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Abstract
In this paper, we consider two k-out-of-n systems comprising heterogeneous depen-
dent components under random shocks, with anArchimedean copula.We then provide
sufficient conditions on the distributions of components’ lifetimes and the generator of
the Archimedean copula and on the random shocks for comparing the lifetimes of two
systems with respect to the usual stochastic order. Finally, we present some examples
to illustrate the established results.

Keywords Usual stochastic order · Random shocks · Majorization · Archimedean
survival copula

1 Introduction

In reliability theory, a system of n components is said to be a k-out-of-n system if
it functions as long as at least k of the n components are functioning. The kth order
statistic, Xk:n , arising from random variables X1, . . . , Xn then corresponds to the
lifetime of a (n − k + 1)-out-of-n system. In particular, Xn:n and X1:n represent the
lifetimes of parallel and series systems, respectively. For comprehensive discussions on
various properties and general results on stochastic comparisons of k-out-of-n system
when the components are independent and identically (or non-identically) distributed,
one may refer to Balakrishnan and Rao (1998a, b), Fang and Zhang (2010), Khaledi
and Kochar (2000), David and Nagaraja (2003), Dykstra et al. (1997), Khaledi and
Kochar (2006), Ding et al. (2013), Amini-Seresht et al. (2016), Balakrishnan and Zhao
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(2013), Esna-Ashari et al. (2022, 2023) and Kochar and Xu (2007a, b). In practical
situations, however, the components may not be independent and there may be a
structural dependence among components’ lifetimes; for instance, different shocks or a
common shock impinging on the components of the system, thus impacting the lifetime
of the system. Let X = (X1, . . . , Xn) be a dependent and non-identically distributed
random vector with Xi ∼ F(·; λi ), where F(·; λi ) denotes the distribution function of
Xi andλi > 0 is themodel parameter of Xi , for i = 1, . . . , n. Let us denote the survival
function and density function of Xi , for i = 1, . . . , n, by F̄(·; λi ) = 1− F(·; λi ) and
f (·; λi ), respectively. Furthermore, let Ip1 , . . . , Ipn be independent Bernoulli random
variables, independent by of Xi ’s, with E[Ipi ] = pi , i = 1, . . . , n. Here, Ip1 , . . . , Ipn
are used to indicate whether the components of the system, with random lifetimes
X1, . . . , Xn , have actually failed or not. Specifically, if Ipi = 1, then the component
i survives from random shocks; otherwise, Ipi = 0 if component i fails due to the
shocks, for i = 1, . . . , n. We can then define Ip1X1, . . . , Ipn Xn as the components’
lifetimes subject to random shocks. Denote by X pi

i := Ipi Xi , i = 1, . . . , n. Thus,
we have a product of two random variables here, one is X with distribution function
F(x) and another is an independent Bernoulli random variable with probability pi .
Then, the distribution of the product random variable, for any i = 1, . . . , n, will be
F̄X

pi
i

(x) = pi F̄(x). Thus,

FX
pi
i

(x) =
{
F(x) with probability pi
1 with probability 1 − pi

By conditioning and unconditioning argument, we get FX
pi
i

(x) = 1 − pi + pi F(x).

What this says is that when x goes to 0, we have a positive mass of 1 − pi , and
consequently the rest of the distribution needs to have a total probability of pi . The
corresponding survival function of X pi

i is F̄X
pi
i

(x) = pi F̄(x). This also captures the

practical scenario of claim distribution. If a claim is made, the distribution function
for the amount of claim would be F(x) and it occurs with probability pi , but a claim
need not be made at all and this occurs with probability 1 − pi .

A number of researchers have discussed stochastic comparisons of order statistics
when the components of the system are dependent; one may refer to Li and Fang
(2015), Mesfioui et al. (2017), Li et al. (2016), Fang et al. (2018), and Torrado and
Navarro (2021). Recently, Zhang et al. (2018) considered stochastic comparisons of
fail-safe systems under random shocks and provided sufficient conditions on compo-
nents’ lifetimes and their survival probabilities from random shocks for comparing
the lifetimes of two fail-safe systems with respect to various stochastic orders. Bal-
akrishnan et al. (2018), under this framework, studied the ordering property between
X p
n:n and X q

n:n , corresponding to the largest claim amounts arising from two sets of
heterogeneous portfolios, in terms of the usual stochastic ordering, where X p

n:n and
X q
n:n are the nth order statistics from the vectors X p and Xq , respectively.
Most of the existing results in the literature compare the ifetimes of coherent systems

inwhich the components of the system are independent and at fixed time t whether they
are up/down. Hence, it will naturally be of interest to consider the situation when the
components in the systemexperience randomshockswith probability pi , i = 1, . . . , n.
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Comparison of extreme order statistics from two sets of… 135

A natural question is then how the random shocks affect the lifetime of the system.We
use majorization order to evaluate the influence of the random shocks on the systems’
lifetime and then compare two systemswith respect to the usual stochastic order. Here,
in this work, we consider the lifetime of two systems with distributional parameters
under random shocks, and then present sufficient conditions for comparing them with
respect to the usual stochastic order.

Let (X1, . . . , Xn) be a random vector of component lifetimes, having joint distri-
bution F, survival function F̄ and marginal distributions Fi , i = 1, . . . , n. Then, the
function C : [0, 1]n → [0, 1] is said to be the copula of (X1, . . . , Xn) if

F(x1, . . . , xn) = C(F1(x1), . . . , Fn(xn)), for all (x1, . . . , xn) ∈ R
+.

If F continuous, then the copula C is unique and is given by

C(u1, . . . , un) = F(F−1
1 (u1), . . . , F

−1
n (un)), for u1, . . . , un ∈ (0, 1),

where F−1
i denotes the inverse of the distribution function of Xi . For an elaborate

treatment on copulas and their applications, one may refer to Nelsen (2006).
Likewise, a survival copula associated with a multivariate distribution function F

is given by

F̄(x1, . . . , xn) = C̄(F̄1(x1), . . . , F̄n(xn)), for all (x1, . . . , xn) ∈ R
+,

where C̄ : [0, 1]n → [0, 1] is the survival copula with uniform marginals. Also,
when the variables are continuous, C̄ is unique. One interesting class of copulas is
the Archimedean copula class, and they have been used widely in reliability theory
and actuarial science due to their mathematical tractability and their wide range of
dependence. For a decreasing and continuous function φ : [0,∞) → [0, 1] such that
φ(0) = 1 and φ(∞) = 0, with ψ = φ−1 being the pseudo-inverse, the copula is said
to be Archimedean if it can be expressed as

C(u1, . . . , un) = φ(ψ(u1) + · · · + ψ(un)), for all ui ∈ [0, 1], i = 1, . . . , n,

where φ is referred to as the generator of the Archimedean copulaC if (−1)kφ[k](x) ≥
0, for k = 0, . . . , n−2, and (−1)n−2φ[n−2](x) is decreasing and convex. Here, φ[k](x)
denotes the kth derivative of the function φ(x) with respect to x .

The rest of this paper is organized as follows. In Sect. 2, we introduce some nota-
tions, basic concepts, and some well-known results. In Sect. 3, we discuss stochastic
comparisons of order statistics under Archimedean copulas with respect to the usual
stochastic order. In Sect. 4, we present some numerical examples to illustrate the estab-
lished results. Finally, in Sect. 5, we provide a summary of the work carried out here
and make some concluding comments.
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2 Preliminaries

Let us first recall some notions and useful lemmas that are key to the main results
established in the sequel. Throughout the paper, the terms increasing and decreasing
mean non-decreasing and non-increasing, respectively. Further, we use the notations
R = (−∞,∞), R+ = (0,∞),

λ = (λ1, . . . , λn), λ∗ = (λ∗
1, . . . , λ

∗
n), h(u) = (h(u1), . . . , h(un)),

D = {λ : λ1 ≥ · · · ≥ λn}, D+ = {λ : λ1 ≥ · · · ≥ λn > 0},
I = {λ : λ1 ≤ · · · ≤ λn}, I+ = {λ : 0 < λ1 ≤ · · · ≤ λn}.

Definition 2.1 For two random variables X and Y with distribution functions F and
G and survival functions F̄ = 1 − F and Ḡ = 1 − G, respectively, X is said to be
smaller than Y in the usual stochastic order (denoted by X ≤st Y ) if F̄(x) ≤ Ḡ(x) for
all x ∈ R+, or equivalently, E[φ(X)] ≤ [≥]E[φ(Y )] for any increasing [decreasing]
function φ : R → R.

For comprehensive discussions on stochastic orders and their applications, one may
refer to Müller and Stoyan (2002) and Shaked and Shanthikumar (2007).

Majorization is a pre-ordering on vectors with all the components in the vectors
being in an increasing order. Then, the concepts of majorization of vectors and Schur-
concavity (Schur-convexity) of functions are as follows.

Definition 2.2 Let x and y be two n-dimensional real vectors and x(1) ≤ . . . ≤ x(n)

and y(1) ≤ · · · ≤ y(n) be increasing arrangements of their components, respectively.
Then:

• x is said to be majorized by y, denoted by x
m	 y, if

∑k
i=1 y(i) ≤ ∑k

i=1 x(i), for
k = 1, . . . , n − 1, and

∑n
i=1 x(i) = ∑n

i=1 y(i);

• x is said to be weakly supermajorized by y, denoted by x
w	 y, if

∑k
i=1 x(i) ≥∑k

i=1 y(i), for k = 1, . . . , n;
• x is said to be weakly submajorized by y, denoted by x 	w y, if

∑n
i=k x(i) ≤∑n

i=k y(i), for k = 1, . . . , n.

It is known that x
m	 y implies x

w	 (	w) y, while the reverse is not true in general.
For more details on majorization, weak majorization and their applications, one may
refer to Marshall et al. (2011),

Lemma 2.3 (Marshall et al. 2011, Theorem 5.A.2) If an increasing function h is con-

cave (convex), then x
w	 (	w) y implies h(x)

w	 (	w)h( y).

The following lemmas are useful for establishing the results in the subsequent
sections.

Lemma 2.4 (Marshall et al. 2011, Theorem 3.A.4) Let a permutation-symmetric func-
tion � : R

n → R be continuously differentiable. Then, necessary and sufficient
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conditions for � to be Schur-convex (concave) on Rn are � is symmetric on Rn, and
for all i 
= j ,

(zi − z j )

(
∂�(z)
∂zi

− ∂�(z)
∂z j

)
≥ (≤) 0 for all z ∈ R

n .

Lemma 2.5 For a real-valued function � : C ⊆ R
n → R, x

m	 y implies

�(x) ≤ (≥) �( y)

if and only if � is Schur-convex (concave) on Rn.

Lemma 2.6 (Marshall et al. 2011, Theorem 3.A.8)For a real-valued function� : C ⊆
R
n → R, x

w	 (	w) y implies

�(x) ≤ �( y)

if and only if � is decreasing (increasing) and Schur-convex on R
n.

3 Main results

We consider here the usual stochastic order between parallel systems and obtain some
conditions on F(·; λi ), i = 1, . . . , n, and the generator function of the Archimedean
copula. The established result shows that more heterogeneity among the random
shocks in terms of weakly supmajorization order results in larger lifetimes of par-
allel systems.

Theorem 3.1 Let X p = (Ip1X1, . . . , Ipn Xn) and Xq = (Iq1X1, . . . , Iqn Xn) be
dependent and non-identically distributed random vectors with Xi ’s having the
Archimedean copula with generator φ and Ip1 , . . . , Ipn and Iq1 , . . . , Iqn being inde-
pendent Bernoulli random variables with parameters p = (p1, . . . , pn) and q =
(q1, . . . , qn), respectively, that are independent of Xi ’s. Let

(i) uψ ′(1 − u) be increasing in u ∈ (0, 1),
(ii) F̄(·; λ) be increasing in λ,
(iii) h(u) and uh′(u) be increasing functions in u ∈ [0, 1].
Then, for h( p) ∈ D+ and λ ∈ D+, we have

h( p)
m	 h(q) ⇒ X p

n:n ≤st X
q
n:n,

where X p
n:n and X q

n:n are the nth order statistics from the vectors X p and Xq , respec-
tively.
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Proof The survival function of X p
n:n is

F̄X p
n:n (x) = 1 − φ

⎛
⎝ n∑

j=1

ψ(1 − p j F̄(x; λ j ))

⎞
⎠ .

Let us set h(pi ) = ui , for ui ∈ [0, 1], so that pi = h−1(ui ) for ui ∈ [0, 1]. Then, the
survival function F̄X p

n:n (x) can be rewritten as

F̄X p
n:n (x) = 1 − φ

⎛
⎝ n∑

j=1

ψ(1 − h−1(u j )F̄(x; λ j ))

⎞
⎠ .

Now, taking derivative of F̄X p
n:n with respect to ui , we obtain

∂ F̄X p
n:n (x;λ)

∂ui
= F̄(x; λi )

∂h−1(ui )

∂ui
ψ ′(1 − h−1(ui )F̄(x, λi ))φ

′

×
⎛
⎝ n∑

j=1

ψ(1 − h−1(u j )F̄(x; λ j ))

⎞
⎠ .

Thus, according to Lemma 2.5, it is sufficient to show that F̄X p
n:n is schur-convex to

obtain the desired result. So, as φ′ is non-positive function, it is enough to show that,
for 1 < i ≤ j ≤ n,

�1 : = F̄(x; λ j )
∂h−1(u j )

∂u j
.ψ ′(1 − h−1(u j )F̄(x; λ j ))

− F̄(x; λi )
∂h−1(ui )

∂ui
.ψ ′(1 − h−1(ui )F̄(x, λi ))

= 1

h−1(u j )h′(h−1(u j ))
h−1(u j )F̄(x; λ j )ψ

′(1 − h−1(u j )F̄(x; λ j ))

− 1

h−1(ui )h′(h−1(ui ))
h−1(ui )F̄(x; λi )ψ

′(1 − h−1(ui )F̄(x; λi ))

is non-positive. From Assumptions (i) and (ii), we see that

�1 ≤
(

1

h−1(u j )h′(h−1(u j ))
− 1

h−1(ui )h′(h−1(ui ))

)

h−1(ui )F̄(x; λi )ψ
′(1 − h−1(ui )F̄(x; λi )) ≤ 0,

where the second inequality follows from Assumption (iii) and the fact that ψ ′ is a
non-positive function. Hence, from Lemma 2.4, the required result follows. ��
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Remark 3.2 It is important to observe that in reliability and actuarial applications, the
parameters p1, . . . , pn (for example) involved in the model would correspond specifi-
cally to the probabilities of the n component in the system surviving the random shocks
experienced and the probabilities of the n customers in the portfolio making the insur-
ance claims, respectively. Hence, for the purpose of reducing the dimensionality of
this parameter vector p, it would be convenient to use a link function while modelling;
for example, h(p) = pθ for θ ∈ R

+ and h(p) = 1−e−θ p

1−e−θ for θ ∈ (0, 1] could be two
such choices. It is easy to verify that these link functions do satisfy condition (iii) in
Theorem 3.1 as h(u) and uh′(u) are both increasing functions in u ∈ [0, 1]. In fact,
we could more generally consider any distribution function in [0, 1] and suitably scale
in to make such choices for link functions.

In the especial casewhenφ(x) = e−x , it is well known that theArchimedean copula
reduces to the independence copula; in this case, Balakrishnan et al. (2018) considered
two sets of heterogeneous independent samples and obtained some conditions involv-
ing the survival function of X p

i and the function h and the weakly supermajorization
order between h( p) and h(q) to establish the usual stochastic ordering between X p

n:n
and X q

n:n .Moreover, for the case of common p, Balakrishnan et al. (2018) also obtained
some sufficient conditions for comparing X p

n:n and X q
n:n based on the usual stochastic

ordering; but, as will be seen later, their results are different from the ones estabil-
ished here, because the conditions assumed here are different from these assumed in
Theorems 3.1 and 3.2 of Balakrishnan et al. (2018).

Proposition 3.3 Let X p = (Ip1X1, . . . , Ipn Xn) and Xq = (Iq1X1, . . . , Iqn Xn)

be dependent and non-identically distributed random vectors with Xi ’s having an
Archimedean copula with generator φ and Ip1 , . . . , Ipn and Iq1 , . . . , Iqn being inde-
pendent Bernoulli random variables with parameters, p = (p1, . . . , pn) and q =
(q1, . . . , qn), respectively, that are independent of Xi ’s. Let

(i) φ be a log-concave function,
(ii) F̄(·; λ) be increasing in λ,
(iii) h(u) and uh′(u) be increasing functions in u ∈ [0, 1].
Then, for h( p) ∈ I+ and λ ∈ I+, we have

h( p) 	w h(q) ⇒ X p
n:n ≥st X

q
n:n,

where X p
n:n and X q

n:n are the nth order statistics from X p and Xq , respectively.

Proof As in the proof of Theorem 3.1, the partial derivative of F̄X p
n:n (x) with respect

to u j is given by

∂ F̄X p
n:n (x;λ)

∂u j
= F̄(x; λ j )

∂h−1(u j )

∂u j
ψ ′(1 − h−1(u j )F̄(x, λ j ))φ

′

⎛
⎝ n∑

j=1

ψ(1 − h−1(u j )F̄(x; λ j ))

⎞
⎠

123



140 E. Amini-Seresht et al.

= 1

h−1(u j )h′(h−1(u j ))

h−1(u j )F̄(x; λ j )

1 − h−1(u j )F̄(x; λ j )

φ
(
ψ(1 − h−1(u j )F̄(x; λ j ))

)
φ′ (ψ(1 − h−1(u j )F̄(x; λ j ))

)

×φ′
⎛
⎝ n∑

j=1

ψ(1 − h−1(u j )F̄(x; λ j ))

⎞
⎠ .

From the fact that φ′ is a non-positive function and from the assumption that h(p) is
increasing function in p, it follows that F̄X p

n:n (x;λ) is an increasing function. To prove
its Schur-concavity, from Lemma 2.6 and the fact that φ′ is a non-positive function, it
is sufficient to show that, for all i ≤ j ∈ I+,

∂ F̄X p
n:n (x; λ)

∂u j

sgn= 1

h−1(u j )h′(h−1(u j ))

h−1(u j )F̄(x; λ j )

1 − h−1(u j )F̄(x; λ j )

φ
(
ψ(1 − h−1(u j )F̄(x; λ j ))

)
φ′ (ψ(1 − h−1(u j )F̄(x; λ j ))

) ,

(1)

is an increasing function in u j . Note that from Assumption (ii), it follows that the first

part of (1) is decreasing and from the fact that F̄
F is a decreasing function, it follows

that
F̄
X
pi
i

(x)

F
X
pi
i

(x) = h−1(u j )F̄(x;λ j )

1−h−1(u j )F̄(x;λ j )
is a decreasing function. Assumption (i) implies the

increasing property of φ(x)
φ′(x) and on the other hand, from Assumptions (ii) and (iii) and

the fact that ψ is a decreasing function, we have

φ
(
ψ(1 − h−1(u j )F̄(x; λ j ))

)
φ′ (ψ(1 − h−1(u j )F̄(x; λ j ))

)

to be increasing and a non-positive function with respect to u j . Hence, the decreas-

ing property of the first and second parts of (1) follow, implying that
∂ F̄

X
p
n:n (x;λ)

∂u j
is

increasing in u j , as required. ��
It should be mentioned that the condition “φ be a log-concave function” in Proposition
3.3 holds for many Archimedean copulas. For example, the Gumbel-Hougaard copula
with generator

ψ(x) = e
1
θ
(1−ex ), 0 < θ < 1,

possesses this property. As the majorization order implies both weakly superma-
jorization and submajorization orders, we may wonder whether there is a relationship
between Condition (i) in Proposition 3.3 and Condition (i) in Theorem 3.1. In Condi-
tion (i) in Proposition 3.3, we have φ(x)

φ′(x) to be increasing in x ; on the other hand, from
Condition (i) in Theorem 3.1, we see that

xψ ′(1 − x)
sgn= x

1 − x

φ(ψ(1 − x))

φ′(ψ(1 − x))
. (2)
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Comparison of extreme order statistics from two sets of… 141

We that the first part of (2) is nonnegative and increasing in x while the second part is
non-positive and increasing function in x . Consequently, the product of the first and
second parts of (2) may not be increasing, and thus there exists a difference between
the two results.

In the following theorem, we consider two parallel systems under the same ran-
dom shocks, but with two different lifetime distributions, and then discuss the usual
stochastic order between the systems.

Theorem 3.4 Let X p = (Ip1X1, . . . , Ipn Xn) andY p = (Ip1Y1, . . . , IpnYn) be depen-
dent and non-identically distributed random vectors with Xi ’s and Yi ’s having the
same Archimedean copula with generator φ and distribution parameters λi ’s and
λ∗
i ’s, respectively, and Ip1 , . . . , Ipn being independent Bernoulli random variables

with parameters p = (p1, . . . , pn), that are independent of Xi ’s and Yi ’s. Let

(i) uψ ′(1 − u) be increasing in u ∈ (0, 1),
(ii) F̄(·; λ) be increasing and log-concave in λ.

Then, for λ ∈ D+, we have

λ
m	 λ∗ ⇒ Y p

n:n ≤st X
p
n:n,

where X p
n:n and Y q

n:n are the nth order statistics from X p and Y p, respectively.

Proof As in the proof of Theorem 3.1, we have

∂ F̄X p
n:n (x;λ)

∂λi
= pi

∂ F̄(x; λi )

∂λi
ψ ′(1 − pi F̄(x, λi ))φ

′
⎛
⎝ n∑

j=1

ψ(1 − p j F̄(x; λ j ))

⎞
⎠ .

(3)

So, we find that, for 1 ≤ i ≤ j ≤ n,

∂ F̄X p
n:n (x;λ)

∂λi
− ∂ F̄X p

n:n (x;λ)

∂λ j

=
[
pi

∂ F̄(x; λi )

∂λi
ψ ′(1 − pi F̄(x, λi )) − p j

∂ F̄(x; λ j )

∂λ j
ψ ′(1 − p j F̄(x, λ j ))

]

×φ′
⎛
⎝ n∑

j=1

ψ(1 − p j F̄(x; λ j ))

⎞
⎠

=: �2φ
′
⎛
⎝ n∑

j=1

ψ(1 − p j F̄(x; λ j ))

⎞
⎠ ,

where

�2 = pi
∂ F̄(x; λi )

∂λi
ψ ′(1 − pi F̄(x, λi )) − p j

∂ F̄(x; λ j )

∂λ j
ψ ′(1 − p j F̄(x, λ j )).
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Thus according to Lemma 2.5, it is sufficient to show that �2 is non-negative. For
this, we see that

�2 =
∂ F̄(x;λi )

∂λi

F̄(x, λi )
pi F̄(x, λi )ψ

′(1 − pi F̄(x, λi ))

−
∂ F̄(x;λ j )

∂λ j

F̄(x, λ j )
p j F̄(x, λ j )ψ

′(1 − p j F̄(x, λ j ))

≥
⎡
⎣ ∂ F̄(x;λi )

∂λi

F̄(x, λi )
−

∂ F̄(x;λ j )

∂λ j

F̄(x, λ j )

⎤
⎦ p j F̄(x, λ j )ψ

′(1 − p j F̄(x, λ j )) ≥ 0.

In the above, the first inequality follows fromAssumption (i) while the second inequal-
ity follows from Assumption (ii) and the fact that ψ ′ is a non-positive function. We
thus find that F̄X p

n:n (x) is schur-concave. Hence, the theorem. ��

It should be mentioned here that, in Theorem 3.2 of Balakrishnan et al. (2018) some
sufficient conditions have been provided in the sense of the usual stochastic ordering
for comparing X p

n:n , and Y p
n:n with independent non-negative random variables. They

especially showed that if F̄(·; λ) is decreasing and convex and h : [0, 1] → R++ is

a differentiable and decreasing function, then λ
w	 λ∗ ⇒ X p

n:n ≤st Y
p
n:n . Now, since

majorization order implies weakly supermajorization order, we can ask a question
whether the conditions in Theorem 3.4 and the conditions in Theorem 3.2 of Balakr-
ishnan et al. (2018) could overlap. However, in Theorem 3.4, contrary to Theorem 3.2
of Balakrishnan et al. (2018), there is no restriction on the function h and moreover the
conditions on F̄(·; λ) are also different in both theorems. Balakrishnan et al. (2018)
in Theorem 3.1 have been provide sufficient conditions for the usual stochastic order-
ing to hold between X p

n:n , and Y q
n:n with independent non-negative random variables.

They showed that if h(u) is a differentiable and strictly decreasing convex function

and F̄(·; λ) is decreasing in λ, then p
w	 q ⇒ X p

n:n ≤st Y
q
n:n . Now, using the same

argument in the above and comparing Theorem 3.1 of Balakrishnan et al. (2018) and
Theorem 3.1 here, we see that the conditions on h(u) and F̄(·; λ) are different in both
theorems, therefore, the different conditions are required to derive the comparisons
results in both theorems.

Theorem 3.5 Let X p = (Ip1X1, . . . , Ipn Xn) and Xq = (Iq1X1, . . . , Iqn Xn) be
dependent and non-identically distributed random vectors with Xi ’s having the
Archimedean copula with generator φ and Ip1 , . . . , Ipn and Iq1 , . . . , Iqn being inde-
pendent Bernoulli random variables with parameters p = (p1, . . . , pn) and q =
(q1, . . . , qn), respectively, that are independent of Xi ’s. Let

(i) uψ ′(1 − u) be increasing in u ∈ (0, 1),
(ii) F̄(·; λ) be decreasing in λ,
(iii) h(u) and uh′(u) be decreasing functions in u ∈ [0, 1].
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Then, for h(u) ∈ D+ and λ ∈ D+, we have

h( p)
w	 h(q) ⇒ X p

n−1:n ≤st X
q
n−1:n,

where X p
n−1:n and X q

n−1:n are the (n − 1)th order statistics from X p and Xq , respec-
tively.

Proof The distribution function of X p
n−1:n arising from X p can be expressed as

FX p
n−1:n

(x;λ) =
n∑

i=1

P(all X j ≤ x , j 
= i) − (n − 1)P(X1 ≤ x, . . . , Xn ≤ x)

=
n∑

i=1

φ

⎛
⎝ n∑

j=1

ψ(1 − p j F̄(x; λ j )) − ψ(1 − pi F̄(x; λi ))

⎞
⎠

−(n − 1)φ

⎛
⎝ n∑

j=1

ψ(1 − p j F̄(x; λ j ))

⎞
⎠

=
n∑

i=1

φ

⎛
⎝ n∑

j=1

ψ(1 − h−1(u j )F̄(x; λ j )) − ψ(1 − h−1(ui )F̄(x; λi ))

⎞
⎠

−(n − 1)φ

⎛
⎝ n∑

j=1

ψ(1 − h−1(u j )F̄(x; λ j ))

⎞
⎠ ,

where h(pi ) = ui , i = 1, . . . , n, and h−1 is the inverse function of h. Now, taking
derivative of FX p

n−1:n
with respect to u1, we get

∂FX p
n−1:n

(x;λ)

∂u1
= F̄(x; λi )

∂h−1(u1)

∂u1
ψ ′(1 − h−1(u1)F̄(x, λ1))(

n∑
k=2

φ′ (Ak(x)) − (n − 1)φ′ (B(x))

)
,

where, for all k = 1, . . . , n,

Ak(x) :=
n∑
j=1

ψ(1 − h−1(u j )F̄(x; λ j )) − ψ(1 − h−1(uk)F̄(x; λk))

and

B(x) =
n∑
j=1

ψ(1 − h−1(u j )F̄(x; λ j )).
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Using the fact that 0 ≤ Ak(x) ≤ B(x), k = 1, . . . , n, we get φ′ (Ak(x)) ≤ φ′ (B(x)).
Now, by using the fact that ψ ′ is a non-positive function and also Assumption (iii), we

observe that
∂F

X
p
n−1:n

(x;λ)

∂ui
≥ 0, which in turn implies that F̄X p

n−1:n
(x;λ) is a decreasing

function in ui , i = 1, . . . , n. So, according to Lemma 2.6, it is enough to show that
the function FX p

n−1:n
(x) is Schur-concave, for obtaining the desired result. For this

purpose, for 1 ≤ i < j ≤ n and u,λ ∈ D+, we show that

∂FX p
n−1:n

(x;λ)

∂ui

is decreasing in ui . We first note that

(
n∑

k=2

φ′ (Ak(x)) − (n − 1)φ′ (B(x))

)
−

⎛
⎝ n∑

k 
=2

φ′ (Ak(x)) − (n − 1)φ′ (B(x))

⎞
⎠

= φ′ (A2(x)) − φ′ (A1(x))

= ψ(1 − h−1(u1)F̄(x; λ1)) − ψ(1 − h−1(u2)F̄(x; λ2))

≤ 0, (4)

where the inequality in (4) follows from the assumptions that h(p) is decreasing and
F̄(·; λ)(x) is decreasing in λ. So, we first have

∂FX p
n−1:n

(x;λ)

∂u1
−

∂FX p
n−1:n

(x;λ)

∂u2
= F̄(x; λ1)

∂h−1(u1)

∂u1
ψ ′(1 − h−1(u1)F̄(x, λ1))

×
(

n∑
k=2

φ′ (Ak(x)) − (n − 1)φ′ (B(x))

)

−F̄(x; λ2)
∂h−1(u2)

∂u2
ψ ′(1 − h−1(u2)F̄(x, λ2))

×
⎛
⎝ n∑

k 
=1

φ′ (Ak(x)) − (n − 1)φ′ (B(x))

⎞
⎠

≤
[
F̄(x; λ1)

∂h−1(u1)

∂u1
ψ ′(1 − h−1(u1)F̄(x, λ1))

− F̄(x; λ2)
∂h−1(u2)

∂u2
ψ ′(1 − h−1(u2)F̄(x, λ2))

]

×
(

n∑
k=2

φ′ (Ak(x)) − (n − 1)φ′ (B(x))

)

= h1,2(x)

(
n∑

k=2

φ′ (Ak(x)) −(n−1)φ′ (B(x))

)
, (5)

123



Comparison of extreme order statistics from two sets of… 145

where the inequality follows from (4) and

h1,2(x) = F̄(x; λ1)
∂h−1(u1)

∂u1
ψ ′(1 − h−1(u1)F̄(x, λ1))

−F̄(x; λ2)
∂h−1(u2)

∂u2
ψ ′(1 − h−1(u2)F̄(x, λ2)).

Note that, due to the fact that φ′ (Ai (x)) ≤ φ′ (B(x)), the sign of (5) is equivalent to
the sign of hi, j (x). Now, to obtain the desired result, it is enough to show that hi, j (x)
is non-negative. We have

h1,2(x) =
∂h−1(u1)

∂u1

h−1(u1)
h−1(u1)F̄(x; λi )ψ

′(1 − h−1(u1)F̄(x, λ1))

−
∂h−1(u2)

∂u2

h−1(u2)
h−1(u2)F̄(x; λ2)ψ

′(1 − h−1(u2)F̄(x, λ2))

= 1

h−1(u1)h′ (h−1(u1)
)h−1(u1)F̄(x; λ1)ψ

′(1 − h−1(u1)F̄(x, λ1))

− 1

h−1(u2)h′ (h−1(u2)
)h−1(u2)F̄(x; λ2)ψ

′(1 − h−1(u2)F̄(x, λ2)),

from which, we readily see that

1

h−1(u1)h′ (h−1(u1)
) ≤ 1

h−1(u2)h′ (h−1(u2)
) ≤ 0. (6)

Using the fact that ψ ′ is negative and also Assumptions (i) and (ii), we get

h−1(u1)F̄(x; λ1)ψ
′(1 − h−1(u1)F̄(x, λ1))

≤ h−1(u2)F̄(x; λ2)ψ
′(1 − h−1(u2)F̄(x, λ2)) ≤ 0. (7)

Upon combining (6) and (7), we see that h1,2(x) is non-negative. From these obser-
vations, according to Lemma 2.4, it follows that FX p

n−1:n
(x) is Schur-concave. This, in

turn, guarantees that F̄X p
n−1:n

(x) is Schur-convex. Then, the desired result follows by
Lemma 2.6. ��

Remark 3.6 As mentioned earlier following Theorem 3.1, it is necessary to use some
link function for the model parameter p. Hence, as we require h(u) to be a decreasing
function in u, it would be convenient to consider any survival function in [0, 1] and
suitably scale it to make some choices for link functions. For example, using an
exponential survival function, we could come up with h(p) = e−θ p

1−e−θ for θ ∈ R
+ as

such a choice for link function
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The following theorem is concerning series systems and it provides sufficient con-
ditions for comparing the lifetimes of to series systems with respect to the usual
stochastic order.

Theorem 3.7 Let X p = (Ip1X1, . . . , Ipn Xn) and Xq = (Iq1X1, . . . , Iqn Xn) be
dependent and non-identically distributed random vectors with Xi ’s having the
Archimedean copula with generator φ, and Ip1 , . . . , Ipn and Iq1 , . . . , Iqn being
independent Bernoulli random variables with parameters p = (p1, . . . , pn) and
q = (q1, . . . , qn), respectively, that are independent of Xi ’s. Let

(i) uψ ′(u) be increasing in u ∈ (0, 1),
(ii) F̄(·; λ) be decreasing in λ,
(iii) h(u) be a decreasing function and uh′(u) be a decreasing function in u ∈ [0, 1].
Then, for h(u) ∈ D+ and λ ∈ D+, we have

h( p)
w	 h(q) ⇒ X p

1:n ≤st X
q
1:n,

where X p
1:n and X q

1:n are the smallest order statistics from X p and Xq , respectively.

Proof The distribution function of X p
1:n arising from X p can be expressed as

FX p
1:n

(x;λ) = 1 − φ

(
n∑

i=1

ψ
(
pi F̄(x; λi )

))
.

Let us set ui = h(pi ), for i = 1, . . . , n. Then, for establishing the desired result,
according to Lemma2.6, it is enough to show that the function FX p

1:n
(x;λ) is increasing

and Schur-concave with respect to ui . For this purpose, by taking derivative with
respect to ui , we get

∂FX p
1:n

(x;λ)

∂ui
= −F̄(x; λi )

∂h−1(ui )

∂ui
ψ ′(h−1(ui )F̄(x, λi ))φ

′

×
(

n∑
i=1

ψ
(
h−1(ui )F̄(x; λi )

))
,

which is observed to be a non-negative function. This, in turn, implies that FX p
1:n

(x;λ)

is a increasing function with respect to ui . As in the proof of Theorem 3.5, we obtain,
for 1 ≤ i < j ≤ n and u,λ ∈ D+, that

∂FX p
1:n

(x;λ)

∂ui
−

∂FX p
1:n

(x;λ)

∂u j
= ηi, j (x)φ

′
(

n∑
i=1

ψ
(
h−1(ui )F̄(x; λi )

))

is a non-positive function, where

ηi, j (x) = F̄(x; λ j )
∂h−1(u j )

∂u j
ψ ′(h−1(u j )F̄(x, λ j ))
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−F̄(x; λi )
∂h−1(ui )

∂ui
ψ ′(h−1(ui )F̄(x, λi ))

= 1

h−1(u j )h′ (h−1(u j )
)h−1(u j )F̄(x; λ j )ψ

′(h−1(u j )F̄(x, λ j ))

− 1

h−1(ui )h′ (h−1(ui )
)h−1(ui )F̄(x; λi )ψ

′(h−1(ui )F̄(x, λi )).

As φ′ is a non-positive function, it is sufficient to show that ηi, j (x) is a non-negative
function. From Assumptions (i) and (ii), for all 1 ≤ i < j ≤ n and u,λ ∈ D+, we
obtain

h−1(ui )F̄(x; λi )ψ
′ (h−1(ui )F̄(x, λi )

)

≤ h−1(u j )F̄(x; λ j )ψ
′ (h−1(u j )F̄(x, λ j )

)
≤ 0, (8)

and from Assumption (iii), we have

1

h−1(ui )h′ (h−1(ui )
) ≤ 1

h−1(u j )h′ (h−1(u j )
) ≤ 0. (9)

Upon combining (8) and (9), we see that ηi, j (x) is non-positive. From these obser-
vations, according to Lemma 2.4, we observe that FX p

n−1:n
(x) is Schur-concave. This,

in turn, guarantees that F̄X p
n−1:n

is Schur-convex. Then, the desired result follows by
Lemma 2.6. ��

It is important to mention that the condition “xψ ′(x) be an increasing function” in
Theorem 3.7 is quite general and holds for many known Archimedean copulas. For
example, we can consider

• the Clayton copula with generator φ(x) = (1 + θx)− 1
θ for θ ≥ 1. Then, ψ(x) =

1
θ
(t−θ − 1) with ψ ′(x) = −x−θ−1, and so

d

dx

(
xψ ′(x)

) = 1

xθ+1 ,

which reveals that xψ ′(x) is an increasing function;

• the Gumbel copula with generator function φ(x) = e−x
1
θ for θ ∈ [0,∞). Then,

it follows that

d

dx
(xψ ′(x)) = θ(θ − 1)

(− ln(x))θ−1

x
,

which reveals that xψ ′(x) is increasing, for θ ≥ 1;
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• the Ali–Mikhail–Haq copula with generator function φ(x) = 1−θ
eθ−θ

for θ ∈
[−1, 1]. Then, we can see that

d

dx
(xψ ′(x)) = θ(θ − 1)

(1 − θ(1 − x))2
,

which reveals that xψ ′(x) is increasing, for θ ∈ (0, 1).

Theorem 3.8 Let X p = (Ip1X1, . . . , Ipn Xn) andY p = (Ip1Y1, . . . , IpnYn) be depen-
dent and non-identically distributed random vectors with Xi ’s and Yi ’s having the
same Archimedean copula with generator φ and distribution parameters λi ’s and
λ∗
i ’s, respectively, and Ip1 , . . . , Ipn being independent Bernoulli random variables

with parameters p = (p1, . . . , pn), that are independent of Xi ’s and Yi ’s. Let

(i) φ be a log-concave function,
(ii) F̄(·; λ) be increasing in λ and a log–concave function.

Then, for p ∈ D+ and λ ∈ D+, we have

λ 	w λ∗ ⇒ X p
1:n ≤st X

q
1:n,

where X p
1:n and X q

1:n are the smallest order statistics from X p and Xq , respectively.

Proof The distribution function of X p
1:n arising from X p can be expressed as

FX p
1:n

(x;λ) = 1 − φ

(
n∑

i=1

ψ
(
pi F̄(x; λi )

))
.

Then, we have

∂FX p
n:n (x;λ)

∂λi
= −pi

∂ F̄(x; λi )

∂λi
ψ ′(pi F̄(x, λi ))φ

′
⎛
⎝ n∑

j=1

ψ(p j F̄(x; λ j ))

⎞
⎠ . (10)

As φ′(u) and ψ ′(u) are non-positive functions, from Assumption (ii), we see that
∂ F̄

X
p
n:n (x;λ)

∂ui
≤ 0. This reveals that FX p

n:n (x;λ) is a decreasing function with respect to λ

or, equivalently, F̄X p
n:n (x;λ) is an increasing function in λ. Hence, to obtain the desired

result from Lemma 2.5, it is enough to show that FX p
n:n (x;λ) is Schur-concave. For

this purpose, (10) can be rewritten as

∂FX p
n:n (x;λ)

∂λi
= −

∂ F̄(x;λi )
∂λi

F̄(x; λi )

φ
(
ψ(pi F̄(x, λi ))

)
φ′ (ψ(pi F̄(x, λi ))

)φ′
⎛
⎝ n∑

j=1

ψ(p j F̄(x; λ j ))

⎞
⎠ .
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So, we find that, for 1 ≤ i ≤ j ≤ n, p ∈ D+ and λ ∈ D+,

∂ F̄X p
n:n (x;λ)

∂λi
− ∂ F̄X p

n:n (x;λ)

∂λ j

=
∂ F̄(x;λ j )

∂λ j

F̄(x; λ j )

φ
(
ψ(p j F̄(x, λ j ))

)
φ′ (ψ(p j F̄(x, λ j ))

)φ′
⎛
⎝ n∑

j=1

ψ(p j F̄(x; λ j ))

⎞
⎠

−
∂ F̄(x;λi )

∂λi

F̄(x; λi )

φ
(
ψ(pi F̄(x, λi ))

)
φ′ (ψ(pi F̄(x, λi ))

)φ′
⎛
⎝ n∑

j=1

ψ(p j F̄(x; λ j ))

⎞
⎠

=: 
φ′
⎛
⎝ n∑

j=1

ψ(p j F̄(x; λ j ))

⎞
⎠ ,

where


 =
∂ F̄(x;λ j )

∂λ j

F̄(x; λ j )

φ
(
ψ(p j F̄(x, λ j ))

)
φ′ (ψ(p j F̄(x, λ j ))

) −
∂ F̄(x;λi )

∂λi

F̄(x; λi )

φ
(
ψ(pi F̄(x, λi ))

)
φ′ (ψ(pi F̄(x, λi ))

) .

As φ′ is a non-positive function, it suffices to show that 
 is non-negative. We now
observe that


 ≥
⎡
⎣

∂ F̄(x;λ j )

∂λ j

F̄(x; λ j )
−

∂ F̄(x;λi )
∂λi

F̄(x; λi )

⎤
⎦ φ

(
ψ(pi F̄(x, λi ))

)
φ′ (ψ(pi F̄(x, λi ))

) ≥ 0,

where thefirst inequality follows fromAssumption (i) implying the increasing property
of φ(x)

φ′(x) which the second inequality follows fromAssumption (ii). This completes the
proof of the theorem. ��

4 Numerical examples

In this section, we present some numerical examples to illustrate the results established
in the last section. It should be mentioned that some of the well known Archimedean
copulas satisfy the condition that uψ ′(1 − u) is increasing or decreasing in u. For
example, consider the Ali-Mikhail-Haq (AMH) copula with generator φ(u) = 1−θ

eu−θ
,

for θ ∈ [−1, 1], for which ψ(u) = ln
( 1−θ+θu

u

)
. In this case, we find

uψ ′(1 − u) = (1 − θ)u

(1 − u) (1 − θ + θ(1 − u))

to be increasing in u for θ ∈ [0, 1), and decreasing in u for θ ∈ [−1, 0). As another
example, let us consider the Clayton copulawith generator inverseψ(u) = 1

θ
(u−θ −1)
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Fig. 1 Plots of survival functions of X p
3:3 (brown-down) and Y q

3:3 (blue-up) in Example 4.1 (colour figure
online)

for θ ∈ [−1,∞) − {0}. In this case, we see that

uψ ′(1 − u) = u

(1 − u)θ+1

is increasing in u for all θ ∈ [−1,∞].
Example 4.1 Consider the Clayton copula described by the generator ψθ(x) =
1
θ

(
1
xθ − 1

)
, for θ > 0, such that xψ ′

θ (1 − x) is increasing in x ∈ (0, 1). Sup-

pose Xi and Yi , i = 1, 2, 3, are exponential random variables with mean 1
λi

linked by an Archimedean copula with generator function ψθ and scale parameters
(λ1, λ2, λ3) = (5, 3, 2). Assume that h(p) = √

p, (p1, p2, p3) = (0.49, 0.09, 0.04)

and (q1, q2, q3) = (0.81, 0.04, 0.01). It is then easy to see that h( p)
m	 h(q). For

θ = 3, the survival functions of X p
3:3 and Y

q
3:3 have been plotted in Fig. 1, which does

show that X p
3:3 ≤st Y

q
3:3, thus verifying the result in Theorem 3.1.

Example 4.2 Under the setup of Example 4.1, suppose Xi and Yi , i = 1, 2, 3, are
exponential random variables with mean 1

λi
, linked by an Archimedean copula with

generator functionψθ and scale parameters (λ1, λ2, λ3) = (7, 3, 2) and (λ∗
1, λ

∗
2, λ

∗
3) =

(7, 4, 1), respectively. Assume that (p1, p2, p3) = (0.9, 0.5, 0.2). It is then easy to

see that (λ1, λ2, λ3)
m	 (λ∗

1, λ
∗
2, λ

∗
3) and also that the conditions of Theorem 3.4 are

satisfied. For θ = 4, the survival functions of X p
3:3 and Y

q
3:3 have been plotted in Fig. 2,

which does show that X p
3:3 ≤st Y

q
3:3, thus verifying the result in Theorem 3.4.

The next example provides an illustration of the result in Theorem 3.5.
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Fig. 2 Plots of survival functions of X p
3:3 (brown-up) and Y q

3:3 (blue-down) in Example 4.2 (colour figure
online)

Fig. 3 Plots of survival functions of X p
2:3 (brown-down) and Y q

2:3 (blue-up) in Example 4.3 (colour figure
online)

Example 4.3 Consider the multivariate AMH copula described by the generator
ψ(u) = ln

( 1−θ+θu
u

)
, for θ ∈ (0, 1], such that uψ ′

θ (1− u) is increasing in u ∈ (0, 1).
Assume that Xi and Yi , i = 1, 2, 3, are Gamma random variables with common shape
parameter 2 and common scale parameter 1

λ
, linked by an AMH copula with gen-

erator function ψθ . Assume that h(p) = e−p, p ∈ [0, 1], (h(p1), h(p2), h(p3)) =
(e−0.1, e−0.2, e−0.6) and (h(q1), h(q2), h(q3)) = (e−0.2, e−0.3, e−0.7). It is then easy

to check that (h(p1), h(p2), h(p3))
w	 (h(q1), h(q2), h(q3)). It can also be verified

that the conditions of Theorem 3.5 are satisfied in this case. For θ = 0.8, the sur-
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vival functions of X p
2:3 and Y q

2:3 have been plotted in Fig. 3, which does show that
X p
2:3 ≤st Y

q
2:3, thus verifying the result of Theorem 3.5.

5 Concluding remarks

In this work, we have discussed some comparisons of two k-out-of-n systems compris-
ing heterogeneous dependent components experiencing random shocks. Formodelling
the dependence between the components, we have used Archimedean copulas for the
joint distribution of the component lifetimes. We have then provided some sufficient
conditions on the distributions of components’ lifetimes and the generator of the
Archimedean copula and on the random shocks for comparing the lifetimes of two
systems with respect to the usual stochastic order. We have also presented some illus-
trative examples. It will naturally be of interest to extend the results established here
for some other stochastic orders such as hazard rate, reversed hazard rate, likelihood
ratio and dispersive orders. We are currently working in this direction and hope to
report the findings in a future paper.
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