports of the underlying distributions are important. Let
τF1 , τF2 , τG , τH1 , τH2 be the right endpoints of support of the distribution functions
F1, F2, G, H1, H2 of T1, T2, C , Y1, Y2. We impose the condition

τG > τF1 ∨ τF2 . (11)

This will imply that 1 − G(y1 ∨ y2) > 0 for y1 < τF1 and y2 < τF2 .
Another consequence of (11) is that τH1 = τF1 and τH2 = τF2 . Indeed, since Y1 =

T1∧C andY2 = T2∧C , we have that τH1 = τF1∧τG = τF1 and τH2 = τF2∧τG = τF2 .
Also, note that P(Y1 > τH1,Y2 > τH2) = 0.

Theorem 7 Assume that (T1, T2) and C are independent and that the distribution
functions F1, F2 andG are continuous. Also assume condition (11). Then, for t1 < τF1 ,
t2 < τF2 with S(t1, t2) > 0, we have the following asymptotic representation:

Ŝ(t1, t2) − S(t1, t2)

= 1

n

n∑
i=1

δ1iδ2i

1 − G(Y1i ∨ Y2i )
I (Y1i > t1,Y2i > t2) − S(t1, t2)

+1

n

n∑
i=1

∞∫

t1

∞∫

t2

ξ(y1 ∨ y2; Y1i ∨ Y2i , δmax
i )

(1 − G(y1 ∨ y2))2
H11(dy1, dy2) + oP (n−1/2)

where, with δmax = 1 − δ1δ2,

ξ(t; Y1 ∨ Y2, δmax)

= (1 − G(t))

⎧⎨
⎩

t∫

0

I (Y1 ∨ Y2 ≤ y) − H̃(y)

(1 − H̃(y))2
H̃1(dy)

+ I (Y1 ∨ Y2 ≤ t, δmax = 1) − H̃1(t)

1 − H̃(t)

−
t∫

0

I (Y1 ∨ Y2 ≤ y, δmax = 1) − H̃1(y)

(1 − H̃(y))2
H̃(dy)

⎫⎬
⎭

and

H̃(t) = P(Y1 ∨ Y2 ≤ t)
H̃1(t) = P(Y1 ∨ Y2 ≤ t, δmax = 1)

= P(Y1 ∨ Y2 ≤ t, δ1 = 0 or δ2 = 0).
(12)

Proof

Ŝ(t1, t2) − S(t1, t2)

=
∞∫

t1

∞∫

t2

1

1 − Ĝ((y1 ∨ y2)−)
Ĥ1(dy1, dy2) −

∞∫

t1

∞∫

t2

1

1 − G(y1 ∨ y2)
H11(dy1, dy2)
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=
∞∫

t1

∞∫

t2

{
1

1 − Ĝ((y1 ∨ y2)−)
− 1

1 − Ĝ(y1 ∨ y2)

}
(Ĥ11(dy1, dy2) − H11(dy1, dy2))

+
∞∫

t1

∞∫

t2

{
1

1 − Ĝ(y1 ∨ y2)
− 1

1 − G(y1 ∨ y2)

}
Ĥ11(dy1, dy2)

+
∞∫

t1

∞∫

t2

{
1

1 − Ĝ((y1 ∨ y2)−)
− 1

1 − Ĝ(y1 ∨ y2)

}
H11(dy1, dy2)

+
∞∫

t1

∞∫

t2

1

1 − G(y1 ∨ y2)
Ĥ11(dy1, dy2) − S(t1, t2)

≡ (a) + (b) + (c) + (d). (13)

We have

| (c) | ≤
τF1∫

t1

τF2∫

t2

Ĝ((y1 ∨ y2)−) − Ĝ((y1 ∨ y2)

(1 − Ĝ((y1 ∨ y2))2
H11(dy1, dy2)

≤ 1

(1 − Ĝ(τF1 ∨ τF2))
2

sup
s≤τF1∨τF2

| Ĝ(s−) − Ĝ(s) |
τF1∫

t1

τF2∫

t2

H11(dy1, dy2)

= Op(n
−1)

since Ĝ(τF1 ∨ τF2) is a consistent estimator for G(τF1 ∨ τF2) and since the jump of
the Kaplan–Meier estimator is OP (n−1), uniformly (See Sect. 2.3).

Similarly | (a) |= OP (n−1).
For (b) we replace the expression (Ĝ − G)/[(1 − Ĝ)(1 − G)] in the integrand by

(Ĝ −G)/(1−G)2 and use the consistency result for Ĝ in Theorem 2. It then follows
that

Ŝ(t1, t2) − S(t1, t2)

=
∞∫

t1

∞∫

t2

1

1 − G(y1 ∨ y2)
Ĥ11(dy1, dy2) − S(t1, t2)

+
∞∫

t1

∞∫

t2

Ĝ(y1 ∨ y2) − G(y1 ∨ y2)

(1 − G(y1 ∨ y2))2
Ĥ11(dy1, dy2)

+OP (n−1 log log n).
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In the second term we plug in the asymptotic representation of Lo and Singh (1986)
(see Theorem 3). This gives that the second term becomes

1

n

n∑
i=1

∞∫

t1

∞∫

t2

ξ(y1 ∨ y2; Y1i ∨ Y2i , δmax
i )

(1 − G(y1 ∨ y2))2
Ĥ11(dy1, dy2) + O(n−1 log n) a.s.

= 1

n2

n∑
i=1

n∑
j=1

ξ(Y1 j ∨ Y2 j ; Y1i ∨ Y2i , δmax
i )

(1 − G(Y1 j ∨ Y2 j ))2
I (Y1 j > t1,Y2 j > t2, δ1 j = 1, δ2 j = 1)

+OP (n−1 log n).

The double sum term in the above expression is a V -statistic with kernel

h((y1i , y2i , δ1i , δ2i ), (y1 j , y2 j , δ1 j , δ2 j ))

= ξ(y1 j ∨ y2 j ; y1i ∨ y2i , δmax
i )

(1 − G(y1 j ∨ y2 j ))2
I (y1 j > t1, y2 j > t2, δ1 j = 1, δ2 j = 1).

We have

E[h((y1, y2, δ1, δ2), (Y1 j ,Y2 j , δ1 j , δ2 j ))]

=
∞∫

t1

∞∫

t2

ξ(y′
1 ∨ y′

2; y1 ∨ y2, δmax)

(1 − G(y′
1 ∨ y′

2))
2 H11(dy′

1, dy
′
2)

and

E[h((Y1i ,Y2i , δ1i , δ2i ), (y1, y2, δ1, δ2))]

= E[ξ(y1 ∨ y2; Y1i ∨ Y2i , δmax
i )]

(1 − G(y1 ∨ y2))2
I (y1 > t1, y2 > t2, δ1 = 1, δ2 = 1)

= 0.

Hence the Hajek projection of the V -statistic is

1

n

n∑
i=1

∞∫

t1

∞∫

t2

ξ(y1 ∨ y2; Y1i ∨ Y2i , δmax
i )

(1 − G(y1 ∨ y2))2
H11(dy1, dy2)

and the remainder term is op(n−1/2).
This follows from the asymptotic theory for theV -statistic and the correspondingU -

statistic (Serfling 1980). The required moment conditions are satisfied since the kernel
h is bounded. Indeed, ξ is bounded and 1/(1 − G(y1 ∨ y2)) ≤ 1/(1 − G(τF1 ∨ τF2))
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since τG > τF1 ∨ τF2 . Note that symmetry of the kernel is not required for this type
of result.

This proves the theorem.

Corollary 3 Assume the conditions of Theorem 7. Then, for any t1 < τF1 , t2 < τF2
with S(t1, t2) > 0, we have

n1/2(Ŝ(t1, t2) − S(t1, t2)) → N (0; σ 2(t1, t2))

where

σ 2(t1, t2) =
∞∫

t1

∞∫

t2

1

1 − G(y1 ∨ y2)
F(dy1, dy2) − S2(t1, t2)

+
∞∫

t1

∞∫

t2

∞∫

t1

∞∫

t2

⎛
⎜⎝

(y1∨y2)∧(y′
1∨y′

2)∫

0

H̃1(dy)

(1 − H̃(y))2

⎞
⎟⎠ F(dy1, dy2)F(dy′

1, dy
′
2)

−2S2(t1, t2)

t1∨t2∫

0

H̃1(dy)

(1 − H̃(y))2
. (14)

Proof This follows from the asymptotic representation in Theorem 7 which is of the
form

Ŝ(t1, t2) − S(t1, t2) = 1

n

n∑
i=1

Ai + 1

n

n∑
i=1

Bi + oP (n−1/2).

In the Supplementary Material we show that

Var(Ai ) =
∞∫

t1

∞∫

t2

1

1 − G(y1 ∨ y2)
F(dy1, dy2) − S2(t1, t2)

Var(Bi ) =
∞∫

t1

∞∫

t2

∞∫

t1

∞∫

t2

⎛
⎜⎝

(y1∨y2)∧(y′
1∨y′

2)∫

0

H̃1(dy)

(1 − H̃(y))2

⎞
⎟⎠ F(dy1, dy2)F(dy′

1, dy
′
2)

Cov(Ai , Bi ) = −S2(t1, t2)

t1∨t2∫

0

H̃1(dy)

(1 − H̃(y))2
.

Remark 6 In case of no censoring

σ 2(t1, t2) = S(t1, t2)(1 − S(t1, t2)).

Indeed in this case δ1 = δ2 ≡ 1, H̃1 ≡ 0, G ≡ 1.
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3.5 Estimator of Lin-Ying for the bivariate survival function under univariate
censoring

For bivariate survival data subject to univariate censoring an alternative estimator has
been proposed by Lin and Ying (1993). It is based on the following simple idea. Given
the assumed independence of (T1, T2) and C we have

P(Y1 > t1,Y2 > t2) = P(T1 > t1, T2 > t2,C > t1,C > t2)

= S(t1, t2)P(C > t1 ∨ t2).

This leads, for t1 ∨ t2 < (Y1 ∨ Y2)(n), to the following estimator

ŜLY (t1, t2) =
1
n

∑n
i=1 I (Y1i > t1,Y2i > t2)

1 − Ĝ(t1 ∨ t2)
,

where Ĝ is the Kaplan–Meier estimator for G given in Sect. 3.4. Note that in the
absence of censoring, ŜLY reduces to the usual bivariate empirical survival function.

Theorem 8 Assume that (T1, T2) and C are independent and that the distribution
functions F1, F2 and G are continuous. Assume condition (11), i.e. τG > τF1 ∨ τF2 .
Then, for t1 < τF1 , t2 < τF2 with S(t1, t2) > 0, we have the following asymptotic
representation

ŜLY (t1, t2) − S(t1, t2) = 1

n

∑n

i=1
ψLY (t1, t2,Y1i ,Y2i , δ1i , δ2i ) + oP (n−1/2)

where

ψLY (t1, t2,Y1,Y2, δ1, δ2)

= 1

1 − G(t1 ∨ t2)
{I (Y1 > t1,Y2 > t2) − P(Y1 > t1,Y2 > t2)}

+ S(t1, t2)

1 − G(t1 ∨ t2)
ξ(t1 ∨ t2; Y1 ∨ Y2, δ

max)

where ξ(t,Y1 ∨ Y2, δmax) is defined in (12).

Proof As in the proof of Theorem 5, we note that by linearization and by consistency
of Ĝ, ŜLY (t1, t2) − S(t1, t2) has the same asymptotic distribution as

1

1 − G(t1 ∨ t2)

{
1

n

n∑
i=1

I (Y1i > t1,Y2i > t2) − P(Y1 > t1,Y2 > t2)

}

+ S(t1, t2)

1 − G(t1 ∨ t2)

{
Ĝ(t1 ∨ t2) − G(t1 ∨ t2)

}
.

Then plug in the asymptotic representation for Ĝ(t1 ∨ t2) − G(t1 ∨ t2).
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Corollary 4 Assume the conditions of Theorem 8. Then, for any t1 < τF1 , t2 < τF2
with S(t1, t2) > 0, we have

n1/2(ŜLY (t1, t2) − S(t1, t2))
d→ N (0; σ 2

LY (t1, t2))

where

σ 2
LY (t1, t2) = 1

(1 − G(t1 ∨ t2))2
P(Y1 > t1,Y2 > t2)(1 − P(Y1 > t1,Y2 > t2))

−2S2(t1, t2)

t1∨t2∫

0

H̃1(dy)

(1 − H̃(y))2

= 1

(1 − G(t1 ∨ t2))2
P(Y1 > t1,Y2 > t2)(1 − P(Y1 > t1,Y2 > t2))

−S2(t1, t2)

t1∨t2∫

0

G(dy)

(1 − G(y))2(1 − F(y, y))

with H̃1 and H̃ as defined in (12) of Sect. 3.4.

Proof

σ 2
LY (t1, t2) = 1

(1 − G(t1 ∨ t2))2
P(Y1 > t1,Y2 > t2)(1 − P(Y1 > t1,Y2 > t2))

+S2(t1, t2)

t1∨t2∫

0

H̃1(dy)

(1 − H̃(y))2

+2
S(t1, t2)

(1 − G(t1 ∨ t2))2
E{I (Y1 > t1,Y2 > t2)ξ(t1 ∨ t2; Y1 ∨ Y2, δ

max)}.

The expectation above is equal to

−P(Y1 > t1,Y2 > t2)(1 − G(t1 ∨ t2))

⎧⎨
⎩

t1∨t2∫

0

H̃(y)

(1 − H̃(y))2
H̃1(dy)

+ H̃1(t1 ∨ t2)

1 − H̃(t1 ∨ t2))
−

t1∨t2∫

0

H̃1(y)

(1 − H̃(y))2
H̃(dy)

⎫⎬
⎭

= −P(Y1 > t1,Y2 > t2)(1 − G(t1 ∨ t2))

t1∨t2∫

0

H̃1(dy)

(1 − H̃(y))2

using the calculation in the proof of Corollary 3.
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Hence,

σ 2
LY (t1, t2) = 1

(1 − G(t1 ∨ t2))2
P(Y1 > t1,Y2 > t2)(1 − P(Y1 > t1,Y2 > t2))

−S2(t1, t2)

t1∨t2∫

0

H̃1(dy)

(1 − H̃(y))2
.

This can be rewritten by using the expressions: 1− H̃(y) = (1−G(y))(1− F(y, y)),
H̃1(dy) = (1− F(y, y))G(dy) and P(Y1 > t1,Y2 > t2) = S(t1, t2)(1−G(t1 ∨ t2)).

Remark 7 In case of no censoring

σ 2
LY (t1, t2) = S(t1, t2)(1 − S(t1, t2)).

Remark 8 Wang and Wells (1997) use a different estimator for the denominator in
the Lin and Ying (1993) estimator. Since G(t1 ∨ t2) = G(t1) ∨ G(t2), they estimate
1 − G(t1 ∨ t2) by 1 − (Ĝ(t1) ∨ Ĝ(t2)):

ŜWW (t1, t2) =
1
n

∑n
i=1 I (Y1i > t1,Y2 > t2).

1 − (Ĝ(t1) ∨ Ĝ(t2))
.

Similar calculations as before give for the asymptotic variance:

σ 2
WW (t1, t2) = 1

(1 − G(t1 ∨ t2))2
P(Y1 > t1,Y2 > t2)(1 − P(Y1 > t1,Y2 > t2))

−S2(t1, t2) ×

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

t1∫

0

G(dy)

(1 − G(y))2(1 − F1(y))
if t1 > t2

t∫

0

G(dy)

(1 − G(y))2(1 − F(y, y))
if t1 = t2 = t

t2∫

0

G(dy)

(1 − G(y))2(1 − F2(y))
if t1 < t2

.

Since F(y, y) ≤ F1(y) and F(y, y) ≤ F2(y) we have that σ 2
WW (t1, t2) ≤ σ 2

LY (t1, t2)
(see also (3.5b) and (3.6b) in Wang and Wells (1997)). Also note that Remark 7 is
valid for σ 2

WW (t1, t2) since, in case of no censoring, G ≡ 1.
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3.6 One-component censoring: survival function estimator of Stute

A simplification of the general bivariate setting of Sect. 3.1 is the situation where the
component T1 is fully observed and the component T2 is subject to right censoring
by C . Compare to a regression-like context where the response T2 is censored and
the covariate T1 is fully observed. So in this model we observe a random sample
(T1i ,Y2i , δ2i ), i = 1, . . . , n, from (T1,Y2, δ2) where Y2 = T2 ∧ C and δ2 = I (Y2 ≤
C).

In this section we discuss the estimator ŜS(t1, t2) for the survival function S(t1, t2)
introduced by Stute (1993a, 1995, 1996) studied the more general context of Kaplan-
Meier integrals, i.e. estimation of

∫
ϕ(t1, t2)F(dt1, dt2) by

∫
ϕ(t1, t2)F̂(dt1, dt2) for

some functions ϕ andwith F̂ an appropriate estimator for F . The condition of indepen-
dence between (T1, T2) and C is now replaced by the following pair of assumptions:

(i) T2 and C are independent
(ii) P(T2 ≤ C | T1, T2) = P(T2 ≤ C | T2).
Note that independence of (T1, T2) and C implies (i) and (ii) and that the present
weaker assumptions allow for dependence between T1 and C . For a discussion on (ii)
we refer to Stute (1996), p. 462, and to Pruitt (1993).

For simplicity we also assume that the distribution functions of T1, T2 and C are
continuous.

Conditions (i) and (ii) are sufficient for identifiability of the survival function of
(T1, T2). Indeed, denote

H̃11(t1, t2) = P(T1 ≤ t1,Y2 ≤ t2, δ2 = 1).

Then

H̃11(t1, t2) = E[I (T1 ≤ t1, T2 ≤ t2, T2 ≤ C)]
= E[E[I (T1 ≤ t1)I (T2 ≤ t2)I (T2 ≤ C) | T1, T2]]
= E[I (T1 ≤ t1, T2 ≤ t2)E[I (T2 ≤ C) | T2]
= E[I (T1 ≤ t1, T2 ≤ t2)(1 − G(T2−))]

=
t1∫

0

t2∫

0

(1 − G(y2−)F(dy1, dy2).

Hence,

F(dy1, dy2) = 1

1 − G(y2−)
H̃11(dy1, dy2)

or, since G is continuous,

S(t1, t2) =
∞∫

t1

∞∫

t2

1

1 − G(y2)
H̃11(dy1, dy2). (15)
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The corresponding estimator for S(t1, t2) is

ŜS(t1, t2) = 1

n

n∑
i=1

δ2i

1 − Ĝ(Y2i−)
I (T1i > t1,Y2i > t2).

Considering the results of Stute (1996) for the particular choice ϕ(x, w) =
I]t1,∞[×]t2,∞[(x, w) and calculating the quantities γ0, γ

ϕ
1 , γ

ϕ
2 in Stute (1996), p. 464

(see the Supplementary Material for details), we obtain the asymptotic representation
in Theorem 9 below.

The following integrability assumptions are also required (see (1.3) and (1.4) in
Stute 1996).

(iii)
∞∫
t1

∞∫
t2

1
1−G(w)

F(dx, dw) < ∞

(iv)
∞∫
t1

∞∫
t2

(
w∫
0

H0
2 (dy)

(1−H2(y))2

)1/2

F(dx, dw) < ∞

where H0
2 (t) = P(Y2 ≤ t, δ2 = 0), H2(t) = P(Y2 ≤ t).

Theorem 9 Assume conditions (i)–(iv).
Assume that T1, T2, C have continuous distributions.
Then,

ŜS(t1, t2) − S(t1, t2) = 1

n

n∑
i=1

ψS(t1, t2, T1i ,Y2i , δ2i ) + op(n
−1/2)

where

ψS(t1, t2, T1,Y2, δ2) = 1

1 − G(Y2)
I (T1 > t1,Y2 > t2, δ2 = 1) − S(t1, t2)

+ 1

1 − H2(Y2)

∞∫

t1

∞∫

t2

I (Y2 ≤ w, δ2 = 0)

1 − G(w)
H̃11(dx, dw)

−
∞∫

t1

∞∫

t2

Y2∧w∫

0

H0
2 (dv)

(1 − H2(v))2

1

1 − G(w)
H̃11(dx, dw).

Corollary 5 Assume the conditions of Theorem 9. Then,

n1/2(ŜS(t1, t2) − S(t1, t2))
d→ N (0; σ 2

S (t1, t2))

where

σ 2
S (t1, t2) =

∞∫

t1

∞∫

t2

1

1 − G(w)
F(dx, dw) − S2(t1, t2)
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−
∞∫

t1

∞∫

t2

∞∫

t1

∞∫

t2

⎛
⎜⎝

w∧w′∫

0

H0
2 (dy)

(1 − H2(y))2

⎞
⎟⎠ F(dx, dw)F(dx ′, dw′).

Proof For the calculation of the asymptotic variance, it is useful to note that ψS can
also be written as

ψS(t1, t2, T1,Y2, δ2) = 1

1 − G(Y2)
I (T1 > t1,Y2 > t2, δ2 = 1) − S(t1, t2)

+
∞∫

t1

∞∫

t2

1

(1 − G(w))2
ξG(w; Y2, δ2)H̃11(dx, dw) (16)

where ξG is the expression in the asymptotic representation for Ĝ(w) − G(w), see
Theorem 3.

The variance of the first two terms in (16) is equal to
∞∫

t1

∞∫

t2

1

(1 − G(w))2
H̃11(dx, dw) − S2(t1, t2)

=
∞∫

t1

∞∫

t2

1

1 − G(w)
F(dx, dw) − S2(t1, t2).

The variance of the third term in (16) equals

∞∫

t1

∞∫

t2

∞∫

t1

∞∫

t2

E[ξG(w; Y2, δ)ξG(w′; Y2, δ)] 1

(1 − G(w))2(1 − G(w′))2

H̃11(dx, dw)H̃11(dx ′, dw′)

=
∞∫

t1

∞∫

t2

∞∫

t1

∞∫

t2

⎛
⎜⎝

w∧w′∫

0

H0
2 (dy)

(1 − H2(y))2

⎞
⎟⎠ F(dx, dw)F(dx ′, dw′)

using the covariance formula (5).
Finally the covariance is equal to

E

⎧⎨
⎩

I (T1 > t1, Y2 > t2, δ2 = 1)

1 − G(Y2)

∞∫

t1

∞∫

t2

1

(1 − G(w))2
ξG(w; Y2, δ2)H̃11(dx, dw)

⎫⎬
⎭

= −
∞∫

t1

∞∫

t2

E

⎧⎨
⎩

I (T1 > t1, Y2 > t2, δ2 = 1)

1 − G(Y2)

Y2∧w∫

0

H0
2 (dv)

(1 − H2(v))2

⎫⎬
⎭

1

(1 − G(w))
H̃11(dx, dw)

= −
∞∫

t1

∞∫

t2

∞∫

t1

∞∫

t2

⎛
⎜⎝

w∧w′∫

0

H0
2 (dv)

(1 − H2(v))2

⎞
⎟⎠ 1

1 − G(w)

1

1 − G(w′)
H̃11(dx, dw)H̃11(dx ′, dw′)
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= −
∞∫

t1

∞∫

t2

∞∫

t1

∞∫

t2

⎛
⎜⎝

w∧w′∫

0

H0
2 (dv)

(1 − H2(v))2

⎞
⎟⎠ F(dx, dw)F(dx ′, dw′).

Collecting the terms gives the desired results.

Remark 9 In case of no censoring

σ 2
S (t1, t2) = S(t1, t2)(1 − S(t1, t2)).

3.7 One-component censoring: survival function estimator of Lin-Ying

The idea which led to the estimator of Lin and Ying (1993) discussed in Sect. 3.5 can
also be used in the case of one-component censoring. It leads to a new estimator for
the bivariate survival function.

If (T1, T2) andC are independent and if T1, T2 andC have continuous distributions,
then

P(T1 > t1,Y2 > t2) = P(T1 > t1, T2 > t2,C > t2)

= S(t1, t2)(1 − G(t2))

or

S(t1, t2) = P(T1 > t1,Y2 > t2)

1 − G(t2)
.

A simple estimator is given by

S̃LY (t1, t2) =
1
n

∑n
i=1 I (T1i > t1,Y2i > t2)

1 − Ĝ(t2)

with Ĝ the Kaplan–Meier estimator of G.

Remark 10 Given the way we write S(t1, t2) it is natural to assume that (T1, T2) and
C are independent. Note that this condition implies conditions (i) and (ii) in Sect. 3.6.

Theorem 10 Assume that (T1, T2) and C are independent and that the distribution
functions of T1, T2 and C are continuous. Then, for t2 < τG,

S̃LY (t1, t2) − S(t1, t2) = 1

n

n∑
i=1

ψ̃LY (t1, t2, T1i ,Y2i , δ2i ) + oP (n−1/2)

where

ψ̃LY (t1, t2, T1,Y2, δ2) = 1

1 − G(t2)
{I (T1 > t1,Y2 > t2) − P(T1 > t1,Y2 > t2)}
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+S(t1, t2)

⎧⎨
⎩

t2∫

0

I (Y2 ≤ y) − H2(y)

(1 − H2(y))2
H0
2 (dy)

+ I (Y2 ≤ t2, δ2 = 0) − H0
2 (t2)

1 − H2(t2)

−
t2∫

0

I (Y2 ≤ y, δ2 = 0) − H0
2 (y)

(1 − H2(y))2
H2(dy)

⎫⎬
⎭

with H2(t) = P(Y2 ≤ t) and H0
2 (t) = P(Y2 ≤ t, δ2 = 0).

Proof Similarly as in the proof of Theorem 8 it follows by linearization of S̃LY − S
that S̃LY (t1, t2) − S(t1, t2) has the same asymptotic distribution as

1

1 − G(t2)

1

n

n∑
i=1

{I (T1i > t1,Y2i > t2) − P(T1 > t1,Y2 > t2}

+S(t1, t2)
1

1 − G(t2)
[Ĝ(t2) − G(t2)].

Now replace Ĝ(t2) − G(t2) by its asymptotic representation.

Corollary 6 Assume the conditions of Theorem 10. Then, for t2 < τG,

n1/2(S̃LY (t1, t2) − S(t1, t2))
d→ N (0; σ̃ 2

LY (t1, t2))

where

σ̃ 2
LY (t1, t2) = 1

(1 − G(t2))2
P(T1 > t1,Y2 > t2)(1 − P(T1 > t1,Y2 > t2))

−S2(t1, t2)

t2∫

0

H0
2 (dy)

(1 − H2(y))2
.

Proof

σ̃ 2
LY (t1, t2) = 1

(1 − G(t2))2
P(T1 > t1, Y2 > t2)(1 − P(T1 > t1, Y2 > t2))

+S2(t1, t2)

t2∫

0

H0
2 (dy)

(1 − H2(y))2

+2
S(t1, t2)

1 − G(t2)
E

⎧⎨
⎩I (T1 > t1, Y2 > t2)

⎡
⎣

t2∫

0

I (Y2 ≤ y) − H2(y)

(1 − H2(y))2
H0
2 (dy)
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+ I (Y2 ≤ t2, δ2 = 0) − H0
2 (t2)

1 − H2(t2)
−

t2∫

0

I (Y2 ≤ y, δ2 = 0) − H0
2 (y)

(1 − H2(y))2
H2(dy)

⎤
⎦
⎫⎬
⎭ .

The last term equals

−2
S(t1, t2)

1 − G(t2)
P(T1 > t1,Y2 > t2)

⎧⎨
⎩

t2∫

0

H2(y)

(1 − H2(y))2
H0
2 (dy)

+ H0
2 (t)

1 − H2(t2)
−

t2∫

0

H0
2 (y)

(1 − H2(y))2
H2(dy)

⎫⎬
⎭

= −2
S(t1, t2)

1 − G(t2)
P(T1 > t1,Y2 > t2)

t2∫

0

H0
2 (dy)

(1 − H2(y))2

= −2S2(t1, t2)

t2∫

0

H0
2 (dy)

(1 − H2(y))2

where we used a similar calculation as in Theorem 7.

Remark 11 In case of no censoring

σ̃ 2
LY (t1, t2) = S(t1, t2)(1 − S(t1, t2)).

Remark 12 For t1 = 0, we have S(0, t2) = P(T2 > t2) and σ̃ 2
LY (0, t2)

= (P(T2 > t2))2
∫ t2
0

H1
2 (dy)

(1−H2(y))2
where H1

2 (t) = P(Y2 ≤ t, δ2 = 1) which is the
asymptotic variance of the Kaplan–Meier estimator for the survival function of T2.

3.8 One-component censoring: survival function estimator of Akritas

We again consider the bivariate model where T1 is fully observed and T2 is subject to
censoring by C with distribution function G. Also, Y2 = T2 ∧ C , δ2 = I (T2 ≤ C)

and the observations are (T1i ,Y2i , δ2i ), i = 1, . . . , n.
The following estimator for S(t1, t2) has been proposed by Akritas (1994) and

further studied in Akritas and Van Keilegom (2003).
It is assumed that, given T1, the variables T2 and C are independent. The starting

point is the following relation

S(t1, t2) =
∞∫

t1

S(t2 | t)F1(dt) (17)

where S(t2 | t) = P(T2 > t2 | T1 = t).
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The estimator is obtained by plugging in estimators Ŝn(t2 | t) for S(t2 | t) and
F1n(t) for F1(t), where F1n(t) = n−1∑n

i=1 I (T1i ≤ t). This gives

ŜA(t1, t2) = 1

n

∑n

i=1
Ŝn(t2 | T1i )I (T1i > t1).

For Ŝn(t2 | t) we use the Beran (1981) estimator (see Remark 3:)

Ŝn(t2 | t) =
n∏

i=1
Y2i≤t2,δ2i=1

(
1 − wni (t, hn)∑n

j=1 wnj (t, hn)I (Y2 j ≥ Y2i )

)
.

The weights wni (t, hn) are Nadaraya-Watson weights with

wni (t, hn) = K

(
t − T1i
hn

)
/
∑n

j=1
K

(
t − T1 j
hn

)
,

where K is a known probability density function and {hn} is a sequence of nonneg-
ative constants, tending to 0 as n → ∞. It has been shown (see Van Keilegom and
Veraverbeke 1997) that Ŝn(t2 | T1i )− S(t2 | T1i ) has the same asymptotic distribution
as −∑n

j=1 wnj (T1i , hn)ξA(t2; Y2 j , δ2 j , T1i ) where

ξA(t2; Y2, δ2, t) = S(t2 | t)
⎛
⎝−

Y2∧t2∫

0

H1
2 (ds | t)

(1 − H2(s | t))2 + I (Y2 ≤ t2, δ2 = 1)

1 − H2(Y2 | t)

⎞
⎠ .

Here H2(y | t) = P(Y2 ≤ y | T1 = t) and H1
2 (y | t) = P(Y2 ≤ y, δ2 = 1 | T1 = t).

Due to the censoring of T2, it will only be possible to estimate S(t1, t2) in a certain
domain for (t1, t2). Indeed, the estimator for S(t1, t2) is obtained from relation (17) by
plugging in the empirical distribution function for F1(t) and the conditional Kaplan–
Meier estimator for S(t2 | t). To achieve uniformity of the remainder term in the
asymptotic representation, we have to stay strictly away from the right endpoint of
support of F1 as well as from the right endpoint of support of P(Y2 ≤ y | T1 = t),
for all t ≥ t1, the range of the integral in (17).

Hence, in order to define the domain of our estimator, we introduce the following
notation (as in Akritas 1994; Akritas and Van Keilegom 2003):

τ1 = any number strictly less than inf{t : F1(t) = 1}
τ2(t) = any number strictly less than inf{y : H2(y | t) = 1}

Therefore we use the following domain

�A = {(t1, t2) : t1 ≤ τ1, t2 ≤ inf
t≥t1

τ2(t)}.

We will also need the following assumptions (see Akritas and Van Keilegom 2003):
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(A1) log n
nhn

→ 0, nh4 → 0;
K is a probability density with support [−1, 1], K is twice continuously differen-
tiable,

∫
uK (u)du = 0;

(A2) F1(t1) is three times continuously differentiable w.r.t. t1;
H2(t2 | t1) and H1

2 (t2 | t1) are twice continuously differentiable w.r.t. t1 and t2
and for (t1, t2) ∈ �A, all derivatives are uniformly bounded.

Theorem 11 (Akritas 1994; Akritas and Van Keilegom 2003)
Assume that T2 and C are independent, given T1. Assume (A1) and (A2). Then, for

(t1, t2) ∈ �A, we have the following representation

ŜA(t1, t2) − S(t1, t2) = 1

n

n∑
i=1

ψA(t2; Y2i , δ2i , T1i ) + rn(t1, t2)

where

ψA(t2; Y2, δ2, T1) = {S(t2 | T1)I (T1 > t1) − S(t1, t2)} − ξA(t2; Y2, δ2, T1)I (T1 > t1)

and

sup
(t1,t2)∈�A

| rn(t1, t2) | = op(n
−1/2).

Remark 13 The crucial part of the Akritas estimator is the Beran estimator Ŝn(t2 | t).
It is therefore natural to assume that T2 and C are conditional independent given T1.
Note that this assumption is not implied or does not imply the independence conditions
in Sects. 3.6 and 3.7.

Remark 14 Theorem 11 is a special case of Van Keilegom (2004) in which T1 is
allowed to be censored.

Corollary 7 Assume the conditions of Theorem 11. Then,

n1/2(ŜA(t1, t2) − S(t1, t2))
d→ N (0; σ 2

A(t1, t2))

where

σ 2
A(t1, t2) = E[S2(t2 | T1)I (T1 > t1)] − S2(t1, t2)

+E

⎡
⎣S2(t2 | T1)

⎛
⎝

t2∫

0

H1
2 (ds | T1)

(1 − H2(s | T1))2

⎞
⎠ I (T1 > t1)

⎤
⎦

=
∞∫

t1

S2(t2 | t)F1(dt) − S2(t1, t2)
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+
∞∫

t1

S2(t2 | t)
⎛
⎝

t2∫

0

H1
2 (ds | t)

(1 − H2(s | t))2

⎞
⎠ F1(dt).

Remark 15 In case of no censoring
t2∫
0

H1
2 (ds|t)

(1−H2(s|t))2 = F(t2|t)
1−F(t2|t) and hence σ 2

A(t1, t2) =
S(t1, t2)(1 − S(t1, t2)).

4 Applications

Representations are a particularly useful tool to study asymptotic properties of compli-
cated statistical estimators. In this sectionwe demonstrate, for right censored data, how
the i.i.d. representations for nonparametric univariate and bivariate survival function
estimators have been used as building blocks in the derivation of asymptotic properties
of more complicated estimators. Given the large amount of possible applications, we
limit ourselves to four concrete examples that have recently been discussed in the statis-
tical literature: nonparametric conditional residual quantile estimation, nonparametric
copula estimation, cure models (in survival analysis and banking) and goodness-of-fit
in regression models.

4.1 Conditional residual quantiles

The Lo and Singh (1986) representation (Theorem 3 in this paper) has been used to
obtain i.i.d. representations for quantiles of the Kaplan–Meier estimator Ŝ(t) (Gij-
bels and Veraverbeke 1988) and also for quantiles of the conditional Kaplan-Meier
estimator Ŝ(t | x) in Remark 3 (Van Keilegom and Veraverbeke 1998).

More recent work is the study of conditional residual quantiles. For a lifetime T1
and some other variable T2, containing extra information on T1, conditional residual
lifetime distributions are defined as P(T1 − t1 ≤ y | T1 > t1, T2 ≤ t2) or P(T1 − t1 ≤
y | T1 > t1, T2 > t2) or P(T1 − t1 ≤ y | T1 > t1, t21 < T2 ≤ t22).

Abrams et al. (2021, 2023) studied asymptotic representations for nonparametric
estimators of the quantiles of these distributions. The proposed estimators use the one-
component Akritas-Van Keilegom estimator of Sect. 3.8 and the univariate censoring
estimators of Sects. 3.4 and 3.5.

The i.i.d. representations in Sect. 3 are key ingredients to study the asymptotic
properties of the conditional residual quantile estimators.

4.2 Copulas

Survival copulas can be written as C(u1, u2) = S(S−1
1 (u1), S

−1
2 (u2)) with S the joint

survival function and S1 and S2 the marginal survival functions. Using nonparametric
estimators Sn , S1n and S2n for S, S1 and S2, a nonparametric estimator Cn(u1, u2) for
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C(u1, u2) is given by

Cn(u1, u2) = Sn(S
−1
1n (u1), S

−1
2n (u2)).

Using the nonparametric estimators for Sn discussed in Sect. 3 and nonparametric
Kaplan–Meier based estimators for the marginal quantiles, we obtain estimators for
copula functions, which can be studied based on the asymptotic representations given
in Sect. 3. SeeGeerdens et al. (2016) for details. In that paper there is also a comparison
with an alternative estimator of Gribkova and Lopez (2015).

4.3 Curemodels

There are many contexts (e.g. cancer research) in which subjects in the study never
experience the event of interest (e.g. death caused by the cancer). They are called
’cured’.

Several models have been introduced and studied to modify the classical survival
analysis in presence of a cured fraction. An up-to-date review paper is Amico and
Van Keilegom (2018). In Geerdens et al. (2020) a goodness-of-fit test for a parametric
survival function with cure fraction is discussed for the mixture cure model S(t) =
1−φ+φS1(t)with 1−φ the cure fraction and S1(t) the survival function of the uncured
subjects (the susceptibles). With Ŝ1(t) the Maller and Zhou (1996) estimator for S1(t)
and θ̂ the maximum likelihood estimator for θ , the Cramér-von Mises distance

∧n =
n∑

i=1

(Ŝ1(Yi ) − S1,θ̂ (Yi ))
2 (18)

with Yi = Ti ∧ Ci , is used to test

H0 : S1 ∈ {S1,θ : θ ∈ } versus Ha : S1 /∈ {S1,θ : θ ∈ }

where  is the parameter space of the parameter θ in the assumed parametric form
S1,θ (t) of the survival function S1(t).

An example of an application of censoring and cure models outside the clinical
research but in the domain of finances and banking appeared in the recent PhD thesis
of Peláez-Suárez (2022). She uses the conditional cure model

S(t | x) = 1 − φ(x) + φ(x)S1(t | x)

with T the time to default (unable to pay the debts incurred by granting a credit) and
X a credit score variable. To estimate the default probability

P(T ≤ t + b | T > t, X = x) = S(t + b | x)
S(t | x) (19)

she uses a nonparametric cure model estimator of the conditional survival function
S(· | x). The latter estimator, in terms of Beran-type estimators (Beran 1981) for the
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incidence φ(x) and the latency S1(t | x), is studied in López-Cheda et al. (2017a,
2017b).

To study the asymptotic properties of the goodness-of-fit statistics∧n in (18) or the
estimated default probability (19) again i.i.d. representations are essential.

4.4 Goodness-of-fit in regressionmodels

There is also a huge literature on regression models with censored data in which
the response T is subject to random right censoring. We mention the two recent
papers: González-Manteiga et al. (2020) and Conde-Amboage et al. (2021) and the
references therein. Examples are the mean regression model T = m(X) + ε where
m(X) is the conditional mean of T , given X , or the quantile regression model T =
gτ (X) + ε where gτ (X) is the conditional τ -quantile function of T , given X (0 <

τ < 1). There exist many goodness-of-fit procedures to test the hypothesis that m(·)
or gτ (·) belong to some class of parametric functions. As discussed for cure models,
goodness-of-fit statistics are based on a comparison of a model based parametric
estimator and a nonparametric estimator for m(·), resp. gτ (·) and, again, the role of
i.i.d. representations is crucial to study the asymptotic properties of the goodness-of-fit
statistics.

The above examples clearly show the need of i.i.d. representations to study asymp-
totics in more complicated censoring models. Indeed, also the study of asymptotic
properties of nonparametric estimators of the univariate or bivariate survival functions
for data subject to left truncation and right censoring or interval censored data will rely
on i.i.d. representations. Moreover such representations are and will be highly needed
to study more complex data schemes, e.g. censored data in competing risks models
and models dealing with dependent censoring.

Supplementary Information The online version contains supplementary material available at https://doi.
org/10.1007/s00184-023-00911-7.
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