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Abstract
The knowledge of the Fisher information is a fundamental tool to judge the quality of
an experiment. Unlike in linear and generalized linear models without random effects,
there is no closed form for the Fisher information in the situation of generalized linear
mixed models, in general. To circumvent this problem, we make use of the quasi-
information in this paper as an approximation to the Fisher information. We derive
optimal designs based on the V-criterion, which aims tominimize the average variance
of prediction of themean response. For this criterion, we obtain locally optimal designs
in two specific cases of a Poisson straight line regression model with either random
intercepts or random slopes.

Keywords Fisher information · Poisson regression · Quasi information · Random
effects · V-optimality

1 Introduction

In awide range of regression experiments, the responsemay be observed as countmea-
surements which can bemodeled by the Poisson distribution. An important application
of the Poisson regression model is in cancer research. There, the clonogenic assay is
a technique that is used to determine the effect of an anticancer drug on proliferating
tumor cells. In these studies, a dose-response curve can be fitted to determine how
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much the dosage of a drug decreases the number of colony formations over different
concentrations of the particular drug. Then, often the number of colonies is assumed
to be Poisson distributed, and thus a Poisson regression model can be used to evaluate
the results of the dose-response experiment (Minkin 1993).

The concept of generalized linear models (GLM; McCullagh and Nelder 1989)
provides a fundamental idea to model such data. However, in statistical studies, the
data set often reveals features that cause these models to be insufficient, in particular
when observations are correlated that can be observed in clustered measurements
(e.g., hierarchical data structures and longitudinal studies). To adjust for this clustering,
generalized linear mixedmodels (GLMM;McCulloch and Searle 2001) can be used to
generalize the GLMs by including random clusters and/or subject effects in the model
equation to account for dependence in the data. Inmany applications, it is assumed that
the random effects follow a normal distribution. In that case, it is well-known that, in
general, the marginal likelihood of the GLMM cannot be expressed analytically in an
explicit form. Hence, the maximum-likelihood (ML) estimation of the parameters has
to be approximated numerically (Davidian and Giltinan 1995). Consequently, there
is not sufficient knowledge about the statistical behavior of the ML estimators for
GLMMs, which could serve as the basis for the design of experiments. Commonly
the inverse of the Fisher information matrix is used to measure the performance of
the ML estimator, at least in terms of its asymptotic properties. However, also the
Fisher information cannot be expressed analytically in an explicit form. To resolve
this, there are two different approaches to replacing the Fisher informationmatrix. One
common approach is a direct approximation of the Fisher Information, for example,
by linearization of the response function (see Mielke 2012). But Mielke and Schwabe
(2010) showed that these Fisher information approximationsmight often be unreliable.

Another approach is to use alternative methods of estimation in GLMMs like Gen-
eralized Estimation Equations (GEE, see McCulloch and Searle 2001; Cameron and
Trivedi 2013). In particular, the concept of quasi-likelihood can be identified as a
GEE. It may serve as an attractive method to generate an efficient estimation of the
parameters without using the full distributional assumptions. Niaparast (2009) used
the quasi-likelihood method to obtain optimal designs in a Poisson regression model
with random intercepts. There he employed results of Schmelter (2007) and proved
for a range of criteria that an optimal design on an individual level is also optimal for
the population parameters. Niaparast and Schwabe (2013) derived D-optimal designs
for a Poisson regression model with random slope. In this article, we extend the
results of Niaparast (2009) and Niaparast and Schwabe (2013) to obtain V-optimal
designs in some Poisson regression models with random effects. The V-optimality
criterion is a prediction-based optimality criterion that minimizes the average pre-
diction variance of the estimated mean response. The V-optimality criterion is also
often called I-optimality (Atkinson et al. 2007), Q-optimality (Bandemer 1977), or
IMSE-optimality (Entholzner et al. 2005) in the literature.

As in all non-linear situations, there is a problem in finding optimal designs because
of the dependence of the quasi-information matrix on unknown model parameters.
Therefore, the local approach is adopted for which locally optimal designs are deter-
mined for prespecified nominal values of the parameters.
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The structure of the paper is organized as follows: We first introduce the Poisson
regression model with random effects in Sect. 2 and derive the quasi-information
matrix for this model. The V-criterion is introduced in Sect. 3. In Sect. 4, we obtain
V-optimal designs for two specific cases of straight line Poisson regression with either
random intercepts or random slopes. Finally, the efficiency of a standard design is
examined in a case study.

2 Model specification, information and design

In a Poisson regression model with random coefficients and log link, on the unit level
it is assumed that the observation Yi j of unit i , i = 1, ..., n, at the j th replication, j =
1, ...,mi , at the experimental setting xi j from the experimental regionX is distributed
according to a Poisson distribution with intensity λi j = exp( f T(xi j )bi ) where, in the
linear component f T(xi j )bi , f = ( f0, f1, · · · , f p−1)

T and bi = (b0,i , · · · , bp−1,i )
T

are the p-dimensional vectors of known regression functions and individual coef-
ficients, respectively. Conditional on the value of the individual coefficients, the
observations Yi j are assumed to be independent.

On the population level, the individual coefficients bi are assumed to be random
iid multivariate normal with population mean parameter β = (β0, · · · , βp−1)

T and
variance covariance matrix � (see McCulloch and Searle 2001). For simplification,
we further assume that � is known. Then, the marginal mean of the observation Yi j
is given by

E(Yi j ) = μ(xi j )

where μ(x) = exp( f T(x)β + σ(x, x)/2) is the mean function and σ(x, x ′) =
f T(x)� f (x ′) is the dispersion function. Also, the marginal variance of the obser-
vation Yi j can be calculated as

Var(Yi j ) = μ(xi j ) + μ(xi j )
2c(xi j , xi j )

where c(x, x ′) = exp(σ (x, x ′)) − 1 is the variance correction term.
Further the covariance of the observations within a unit is cov(Yi j ,Yik) =

μ(xi j )μ(xik)c(xi j , xik). Hence for the vector Y i = (Yi1, · · · ,Yimi )
T, the mean and

the variance covariance matrix of Y i are given by E(Y i ) = (μ(xi1), · · · , μ(ximi ))
T

and

Cov(Y i ) = Ai + AiC i Ai ,

where Ai = diag{μ(xi j )} j=1,··· ,mi is a mi ×mi diagonal matrix with the observation
means μ(xi j ) as its non-zero, diagonal entries and C i = (c(xi j , xik)) j,k=1,··· ,mi is the
mi × mi matrix of variance correction terms. As AiC i Ai is the covariance matrix of
the conditional expectation of Y i given bi and as Ai is symmetric and non-singular,
the matrix C i of variance correction terms is non-negative definite. The variance
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covariance matrix Cov(Y i ) depends on the population location parameters β only
through the mean function.

Because of the integral in the marginal density with respect to the distribution of the
random effects, it is not possible to derive a closed form for the likelihood function and
the Fisher information. As an alternative approach, we will use the quasi-likelihood
method.

By applying the quasi-likelihood approach, the amount of information contributed
by the observations on the individual level can be described by the individual quasi-
information matrixMi,β ,

Mi,β = FT
i

(
A−1
i + C i

)−1
Fi , (1)

where Fi = (
f (xi1), · · · , f (ximi )

)T and, on the right hand side, only Ai depends
on β. Then on the population level, the quasi-information matrix is given by Mβ =∑n

i=1Mi,β . For more details, see McCullagh and Nelder (1989, Chap. 9).
On the individual level, we define individual approximate designs ξi as

ξi =
{

xi1, · · · , xisi
wi1, · · · , wisi

}

where xi1, · · · , xisi are mutually distinct experimental settings from the design region
X and wi j = mi j/mi are the proportions of observations taken at xi j , j = 1, · · · , si ,∑si

j=1 wi j = 1. Then, for the design ξi , the individual quasi-information matrix (1)
can be represented as

Mβ(ξi ) = FT
ξi

(
A−1

ξi
+ Cξi

)−1
Fξi , (2)

where Fξi = (
f (xi1), · · · , f (xisi )

)T, Aξi = diag(miwi jμ(xi j )) j=1,··· ,si and Cξi =
(c(xi j , xik)) j,k=1,··· ,si (see Niaparast and Schwabe 2013).

Similarly, we define population approximate designs ζ by

ζ =
{

ξ1, · · · , ξq
ν1, · · · , νq

}
,

where ξl , l = 1, · · · , q, are mutually distinct individual designs and νl > 0,∑q
l=1 νl = 1, are the proportions of individuals that are observed under the correspond-

ing individual designs. Based on the fact that Cξi is non-negative definite, Niaparast
and Schwabe (2013) proved the convexity of the individual quasi-information. Fol-
lowing the argumentation in Schmelter (2007), it is sufficient to consider the class of

single group designs, ζ =
{

ξ

1

}
, where all individuals are observed under the same

individual design, to obtain an optimal design in the class of all population designs,
when for all units the same number mi = m of observations are taken. Hence, we
have to optimize designs only on the individual level. To simplify notation, we may,
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thus, omit the index i in the individual design, ξ =
{

x1, · · · , xs
w1, · · · , ws

}
throughout the

remainder of the text.
Ourmain interest in this paper is to find optimal designs for estimating the predicted

response averagedover the design regionwithminimal variance. For the presentmodel,
the predictor μ̂x of the mean response at a given point x is given by

μ̂x = exp
(
f T(x)β̂ + σ(x, x)/2

)
,

where β̂ is the quasi-likelihood estimator of β.
The mean response μ(x) and, hence, its predictor μ̂x does not have a linear struc-

ture. Therefore, the variance of the predictor has to reflect the non-linearity, and the
asymptotic variance of the predictor has to be obtained by the delta method.

Lemma 1 The asymptotic varianceAvar(μ̂x ) of the predictor μ̂x of the mean response
μ(x) can be represented as

Avar(μ̂x ) = μ2(x) f T(x)M−1
β (ξ) f (x).

Proof According to McCullagh (1983), β̂ is asymptotically normal with mean β

and asymptotic covariance matrix Avar(β̂) = M−1
β (ξ) equal to the inverse of

the quasi-information matrix. Let g(β) = μ(x) = exp
(
f T(x)β + σ(x, x)/2

)
.

By the delta method, g(β̂) is asymptotically normal with asymptotic variance
∇g(β)TAvar(β̂)∇g(β), where ∇g(β) = exp

(
f T(x)β + σ(x, x)/2

)
f (x) = μ(x)

f (x) is the the gradient vector of continuous partial derivatives of g. Hence, the state-
ment of the lemma follows.

3 Optimality criterion and equivalence theorem

We consider the V-criterion

φ(ξ) =
∫

Avar(μ̂x )ν(dx),

of the averaged asymptotic variance for the mean response with respect to a measure
ν on the design region X . Commonly this measure ν is chosen to be uniform on
X (continuous or discrete depending on the structure of X ). For example, if x is a
continuous variable and ν is uniform on the interval X = [a, b], then the V-criterion
can be written as

φ(ξ) =
∫ b

a
Avar(μ̂x )dx .

More generally, the measure ν may be any (finite) measure on X or, in the case of
extrapolation, it might be supported by an even larger set X ′ of settings x for which
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the model equations are assumed to be valid. A design ξ∗ will be called V-optimal
if it minimizes the V-criterion φ(ξ). Note that here, as in all nonlinear models, the
V-criterion depends on the nominal value of the parameter vector β and, hence, the
V-optimal design will be a local solution (at β). In the appendix, it is shown that the
V-criterion is a convex function in ξ .

For the given model, the V-criterion can be represented as

φ(ξ) =
∫

Avar(μ̂x )ν(dx) =
∫

μ2(x) f T(x)M−1
β (ξ) f (x)ν(dx)

=
∫

tr
(
M−1

β (ξ)μ2(x) f (x) f T(x)
)

ν(dx) = tr
(
M−1

β (ξ)B
)

, (3)

where the matrix B = ∫
μ2(x) f (x) f T(x)ν(dx) does not depend on ξ .

The V-criterion and, hence, the V-optimal design depend on β through the mean
functionμ(x). These designs will be called locally optimal (at β). Finding a V-optimal
design requires knowledge of the values of the parameters. A common approach is to
use an initial guess of the parameter values as nominal values which will be adopted
here.

An important tool for checking the optimality of a design ξ∗ for any convex and
differentiable design criterion, is the equivalence theorem. This equivalence theorem
has been originally proven by Kiefer and Wolfowitz (1960) for linear models in the
case of D-optimality. The equivalence theorem has been extended to nonlinear models
by White (1973) and to general convex criteria by Whittle (1973). A fundamental
ingredient in the equivalence theorem is the sensitivity function, which constitutes
the non-constant part of the directional derivative and plays a major role in optimal
design theory (see Atkinson et al. 2007). The equivalence theorem for V-optimality
in the given model is considered in the following theorem. For this we introduce the
vector cξ,x = (c(x j , x)) j=1,...,s of joint (correlation) correction terms for the settings
x1, ..., xs of a design ξ with a further setting x . This is part of the sensitivity function

d(x, ξ) = mμ(x)

(
f (x) − FT

ξ

(
A−1

ξ + Cξ

)−1
cξ,x

)T

M−1
β (ξ)BM−1

β (ξ)

(
f (x) − FT

ξ

(
A−1

ξ + Cξ

)−1
cξ,x

)
.

Theorem 1 ξ∗ is V-optimal for the Poisson regression model with random effects if
(and only if)

d(x, ξ∗) ≤ tr
(
M−1

β (ξ∗)B
)

− tr

(
M−1

β (ξ∗)FT
ξ∗

(
A−1

ξ∗ + Cξ∗
)−1

Cξ∗
(
A−1

ξ∗ + Cξ∗
)−1

Fξ∗M−1
β (ξ∗)B

)
,

(4)

for all x ∈ X .
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Moreover, if ξ∗ is V-optimal, then equality holds in (4) for all support points x of ξ∗.

The proof is given in the appendix.

4 Poisson regression with a single linear component

Often in dose-response experiments the mean response curve can be represented by a
straight line relationship. In this case, a simple Poisson regression model with random
effects may be fitted.

In this section, we are going to investigate two types of a straight line Poisson
regression model with p = 2 population parameters: The simple Poisson regression
model with random intercepts and the simple Poisson regression model with random
slopes. These models can be characterized by their intensities (mean response)

λi j = exp(b0,i + β1xi j ) (5)

and

λi j = exp(β0 + b1,i xi j ), (6)

respectively. In the former, the individual coefficients have only influence on the overall
level of the response, and hence b0,i expresses as the random intercept with mean β0
and the variance σ 2. In the context of dose-response curves in cancer research, it
is reasonable to assume that the slope β1 is negative, because the purpose of using
the drug is to eradicate the tumor cells. The dosage x will commonly measured on
a standardized scale, x ∈ [0, 1] or x ∈ {0, 1}, where x = 0 indicates placebo or a
control level.

It can be shown that in models with random intercepts the linear optimality criteria
do not depend on the random variation of the intercept whereas this may be in chal-
lenge when the effect of the explanatory variable varies across individuals. The latter
situation is described in (6) in which b1,i is the random slope effect with mean β1 and
variance σ 2.

For these twomodels, the vector of regression functions is given by f (x) = (1, x)T

and β = (β0, β1)
T . In this case the weighting matrix B in the V-criterion can be

written as B =
(
B0 B1
B1 B2

)
, where Bk = ∫

X xkμ2(x)ν(dx) denotes the kth moment

with respect to μ2(·)dν, k = 0, 1, 2.

4.1 Random intercepts

We first consider the Poisson model with random intercepts, where b0,i ∼ N (β0, σ
2)

and the slope b1,i = β1 for all units i is a fixed effect. This condition can be described

formally by the dispersion matrix � =
(

σ 2 0
0 0

)
. The dispersion function and the
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variance correction term are σ(x, x ′) = σ 2 and c(x, x ′) = exp(σ 2) − 1, respectively.
In this case the functions σ(x, x ′) and c(x, x ′) are constant on x .

Theorem 2 For the Poisson regression with random intercept, the V-optimal design
only depends on the slope β1 and does not depend on the mean intercept β0, the
variance σ 2 of the random intercept, and the number m of observations per unit.
Moreover, the V-optimal design for the random intercepts model coincides with that
for the corresponding fixed effects model without random effects.

Proof According to Niaparast (2010, Lemma 4.1.3), the information matrix can be

represented as Mβ(ξ) =
(
(FT

ξ Aξ Fξ )
−1 + U

)−1
, where U =

(
exp(σ 2) − 1 0

0 0

)

does not depend on ξ . Then

φ(ξ) = tr
(
M−1

β (ξ)B
)

= tr
(
(FT

ξ Aξ Fξ )
−1B

)
+ tr(UB).

The last expression does not depend on the design and can be ignored. Now let

μ̌(x) = exp(β1x), Ǎξ = diag{w j μ̌(x j )} j=1,··· ,s , and B̌ =
(
B̌0 B̌1

B̌1 B̌2

)
with B̌k =

∫
xkμ̌2(x)ν(dx), k = 0, 1, 2. Then,

tr
(
(FT

ξ Aξ Fξ )
−1B

)
= exp(β0 + σ 2/2)

m
tr

(
(FT

ξ Ǎξ Fξ )
−1 B̌

)
,

andminimizationofφ(ξ) is equivalent tominimizationof φ̌(ξ) = tr
(
(FT

ξ Ǎξ Fξ )
−1 B̌

)

which does not depend on β0, σ 2 and m. Furthermore,

φ(ξ) = aφ0(ξ) + c, (7)

where a = exp(σ 2/2) and c = tr(UB) = exp(2β0 +σ 2)(exp(σ 2)−1)B̌0. Obviously

a and c do not depend on ξ and φ0(ξ) = exp(β0)

m
φ̌(ξ) can be identified as the

V-criterion in the corresponding fixed effects model without random intercepts by
formally letting σ 2 = 0. This proves the theorem.

Example 1 (Binary regressor). We consider the simple Poisson regression model with
random intercepts and binary predictor x ∈ X = {0, 1}, where x = 1 denotes treat-

ment and x = 0 control. Here, the designs ξ = ξw =
{

0 1
1 − w w

}
are uniquely

characterized by the weight w allocated to x = 1, Fξ =
(
1 0
1 1

)
is the same

for all designs, and Ǎξ =
(
1 − w 0
0 w exp(β1)

)
with the notation in the proof of

Theorem 2. Note that, here, the uniform measure ν can be chosen as the counting
measure on X = {0, 1} which assigns weight 1 to each of the settings 0 and 1. Then
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B̌ =
(
1 + exp(2β1) exp(2β1)

exp(2β1) exp(2β1)

)
, and we have to minimize

φ̌(ξ) = exp(β1)

w
+ 1

1 − w
(8)

with respect to w. The derivative is dφ̌(ξw)/dw = − (
exp(β1)/w

2
) + (

1/(1 − w)2
)
.

Solving for a root satisfying 0 ≤ w ≤ 1 leads to the optimal weight w∗ =
1/ (1 + exp(−β1/2)) at x = 1.

The optimal weight w∗ is increasing in β1, equal to 1/2 for β1 = 0, and counter-
symmetric with respect to sign change of β1, i.e. if w∗ is optimal for β1, then 1 −
w∗ is optimal for −β1. In accordance with the findings in Niaparast (2009), the V-
optimal design does not depend on the variance σ 2 of the random intercept and, hence,
coincides with the V-optimal design in the corresponding fixed effects model without
random effects. For example, if we assume a nominal value of β1 = −2 for the slope,
the optimal weight at x = 1 is w∗ = 0.269.

Example 2 (Continuous regressor). Let X = [0, 1] and ν uniform on X . It can be
shown that for the present model the V-optimal design is supported on two points x∗

1
and x∗

2 (see Schmidt 2019). Therefore, we search for the optimal design ξ∗ among

all two point designs for which ξ∗ is of the form ξ =
{

x1 x2
1 − w w

}
and x1 < x2.

According to the proof of Theorem 2, Ǎξ =
(

(1 − w) exp(β1x1) 0
0 w exp(β1x2)

)
and

B̌ =
(
B̌0 B̌1

B̌1 B̌2

)
with B̌k = ∫ 1

0 xkμ̌2(x)dx , k = 0, 1, 2, such that

B̌0 = (exp(2β1) − 1) /(2β1),

B̌1 = ((2β1 − 1) exp(2β1) + 1) /(2β1)
2,

B̌2 =
(
(4β2

1 − 4β1 + 2) exp(2β1) − 2
)

/(2β1)
3.

Solutions for the V-optimal designs are listed in Table 1 for different values of β1,
where w∗ denotes the optimal weight in x∗

2 .
When |β1| is small, the support points will be the endpoints x∗

1 = 0 and x∗
2 = 1.

For larger values |β1| of the slope, an internal support point x∗ will come in together
with x∗

2 = 1 when β1 is positive and x∗
1 = 0 when β1 is negative. Hence, always the

setting x∗
1 = 0 or x∗

2 = 1 is included in the optimal design which has highest intensity,
respectively.

The conditions of Theorem 2 can be checked to confirm that the designs in Table 1
are V-optimal. For example, in the case of a nominal value β1 = −2 for the slope, the

optimal design is given by ξ∗ =
{
0.000 0.790
0.465 0.535

}
. Figure 1 shows that the sensitivity

function of ξ∗ attains its maximum at the support points x∗
1 = 0.000 and x∗

2 = 0.790
of ξ∗.
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Table 1 Locally V-optimal settings x∗
1 , x

∗
2 , and weights w∗ at x∗

2 for Example 2

slope design
β1 x∗

1 x∗
2 w∗

−5 0.000 0.335 0.561

−4 0.000 0.418 0.560

−3 0.000 0.550 0.556

−2 0.000 0.790 0.535

−1 0.000 1.000 0.502

0 0.000 1.000 0.500

1 0.000 1.000 0.498

2 0.210 1.000 0.465

3 0.450 1.000 0.444

4 0.582 1.000 0.440

5 0.665 1.000 0.439

Fig. 1 Sensitivity function of ξ∗
for β1 = −2 (Example 2)

Note that also here the optimal designs are counter-symmetric with respect to sign

change of β1, i.e. if the design

{
x∗
1 x∗

2
1 − w∗ w∗

}
is optimal for β1, then the design

{
1 − x∗

2 1 − x∗
1

w∗ 1 − w∗
}
is optimal for −β1. Further, the optimal designs can be transferred

to arbitrary intervals X = [a, b] by means of the concept of equivariance (see Idais
et al. 2021).

4.2 Random slopes

In the simple Poisson regression with random slopes, (6), the individual slope b1,i is
assumed to be normally distributed with mean β1 and variance σ 2, and the intercept
b0,i = β0 is constant across units. The covariance structure of the random effect

bi = (β0, b1,i )T is� =
(
0 0
0 σ 2

)
which results in σ(x, x ′) = σ 2xx ′ for the dispersion

function and c(x, x ′) = exp(σ 2xx ′)− 1 for the variance correction. For simplicity, as

123



V-optimality of designs... 889

in Example 1 for the model with random intercepts, we consider also here the situation
of a design region which is restricted two only two settings.

Example 3 (Binary regressor). As in Example 1 we treat the case of a design region
X = {0, 1} which only consists of two settings x1 = 0 and x2 = 1. Hence, again

only designs ξ of the form ξw =
{

0 1
1 − w w

}
have to be considered, where w is the

proportion of observations which are taken at x2 = 1, 0 < w < 1. To find the optimal
design ξ∗, it is sufficient to obtain the optimal weight w∗. In this situation Fξ =(
1 0
1 1

)
is as defined in Example 1, Aξ = m exp(β0)

(
1 − w 0
0 w exp(β1 + σ 2/2)

)
,

and Cξ =
(
0 0
0 exp(σ 2) − 1

)
. Here F = Fξ and C = Cξ do not depend on ξ , and

the quasi-information matrix can be simplified as follows.

Lemma 2 Let X = {0, 1}. For the Poisson regression model with random slopes, the
quasi-information matrix can be represented as

Mβ(ξ) =
(
(FTAξ F)−1 + C

)−1
.

Proof Since C = F−1CF−T, where F−Tdenotes the inverse of FT, we have

FT(A−1
ξ + C)−1F =

(
F−1A−1

ξ F−T + F−1CF−T
)−1 =

(
(FTAξ F)−1 + C

)−1
.

Then the V-criterion can be simplified.

Theorem 3 Let X = {0, 1}. For the simple Poisson regression with random slopes,
the V-optimal design does not depend on the mean intercept β0 and the number m of
observations per unit.

Proof Using Lemma 2, we obtain

φ(ξ) = tr
(
M−1

β (ξ)B
)

= tr
(
(FTAξ F)−1B

)
+ tr(CB).

The last term of the above statement is independent of ξ and can be disre-
garded for optimization. Define here μ̌(x) = exp(β1x + σ 2x2/2) and accordingly

Ǎξ = diag{w j μ̌(x j )} j=1,··· ,s , B̌ = (∫
xi+ j−2μ̌2(x)ν(dx)

) j=1,2
i=1,2 , and φ̌(ξ) =

tr
(
(FT Ǎξ F)−1 B̌

)
. Then A = m exp(β0) Ǎ, B = exp(2β0)B̌, and tr

(
(FTAξ F)−1B

)

= (exp(β0)/m) φ̌(ξ) . Hence, theminimization ofφ(ξ) is the same as theminimization
of φ̌(ξ). Obviously, φ̌(ξ) does neither depend on β0 nor on m.

Inserting F, Ǎξ and B̌ in φ̌(ξ), we get

φ̌(ξ) = 1

1 − w
+ exp(β1 + σ 2/2)

w
, (9)
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Fig. 2 Optimal weight w∗ at
x = 1 for the model with
random slopes (Example 3)

which is minimized at w∗ = 1/
(
1 + exp(−β1/2 − σ 2/4)

)
. For example, in the case

of nominal values β1 = −2 and σ 2 = 1 for the mean slope, the optimal weight at
x = 1 is given by w∗ = 0.321.

Note that when σ 2 = 0 (no random effect), the optimal weight coincides with the
fixed effects solution in Example 1. Figure 2 exhibits the optimal weights for different
values of σ 2 and β1.

This figure shows that an increase of the mean slope β1 or the variance σ 2 of the
random slopes leads to an increase in the optimal weight w∗ at x = 1.

5 Efficiency considerations

In many cases, it is prevalent that a standard design will be applied in the experiments.

Therefore, we consider the uniform design ξ0 =
(

0 1
1/2 1/2

)
on the endpoints of a

standardized design region as a candidate.
To judge the gain of the design optimization, it is of interest to evaluate the efficiency

of the design ξ0 with respect to the V-optimal designs. In general, the V-efficiency of
a design ξ is defined by

eff(ξ) = φ(ξ∗)
φ(ξ)

(10)

relative to the V-optimal design ξ∗. The efficiency of the design ξ can be interpreted
as the proportion of patients needed, when the V-optimal design ξ∗ is used, to obtain
the same value of the V-criterion as for the design ξ under comparison. Note that the
efficiency eff(ξ) may depend on the parameters through both the non-linearity of the
models as well as the presence of random effects.

123



V-optimality of designs... 891

Fig. 3 Efficiency of ξ0 in dependence on β1 (left panel) and γ (right panel) in the random intercept (solid
line) and the fixed effects (dashed line) model for a binary regressor (Example 4)

5.1 Random intercepts

First, we consider the efficiency for models with random intercepts. The following
theorem describes the dependence upon the parameters.

Theorem 4 For model (5), the efficiency depends on β1 and on the remaining param-
eters only through γ = m exp(β0 + σ 2/2)

(
exp(σ 2) − 1

) ≥ 0.

Proof By (7), eff(ξ) can be written as

eff(ξ) = eff0(ξ) + (1 − eff0(ξ))
γ B̌0

φ̌(ξ) + γ B̌0
, (11)

where eff0(ξ) = φ0(ξ
∗)/φ0(ξ) = φ̌(ξ∗)/φ̌(ξ) is the efficiency in the corresponding

fixed effects model. Since eff0(ξ), φ̌(ξ) and B̌0 only vary in terms of β1, the claim
follows.

Equation (11) provides a lower bound eff(ξ) ≥ eff0(ξ) for the efficiency eff(ξ) in
terms of its counterpart in the fixed effects model. This lower bound is attained only
if either ξ is optimal in the fixed effects model (eff0(ξ) = 1) or if there are no random
effects (σ 2 = 0).

Example 4 (Binary regressor). In the situation of Example 1 only two experimental
settings x = 0, 1 are available. We assume m = 100, σ 2 = 1 and nominal values
β0 = −5 and β1 = −2 for the parameters resulting in γ = 1.909. For these values,
the optimal weight at x = 1 is w∗ = 0.269 (see Example 1), and the efficiency of ξ0
amounts to eff(ξ0) = 0.905 compared to its efficiency eff0(ξ0) = 0.824 in the fixed
effects model. Although the optimal weight depends only on β1, the efficiency is also
affected by the other parameters through γ .

The efficiency eff(ξ0) of the standard design ξ0 is exhibited in the two panels of Fig.
3 in dependence on β1 and γ while the other parameter is held fixed to its nominal
value, respectively, together with eff0(ξ0). For orientation, the nominal values are
indicated there by vertical dotted lines in the corresponding panels.

As can be seen from Fig. 3, the efficiency of ξ0 increases in β1 for negative values
of β1, attains its maximum 1 at β1 = 0 where the design ξ0 is (locally) V-optimal (see
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Example 1), and initially decreases for positive values of β1. With respect to the other
parameters β0, σ 2, and m, the efficiency is increasing through γ .

In the situation of Example 2 with a continuous regressor on X = [0, 1], the
behavior of the efficiency is qualitatively the same as in Example 4 and will, hence,
not be reported in detail here.

5.2 Random slopes

Formodelswith random slopes,we consider again a binary regressor as in Subsect. 4.2.
Then the parameter dependence of the efficiency can be characterized as follows.

Theorem 5 Let X = {0, 1}. For model (6), the efficiency depends on β1 and σ 2 and
on the remaining parameters only through γ = m exp(β0) ≥ 0.

Proof According to the proof of Theorem 3 and with the notation used there, the
efficiency equals

eff(ξ) = φ̌(ξ∗) + γ (exp(σ 2) − 1)B̌2

φ̌(ξ) + γ (exp(σ 2) − 1)B̌2

= ˇeff(ξ) +
(
1 − ˇeff(ξ)

) γ (exp(σ 2) − 1)B̌2

φ̌(ξ) + γ (exp(σ 2) − 1)B̌2
(12)

where ˇeff(ξ) = φ̌(ξ∗)/φ̌(ξ) is a reduced version of the efficiency ignoring the additive
term tr(CB) in the criterion φ. Since ˇeff(ξ), φ̌(ξ) and B̌2 only vary in terms of β1 and
σ 2, the claim follows.

Example 5 (Binary regressor). For the situation of the random slopes model in Exam-
ple 3, we assume m = 100, σ 2 = 1 and nominal values β0 = −5 and β1 = −2 the
parameters resulting in γ = 0.674 similar to Example 4. For these values, the optimal
weight at x = 1 is w∗ = 0.321 (see Example 3), and the efficiency of ξ0 amounts
to eff(ξ0) = 0.916. Although the optimal weight depends only on β1 and σ 2, the
efficiency is also affected by the other parameters through γ .

In Fig. 4 we present a graphical view of the efficiency eff(ξ0) for the standard
design ξ0 in dependence on β1, σ 2 and γ while the other parameters are held fixed to
their nominal values, respectively. As before, the corresponding nominal values are
indicated in the panels by vertical dotted lines.

In this figure, it can be seen that the efficiency of ξ0 increases in β1 up to β1 =
−σ 2/2, where the efficiency attains its maximum value 1 because ξ0 is (locally) V-
optimal for this parameter combination (see Example 3). For larger values of β1 the
efficiency is initially decreasing. With respect to σ 2, the efficiency is increasing up
to σ 2 = −2β1, where again ξ0 is (locally) V-optimal and the efficiency becomes 1.
For larger values of σ 2 the efficiency stays close to 1. Lastly, the efficiency is slightly
increasing in m and β0 through γ .
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Fig. 4 Efficiency of ξ0 in dependence on β1 (top left panel), σ 2 (top right panel) and γ (bottom panel) in
the random slope model for a binary regressor (Example 5)

6 Discussion

The main purpose of this paper is to illustrate the problem of optimal design for
prediction in the Poisson regression model with random effects using V-criterion. We
apply the quasi-likelihood technique to derive the informationmatrix, which is applied
to characterizeV-criterion for thismodel. This criterion has been discussed in detail for
the Poisson model with a single linear component on specific experimental regions,
including binary and continuous. We also investigated the equivalence theorem to
confirm the optimality of obtained designs. Besides, we discussed efficiency for the
saturated standard design in terms of the different values of parameters.

Appendix A Proof of the convexity of the V-criterion

Let ξ1 and ξ2 be two designs. For any α ∈ [0, 1], Niaparast and Schwabe (2013)
showed

Mβ((1 − α)ξ1 + αξ2) ≥ (1 − α)Mβ(ξ1) + αMβ(ξ2) (B1)

in the sense of Loewner ordering of non-negative definiteness. This requires that the
matrices Cξ of variance correction terms are non-negative definite which follows from
the corresponding property of C i mentioned in Sect. 2.

By standard inversion formulas the convexity of the inverse follows,

M−1
β ((1 − α)ξ1 + αξ2) ≤ (1 − α)M−1

β (ξ1) + αM−1
β (ξ2).
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Hence, because tr(AB) is linear in A, the V-criterion is a convex functional in ξ .

Appendix B Proof of Theorem 1

In order to obtain an equivalence theorem we consider the directional derivative of the
trace φ(ξ) = tr(M−1

β (ξ)B). The directional derivative of φ(ξ) in the direction of ξ ′,
Fφ(ξ, ξ ′) is

Fφ(ξ, ξ ′) = d

dα
tr((M−1

β ((1 − α)ξ + αξ ′))B)|α=0+ (B1)

Since (A−1
ξ + Cξ )

−1 = Aξ − Aξ (I + Cξ Aξ )
−1Cξ Aξ where I is the identity matrix,

the quasi-information matrix in Eq. (2) can be represented as

Mβ(ξ) = FT
ξ

(
Aξ − Aξ (I + Cξ Aξ )

−1Cξ Aξ

)
Fξ . (B2)

As in Niaparast and Schwabe (2013) we will derive a representation of the quasi-
information matrix of the convex combination of ξ and ξ ′. For this we define the

weighted joint intensity matrix Aξ,ξ ′(α) =
(

(1 − α)Aξ 0
0 αAξ ′

)
for two designs ξ

and ξ ′, 0 ≤ α ≤ 1, where Aξ and Aξ ′ are diagonal matrices with the weighted
response means (m jμ j ) as diagonal elements corresponding to ξ and ξ ′ respectively,

Fξ,ξ ′ =
(
FT

ξ FT
ξ ′

)T
the joint reduced design matrix for the designs ξ and ξ ′ and by

Cξ,ξ ′ =
(

Cξ �ξ,ξ ′
�T

ξ,ξ ′ Cξ ′

)
the combined correction matrix, which contains the mixed

correction terms for ξ and ξ ′ in �ξ,ξ ′ = (c(x, x ′)), where x and x ′ are the support
points of ξ and ξ ′, respectively.

Then regarding (B2), the quasi-information matrix of the convex combination of ξ

and ξ ′ is as follow

Mβ((1 − α)ξ + αξ ′) = FT
ξ,ξ ′ [Aξ,ξ ′(α)

−Aξ,ξ ′(α)(I + Cξ,ξ ′ Aξ,ξ ′(α))−1Cξ,ξ ′ Aξ,ξ ′(α)]Fξ,ξ ′ .

Then,

Fφ(ξ, ξ ′) = tr(
d

dα
(FT

ξ,ξ ′ [Aξ,ξ ′(α) − Aξ,ξ ′(α)(I + Cξ,ξ ′ Aξ,ξ ′(α))−1

Cξ,ξ ′ Aξ,ξ ′(α)]Fξ,ξ ′)B)|α=0+

= tr[−M−1
β ((1 − α)ξ + αξ ′)(FT

ξ,ξ ′([A′
ξ,ξ ′(α) − A′

ξ,ξ ′(0)

(I + Cξ,ξ ′ Aξ,ξ ′(α))−1Cξ,ξ ′ Aξ,ξ ′(α) + Aξ,ξ ′(α)

(I + Cξ,ξ ′ Aξ,ξ ′(α))−1Cξ,ξ ′ A′
ξ,ξ ′(α)(I + Cξ,ξ ′ Aξ,ξ ′(α))−1

Cξ,ξ ′ Aξ,ξ ′(α) − Aξ,ξ ′(α)(I + Cξ,ξ ′ Aξ,ξ ′(α))−1Cξ,ξ ′ A′
ξ,ξ ′(α)]
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Fξ,ξ ′)M−1
β ((1 − α)ξ + αξ ′)]B)|α=0+ , (B3)

where A′
ξ,ξ ′(α) is the derivative of Aξ,ξ ′(α) w.r.t. α. We obtain for α = 0 that

(I + Cξ,ξ ′ Aξ,ξ ′(0)) =
(
I + Cξ Aξ 0
�T

ξ,ξ ′ Aξ I

)
is lower block triangular as well its inverse

(I + Cξ,ξ ′ Aξ,ξ ′(0))−1 =
(

(I + Cξ Aξ )
−1 0

−�T
ξ,ξ ′ Aξ (I + Cξ Aξ )

−1 I

)
.

We obtain by multiplication of the block matrix

FT
ξ,ξ ′ A′

ξ,ξ ′(0)Fξ,ξ ′ = −FT
ξ Aξ Fξ + FT

ξ ′ Aξ ′ Fξ ′

and also we obtain
FT

ξ,ξ ′ A′
ξ,ξ ′(0)(I + Cξ,ξ ′ Aξ,ξ ′(0))−1Cξ,ξ ′ Aξ,ξ ′(0)Fξ,ξ ′

= −FT
ξ Aξ (Cξ Aξ + I)−1Cξ Aξ Fξ − FT

ξ ′ Aξ ′�T
ξ,ξ ′ Aξ (Cξ Aξ + I)−1Cξ Aξ Fξ

+FT
ξ ′ Aξ ′�T

ξ,ξ ′ Aξ ′ Fξ .

By the same way we have
FT

ξ,ξ ′ Aξ,ξ ′(0)(I +Cξ,ξ ′ Aξ,ξ ′(0))−1Cξ,ξ ′ A′
ξ,ξ ′(0)(I +Cξ,ξ ′ Aξ,ξ ′(0))−1Cξ,ξ ′ Aξ,ξ ′(0)

Fξ,ξ ′

= −FT
ξ Aξ (Cξ Aξ + I)−1Cξ Aξ (Cξ Aξ + I)−1Cξ Aξ Fξ

−FT
ξ Aξ (Cξ Aξ + I)−1�ξ,ξ ′ Aξ ′�T

ξ,ξ ′ Aξ (Cξ Aξ + I)−1Cξ Aξ Fξ

+FT
ξ Aξ (Cξ Aξ + I)−1�ξ,ξ ′ Aξ ′�T

ξ,ξ ′ Aξ Fξ ,

and also
FT

ξ,ξ ′ Aξ,ξ ′(0)(I + Cξ,ξ ′ Aξ,ξ ′(0))−1Cξ,ξ ′ A′
ξ,ξ ′(0)Fξ,ξ ′

= −FT
ξ Aξ (Cξ Aξ + I)−1Cξ Aξ Fξ + FT

ξ Aξ (Cξ Aξ + I)−1�ξ,ξ ′ Aξ ′ Fξ ′ .

Inserting these results into (B3) we obtain

Fφ(ξ, ξ ′) = tr([−M−1
β (ξ)((Fξ ′ − �T

ξ,ξ ′ [Aξ (Cξ Aξ + I)−1]Fξ )
TAξ ′(Fξ ′

−�T
ξ,ξ ′ [Aξ − Aξ (Cξ Aξ + I)−1Cξ Aξ ]Fξ ) − FT

ξ [Aξ

−Aξ (Cξ Aξ + I)−1Cξ Aξ ]Fξ + FT
ξ Aξ (Cξ Aξ + I)−1Cξ

[Aξ − Aξ (Cξ Aξ + I)−1Cξ Aξ ]Fξ )M
−1
β (ξ)]B).

By (A−1
ξ + Cξ )

−1 = Aξ − Aξ (Cξ Aξ + I)−1Cξ Aξ , it follows that

Fφ(ξ, ξ ′) = tr([−M−1
β (ξ)((Fξ ′ − �T

ξ,ξ ′(A−1
ξ + Cξ )

−1Fξ )
T

Aξ ′(Fξ ′ − �T
ξ,ξ ′(A−1

ξ + Cξ )
−1Fξ ) − FT

ξ (A−1
ξ + Cξ )

−1Fξ
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+ FT
ξ (A−1

ξ + Cξ )
−1Cξ (A

−1
ξ + Cξ )

−1Fξ )M
−1
β (ξ)]B).

The directional derivative Fφ(ξ, ξ ′) is linear in ξ ′. Therefore, it suffices to consider
one-point designs ξx which assign all observations to a single setting x . For such
one-point designs the directional derivative reduces to

Fφ(ξ, ξx ) = tr([−M−1
β (ξ)(( f (x) − FT

ξ (A−1
ξ + Cξ )

−1cξ,x )mμ(x)

( f (x) − FT
ξ (A−1

ξ + Cξ )
−1cξ,x )

T − FT
ξ (A−1

ξ + Cξ )
−1Fξ

+FT
ξ (A−1

ξ + Cξ )
−1Cξ (A

−1
ξ + Cξ )

−1Fξ )M
−1
β (ξ)]B).

According to the general equivalence theorem a design ξ∗ is optimal, if and only if

Fφ(ξ∗, ξx ) ≥ 0; ∀x ∈ X

Hence, the result follows.
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