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Abstract

Most studies on reliability analysis have been conducted in homogeneous populations.
However, homogeneous populations can rarely be found in the real world. Populations
with specific components, such as lifetime, are usually heterogeneous. When popu-
lations are heterogeneous, it raises the question of whether these different modeling
analysis strategies might be appropriate and which one of them should be preferred.
In this paper, we provide mixture models, which have usually been effective tools for
modeling heterogeneity in populations. Specifically, we carry out a stochastic com-
parison of two arithmetic (finite) mixture models using the majorization concept in the
sense of the usual stochastic order, the hazard rate order, the reversed hazard rate order
and the dispersive order both for a general case and for some semiparametric families
of distributions. Moreover, we obtain sufficient conditions to compare two geometric
mixture models. To illustrate the theoretical findings, some relevant examples and
counterexamples are presented.

Keywords Arithmetic mixtures - Geometric mixtures - Additive mixture model -
Proportional hazard rate model - Proportional reversed hazard rate model -
Stochastic orders

1 Introduction

Most studies on reliability measures have been conducted in homogeneous case. How-
ever, in the real world, homogeneous populations can rarely be found. Populations
with specific components are usually heterogeneous and consist of a finite number of
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homogeneous sub-populations. Ignoring the heterogeneity in populations can lead to
some fundamental errors in reliability analysis. Finite (arithmetic) mixture models are
usually suitable tools for considering heterogeneity in populations.

Let F(x; p) be the survival function (SF) of arithmetic (finite) mixture with n

homogeneous sub-populations with the SF’s Fj(x),i = 1, ...,n. Then
n
F(x;p) =) piFi(x), (1)
i=1
where p = (pi, ..., py) are the mixing proportions such that Y ', p; = 1 and
pi = 0, fori € {1,2,...,n}. The corresponding cumulative distribution function

(CDF) and probability density function (PDF) of (1) can be expressed as

F(x;p)=)_ piFi(x) )
i=1
and
fosp) =) pifitx), 3)
i=1

respectively, where F; and f; are the CDF and PDF of Fi, i =1,...,n,respectively.
In the following, we present some practical examples where the finite mixture
models have been applied.

e In most industrialized populations, there are usually two groups of components:
defective components with shorter lifetimes and standard components with longer
lifetimes. When mixed, they will lead a heterogeneous populations (Block et al.
2003).

e In industrial populations, components are usually combined with two or more
different production lines due to different work shifts, different raw materials, the
quality of resources and components used in the production process, the history
of operation and maintenance, random environment, human error, etc. Obviously,
due to the mentioned diversity in the production line, the lifetime distribution of
the components of one production line is different from other production lines and
will lead to a heterogeneous population (Finkelstein 2008; Cha and Finkelstein
2013).

e Inindustrial populations, there is usually more than one reason for the failures that
occur in a component. The failure distribution for each reason can be estimated
using a density function. Thus, the overall distribution can be modeled using a
finite mixture model (Davis 1952).

e Inreliability theory, the distribution function or the reliability function of a coherent
system consists of n independent and identically distributed components can be
expressed as a linear combination of the distribution function or the reliability
function of the ordered lifetime of these components, respectively. This is in fact
a mixture of the ordered lifetime (Amini-Seresht and Zhang 2017).
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The interested readers may refer to Titrington et al. Titterington et al. (1985) and
Everitt and Hand Everitt and Hand (1981) for some more applications of finite mixture
models. Further, some generalizations of finite mixture models by considering the
effect of severe conditions can be found in Shojaee et al. Shojaee et al. (2021) and
Shojaee et al. Shojaee et al. (2021).

Hazra and Finkelstein Hazra and Finkelstein (2018), using the concept of
majorization, have provided the sufficient conditions to compare two finite mixtures for
some semi-parametric families of distributions. Nadeb and Torabi Nadeb and Torabi
(2020), using the majorization concept, have provided a stochastic comparison for two
finite mixtures in the sense of usual stochastic order, hazard rate order and reversed
hazard rate order. Albabtain et al. Albabtain et al. (2020) by considering a para-
metric family of weighted distributions, have provided some stochastic comparisons
for their mixtures. Some stochastic comparisons of mixture models can be found in
Shaked and Shanthikumar Shaked and Shanthikumar (2007), Navarro Navarro (2008),
Navarro Navarro (2016) Amini and Zhang Amini-Seresht and Zhang (2017), Navarro
and Aguila Navarro and del Aguila (2017), Misra and Naqvi Misra and Naqvi (2018)
and Badia and Lee Badia and Lee (2020), to name a few.

Now, let us consider the geometric mixture of CDF’s F;,i = 1, ..., n, which can
be given as follows.

n
Fo(x:p) =[] F ). )
i=1
where p; > 0,i = 1,2, ..., n, are the mixing proportions such that ) /_, p; = 1. In

the following, we arrive at the geometric mixture (4) from the arithmetic mixture (2)
by using concept of the proportional reversed hazard model.
Assume that we have a mixed population with the mixture CDF as

n
F(xip) =Y piFi(x).
i=1
Let the severe conditions acts on each subpopulation uniformly, according to the

proportional reversed hazard model, so that the CDF of i-th subpopulation becomes
Fiy (x),i =1, ...,n. Then, the CDF of a randomly selected item is

F(x;p) =Y piF] (x).
i=1

Now, assume that we shield the selected item from the severe conditions, which can
be modelled as

1
n ¥
Fipiela (x; p) = (Z piFiy(x)) :
i=1

Now let y — 0, then we have
1

n v n
Jim Fonieta(x; p) = lim <Z piF; (x)> =[[F" ) = Fo(x: p).
i=1 i=1
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So, we arrive at the geometric mixture (4) which has the meaningful interpretation
(see also Asadi et al. 2019). Also, some reliability interpretations of the geometric
mixture (in term of parallel systems) are as follows.

e Fg(x;p) = [[io; F/"(x) can be considered as a generalized proportional
reversed hazards (GPRH) model (Navarro 2016).

o Letp; = %,i =1,...,n,then we get Fg(x; p) = ]_[?:1 F; (x), which is the CDF
of a n-components parallel system, where the i-th component has CDF F; (x).

e It is easy to see that Fg(x; p) = []i_, Fipi (x) is the CDF of a parallel system
that consists of n independent components, where the CDF of the i-th component
follows from the PRH model with the baseline CDF F; (x) and the PRH parameter
pi-i=1,...,n.

e The geometric mixture can be represented as Fg(x; p) = Q(F1,..., Fy),
where Q is a generalized distorted distribution with the distortion function
O(ui, ..., uy) = [[/_; u!" (Navarro and del Aguila 2017).

In this paper, motivated by Nadeb and Torabi Nadeb and Torabi (2020), we com-
pare two finite (arithmetic) mixture models in the sense of hazard rate order, the
reversed hazard rate order and the dispersive order when the vector of parameters and
the vector of proportions of the first mixture majorizes the second one. In fact, we
extend the results of Hazra and Finkelstein Hazra and Finkelstein (2018) and Nadeb
and Torabi Nadeb and Torabi (2020) both for general case and for some semipara-
metric families of distributions. Further, since the geometric mixture model have the
meaningful interpretations, we provide sufficient conditions to compare two geomet-
ric mixture model in the sense of usual stochastic order and the reversed hazard rate
order with different baseline random variables and different mixing probabilities.

The organization of the paper is as follows. Section 2 presents some basic con-
cepts, definitions and lemmas that will be used in the paper. In Sect. 3, we provide
sufficient conditions to compare two finite mixtures for general case and for some other
semiparametric families of distributions in the sense of the usual stochastic order, the
hazard rate order, the reversed hazard rate order and the dispersive order. Section 4
is devoted to stochastic comparisons of two geometric mixture models in the sense
of the usual stochastic order and the reversed hazard rate order with different mixing
probabilities and different baseline random variables. Finally, Sect. 5 concludes the

paper.

2 Preliminaries

In this section, we present some basic definitions of stochastic orders and lemmas that
will be used to our developments. Consider two random variables X and Y with PDF’s
f and g, CDF’s F and G, SF’s F and G, hazard rate functions ry and ry, reversed
hazard rate functions 7y and 7y, quantile functions F~! and G~!, respectively. The
following definitions are useful in our derivations.

Definition 2.1 The distribution F is said to be increasing (decreasing) failure rate (IFR
(DFR)) if its failure rate ry (x) is non-decreasing (non-increasing) in x.
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Definition 2.2 The random variable X is said to be smaller than Y in the:

e Usual stochastic order (denoted by F <, G) if F(x) < G(x) for all x or
equivalently E[¢(X)] < E[¢(Y)] for all increasing functions ¢ for which the
expectations exist.

e Hazard rate order (denoted by F <p, G) if G(x) / F(x) is increasing in x, for all
x or equivalently rx (x) > ry(x), for all x.

e Reversed hazard rate order (denoted by F' <, G) if G(x)/F (x) is increasing in
x, for all x or equivalently 7x(x) < ry(x), for all x.

e Dispersive order (denoted by F' <yi5p G) if G lw) — F ') is increasing in
u € (0,1).

e Likelihood ratio order (denoted by F <, G) if g(x)/ f (x) is increasing in x, for
all x.

Definition 2.3 (Marshall et al. 2011). Let x(j) < --- < x¢) and y(1) < -+ < y(@u) be
increasing arrangements of x = (x1,...,x,) and y = (y1, ..., yn), respectively.

0 U xg) = oy fori =1,...,n— 1 and 37 xj) = 252 Y(j)s
then x is said to majorize y and denoted by x g y.
(i) I 325 x(jy < 2=y v fori = 1,...,n, then x is said to weakly superma-

jorize y, and denoted by x g y.
(iii) T3 % x(jy = 2= v fori = 1,..., n, then x is said to weakly submajorize
y, denoted by xz{l,y.

It is clear that the majorization order implies both weak submajorization and super-
majorization orders. A function that preserves the ordering of majorization is called
the Schur-convex function (Marshall et al. 2011).

Definition 2.4 (Marshall etal. 2011). A real-valued function ¢ defined onaset A C R”
is said to be Schur-convex (Schur-concave) on A if x Q y implies ¢ (x) > (L)@ (y)
forany x, y € A.

Characterizations of Schur-convex (Schur-concave) functions is given in the fol-
lowing lemma.

Lemma 2.5 (Marshall et al. 2011). Let I € R be an open interval and let ¢ : I — R
be a real-valued, continuously differentiable function. Then, ¢ is Schur-convex (Schur-
concave) on I if and only if

(i) ¢ is symmetric on 1", and

(ii) foralli # jandallx € I",

(2 - 22
(xi = x;) ( i " (x)) > 0(<0),

where g—z is the partial derivative of ¢ with respect to its i-th argument.

The next lemma provides some conditions under which the weak supermajorization
and the weak submajorization orders are preserved.
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Lemma 2.6 (Marshall et al. 2011). Consider the real-valued function ¢, defined on a
set A C R”. Then,

(i) x>y implies ¢ (x) > ¢ (y) if and only if ¢ is increasing and Schur-convex on A;
(ii) x g y implies ¢ (x) > ¢ (y) if and only if ¢ is decreasing and Schur-convex on A.

Before we start to obtain the main result, let

Sn:{(xay)xlvylzo (xl_xj)(yl_yj)iov 17]2177n}

Lemma 2.7 (Bartoszewicz 1987) For two non-negative random variables X and Y
with CDF’s F and G, respectively, if X or Y have decreasing failure rate and F >, G,
then F >4i5p G.

3 Stochastic comparisons of arithmetic mixtures using majorization
concept

In this section, we compare two arithmetic mixtures in the sense of usual stochastic
order, hazard rate order, reversed hazard rate order and dispersive order, specifically
when the vector of parameters and the vector of proportions of the first mixture
majorizes the second one.

3.1 Usual stochastic order

Mirhossaini and Dolati Mirhossaini and Dolati (2008) and Shaw and Buckley Shaw
and Buckley (2009) have introduced Transmuted-G (TG) model, which is a flexible
model. We say that F(x; o) belongs to TG model, if its survival function can be

e_xpressed as the form F(x; ) = F(x)(1 —aF(x)), where @ € [—1, 1] and F(x) and
F(x) are the baseline CDF and the baseline SF, respectively.

Theorem 3.1 Let
n
Fx;pa) =Y piF(x;)
i=1
and
n
Fx;iq.B) =) qiF(x;B)
i=1

be SF’s of two n-component arithmetic mixtures with (p, o) € §2 and (q, @) e Sy,
respectively, in which the baseline SF belong to the TG model, i.e. F (x; «) = F(x)(1—

m w w
aF(x)), forallx. If p > q, &« > (<), then

F(x;p,a) >y F(x;q, B).
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Proof Tt is clear that F(x;a) = F(x)(1 — aF(x)) is decreasing (increasing) and
convex (concave) in0 < @ < 1(—1 < o < 0). Thus, the proof follows from Theorem
3.3 of Nadeb and Torabi (2020). O

Remark 3.2 Nadeb and Torabi have provided the necessary and sufficient conditions
for likelihood ratio ordering between two arithmetic mixtures whenever the sub-
populations belong to the TG model, which are different from the condition given
in Theorem 3.1.

Theorem 3.3 Let
- n -
Flx;poa) =) piF(x; i)
i=1
and
- n -
F(x;q,B) =) qiF(x;B)
i=1

be SF’s of two n-component arithmetic mixtures with (p,a) € Sy and (q,B) €
Sy, respectively, in which the baseline SF belong to the additive hazard model, i.e.

F(x; o) = I:"(x)e_‘”,for allx. If p g q, o § B, then

F(x;p,a) >y F(x;q, B).

Proof Tt is clear that F (x; o) = F(x)e % is decreasing and convex in o > 0. Thus,
the proof follows from Theorem 3.3 of Nadeb and Torabi (2020). m]

3.2 Hazard rate order

In the following theorem, we provide sufficient conditions to compare two arithmetic
mixtures, F'(x; p, &) and F(x; q, B), in the sense of hazard rate order.

Theorem 3.4 Let
2
Fx;poa) =) piF(x;a)
i=1
and
2
F(x;q.B) =) qiF(x;B)
i=1

be SF’s of two 2-component arithmetic mixtures with (p, o) € S> and (q, B) € S,
respectively. Let r(x; o) be increasing and concave in « > 0 for all x. If p g q,

m
o > B, then
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F(x;p, o) > F(x;q,B).

Proof Denote by r(x; p, @) and r(x; q, B) the hazard functions of F (x; p,a) and
F (x; q, B), respectively. To proof the theorem, first we show that r(x; p,a) <
r(x; p, B). The proof of the first part follows from the proof of Theorem 6.3 of Shojaece
et al. (2021b) because the arithmetic mixture is a special case of the generalized finite
a-mixture. In the second part, we will show r(x; p, B) < r(x; ¢, B). Without loss of
generality, suppose that p; > p» > 0 and gq; > ¢ > 0, and then (p,«) € S; and
(g, B) € Sz, yields 0 < @] < ap and 0 < B; < B;. Then

Y pir@s BOF(G B _ Wixs p. B)
SipiFeip) @ p )

r(x; p,B) =

Thus,

or(xip, B)  dr(ip ) it Vel p. f) = G PR (i p. B)

8p1 8p2 \Ilg()ﬁl’a ﬂ)
AW (x: p. : 9Wp(x:p. ;
P p, B) — PR (x; p, B)
Wi(x; p, B)

After some algebra calculations, we get

rap B ISP B sen g B o) (rrs B) — (s B)) <0,
api ap2

because from assumption r(x; B) is increasing in § and f; < f2. Consequently,

(o _p2)<3r(x; p.B)  or(x; nﬂ)) <o
api ap2

Therefore, according to Lemma 2.5, r(x; p, B) is is Schur-concave. Now, using con-

dition p § q, we have: r(x; p, B) < r(x;q, B). Thus, in general, r(x; p,a) <
r(x; q, ) and proof is completed. O

Remark 3.5 Theorem 3.4 extends the results of Theorems 4.1, 4.2 and 4.3 of Nadeb
and Torabi (2020) which are concerned the hazard rate order between two arithmetic
mixtures in terms of p, o and (p, &), respectively, whenever the sub-populations
belong to the proportional hazard rate model.

The following theorem provides the sufficient conditions to compare two arithmetic

mixtures in the sense of the hazard rate order when the sub-population belong to the
additive hazard model.

@ Springer



On some stochastic comparisons of arithmetic and geometric... 507

Theorem 3.6 Let F(x; o) belong to the additive hazard model, F(x; o) = F(x)e™*

for all x, where F (x) is the baseline SF. Then, for p g q, o g B, (p,a) € S and
(q, B) € Sz, we have

F(x; p,a) > F(x;q,B).

Proof In this case, r(x; «) = r(x) + a, where r(x) is the baseline hazard rate. It is
easy to see that r(x; ) is increasing and concave in o > 0. Thus the proof follows
from Theorem 3.4. O

T_heorem 3.7 Let F(x; ot)_beIOng to the accelerated lifetime (scale) model, F(x;a) =
F(ax) for all x, where F(x) is the baseline SF. Also, let xr(x) is increasing and

concave for all x. Then, for p g q, o g B, (p,a) € S and (q, B) € Sy, we have
F(x; p,a) >p F(x: q,B).

Proof 1In this case, r(x; «) = ar(ax) and the result follows from Theorem 3.4. O

To illustrate the validity of Theorem 3.4, consider the following numerical example.

Example 3.8 Consider the standard Exponential distribution with SF F(x;a) =
exp(—ax), x € [0, 00). Obviously, F(x; ) is decreasing in « for all x. On the
other hand, r(x; @) = « is increasing and concave in «. Set (p1, p2) = (0.7,0.3),
(g1, 92) = (0.6,0.4), (a1, ) = (0.5,0.8), (B1, B2) = (0.6,0.7). Ti is easy to see

that p g q,o g B, (p,a) € Sy and (¢, B) € S>. Thus, all conditions of Theorem 3.4
are satisfied. Figure 1a depicts the plots of r(x; p, &) and r(x; q, B).

The following counterexample shows that conditions (p, &) € S; and (¢, B) € Sz in
Theorem 3.4 can not be dropped.

Counterexample 3.9 Consider Example 3.8 and set (p1, p2) = (0.7, 0.3), (¢1, ¢2) =
(0.7,0.3), (x1, ) = (0.9,0.6), (B1, B2) = (0.8,0.7). Ii is easy to see that p g q,
o g B, but (p,a) ¢ S and (q, B) ¢ S». Figure 1b depicts the plot of d(x) =
r(x; p,o) —r(x; q, ).

3.3 Dispersive order
The following theorem provides sufficient conditions to compare two arithmetic mix-

tures, F (x; p, o) and F (x; g, B), in the sense of dispersive order, when F (x; o) have
decreasing failure rate (DFR).

Theorem 3.10 Let
2
F(x;poa) =) piF(x;)
i=1
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Fig.1 ar(x; p, a) (solid) and r(x; ¢, B) (dash dot) in Example 3.8. b d(x) = r(x; p,a) —r(x; g, B) in
Counterexample 3.9

and
- 2 -
F(x;q.B) =) qiF(x;B)
i=1

be SF’s of two 2-component arithmetic mixtures with (p,a) € S> and (q, B) € S,
respectively. Let r (x; o) be increasing and concave in o > 0 for all x. Also, suppose

that the baseline SF, F(x; «), be a DFR distribution. If p g q, o g B, then
F(x; p, o) >aisp F(x; q, B).

Proof As we know, if each F(x; «;) 1s DFR, then F(x; p, ) is DFR (Barlow and
Proschan, 1975). On the other hand, from Theorem 3.4, F (x; p, o) >, F(x; q, B).
Consequently, F(x; p, o) >qisp F(x;q, B) follows from Lemma 2.7 and proof is
completed. O

Remark 3.11 Theorem 3.10 extends the results of Theorems 4.4 of Nadeb and Torabi
(2020) in general case.

Theorem 3.12 Let F (x; &) belong to the additive hazard model, F(x;a) = F(x)e™®*
forall x, where F (x) is the baseline SF. Also, suppose that F (x) be a DFR distribution.

Then, for p g q, o g B, (p,a) € Sy and (q, B) € Sz, we have
F(x; p,a) >q4isp F(x;q,B).

Proof The proof follows from Theorem 3.6 and Lemma 2.7. O

T_heorem 3.13 Let F(x; @) belong to the accelerated lifetime (scale) model, F(x;a) =
F(ax) for all x, where F(x) is the baseline SF. Also, let xr(x) is increasing and
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concave for all x. Further, suppose that F(x; «) be a DFR distribution. Then, for
PZqazp (p.a)eS and(g,B) €S, wehave

F(x; p,a) >aisp F(x;q,B).

Proof The proof follows from Theorem 3.7 and Lemma 2.7. O

3.4 Reversed hazard rate order

This subsection is concerned the reversed hazard rate order of arithmetic mixtures.

Theorem 3.14 Let
2
Fx:ip.a) =Y piF(x;a)
i=1
and
2
F(x;q.B) =) qiF(x;Bi)
i=1

be SF’s of two 2-component arithmetic mixtures with (p, o) € S> and (q, B) € S,
respectively. Let 7 (x; o) be increasing and concave in a > 0 for all x. If p g q,

m
o > B, then

F(x;p,a) < F(x;q,B).

Proof The proof is similar to the proof of Theorem 3.4 and therefore for the sake of
brevity omitted here. O

At the end of this section, the following counterexample demonstrates that the
result of Theorem 3.4 (3.14) cannot be extended to the likelihood ratio order.
Counterexample 3.15 Consider Example 3.8. Set (p1, p2) = (0.53,0.47), (91, q2) =
(0.53,0.47), (1, a2) = (0.5,0.8), (B1, B2) = (0.6,0.7). Ii is easy to see that p g q,
o g B,(p,a) € S and (q, B) € Sy. Thus, all conditions of Theorem 3.4 are satisfied.
In this case the ratio of the densities is as follows:

. 0.265 exp(—0.5x) + 0.376 exp(—0.8x)
~0.318 exp(—0.6x) + 0.329 exp(—0.7x)

g(x)

Figure 2 depicts the plot of g(x) = L gcfp :’3‘; One can see that, from Fig. 2, g(x) is

not monotone function in x, which indicates that the likelihood ratio ordering does
not hold between F(x; p, «) and F(x; ¢q, B).
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1.04+
1.034
1.024

g(x) 1.01-

0.994

0.984

Fig.2 g(x) in Counterexample 3.15 for x € [0, 4]

4 Stochastic comparisons of geometric mixtures

In this section, we consider the geometric mixture model (4) and provide some stochas-
tic comparisons in the sense of the usual stochastic order and the reversed hazard rate
order. If we denote by 7', (x; p) the reversed hazard rate of geometric mixture model
(4), we have

n
Frg(x; p) = Z pifi(x),
i=1
where7;(x),i = 1, ..., n,is the reversed hazard rate corresponding to i-th subpopula-
tion. This, in turn, implies that the time behavior of the reversed hazard rate of Fg (x; p)
depends of time the behavior the reversed hazard rate 7; (x),i = 1, ..., n. Forexample,
ifri(x),i =1, ..., n,areincreasing (decreasing) reversed hazard rate so is the reversed
hazard rate of Fg(x; p). Also, if we denote by 7yin(x) = min{r{(x), ..., 7, (x)} and
Fmax (x) = max{ri(x), ..., /,,(x)}, then we have

Fmin(x) < ng(X; P) < Fmax(x).
In the next theorem, we extend a result of Navarro and Aguila (2017) on arithmetic

mixture to the geometric mixture model.

Theorem 4.1 Let F(x; p) and Fg(x; q) be two n-component finite geometric mixture
models with mixing probabilities p = (p1,..., pn) and q = (q1, ..., qn), respec-
tively. Assume that

Fl > st inst"'Zst Fn-
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Then,

Fg(x: p) <5t FG(x; q)

ifand only if p > q (i.e. Y5 qi = Y5, piforallk € (1,2,....,n —1}).

Proof To proof the “if ” part of the theorem, note that by assumption F; >, F>» >

- > Fy, wehave: F| < F, <--- < F,. Thus, F; is increasingini = 1,2, ...,n,
and hence ¢ (i) = log F; isincreasingini = 1,2, ..., n. Now, by assumption p >, ¢
we have:

n n
> pilogF; = gilog F;.
i=1 i=1
Hence,

n n
Fg(x; p) = exp (Zm log E) > exp (Z%’ log Fi> = Fg(x; q).
i=1 i=1

This means that Fg(x; p) <s: Fc(x; q).

To prove the “only if ” part of the theorem, note that from Fg(x; p) <;; Fg(x; q),
we get

1= pi 1= gi
P1 Pk i=1 i q1 LS i=1 1

This is equivalent to

| < Q pZ_qZ... ﬂ Pk_qk'.. & Pn—4qn
— \F] Fi F ’

From the assumption F| > Fp > - -+ > F, with choosing F| = Fp = --- = F;
and Fy41 =--- = Fy,—1 = F, = 1, we have

1 S (Fl)(zl",=k+1] lIi—ZL/H_] Pi)'

Hence, Y /i | Pi = D j—x419i- 1., p =g g and the proof is completed.

In the following theorem, we extend the “if”” part of Theorem 4.1.

Theorem 4.2 Let Fg(x; p) and Gg(x;q) be two n-component finite geometric
mixture models with mixing probabilities p = (p1,..., pn) and ¢ = (q1, ..., qn),
respectively. Assume that

(l) Fy =25 F2 25 - - 25 Fy,

(i) p =5 qlie. Y qi =5 piforallke{1,2,....,n—1}),
(iii) F; < Giforalli € {1,..., n}.
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Then, we have:

Fo(x; p) <gt Gg(x; q).

Proof To proof the theorem, first, we prove that Fg(x; q) <s; Gg(x; q). From F; <g
G;fori =1,...,n,wehave F;(x) > G;(x) forany x,i = 1, ..., n. Hence,

n n
qi qi
[1r = 1ot
i=1 i=1

Thus,
Fg(x; q) <51 Gg(x; q). (5)

From conditions (i), (ii)) and Theorem 4.1 we have: Fg(x; p) <, Fg(x;q). By
relation (5), Fg(x; q) <s+ Gg(x; q). Thus, Fg(x; p) <3+ Gg(x; q). This complete

the proof. O

The following example is an application of Theorem 4.2.

Example 4.3 Suppose that in the first population the mixing probabilities are p =
(p1, p2, p3) = (%, % %), and each component has an exponential distribution with
SF Fi(t) = e %!, for t € [0, 4+00), where (A1, A2, A3) = (0.3,0.6,0.9), while
in the second population there exist unequal mixing probabilities ¢ = (g1, g2, q3) =
(0.45,0.45, 0.1), and each component has an exponential distribution with SF Gi(t) =
e Vit fort € [0, +00), where (1, y2, y3) = (0.2,0.5,0.8). It is easy to see that all
condition of Theorem 4.2 are satisfied.

The following theorem extends a result of Amini and Zhang (2017) on arithmetic
mixture to the geometric mixture model.

Theorem 4.4 Let Fg(x; p) and Gg(x;q) be two n-component finite geometric
mixture models with mixing probabilities p = (p1,..., pn) and ¢ = (q1, ..., qn),
respectively. Assume that

(i) F1 > P2 Erhl;"Zthn, )

(ii) p>gq(ie) ;_1qi>D i piforallke{l,2,....,n—1})
(iii) F; <, Gj foralli € {1,...,n}.
Then, we have:

Fo(x; p) < Gg(x; q).

Proof First we prove that Fg(x; p) <, Fg(x; q).Inorder to prove this it is enough to
show that 7r; (x; p) —7Fr;(x; q) > 0, where rr; (x; p) and 7'r; (x; q) are the reversed
hazard rates corresponding to Fg (x; p) and Fg(x; q), respectively. From assumption
Fi > Fp > - >3 Fy, we have 71 (x) > 72(x) > - -+ > 7, (x). On the other hand,
we can rewritten 7'g; (x; p) — Frg (x; q) = Y iy Fi(x)(pi — ¢i) as follows:
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n

D F@)(pi = i) = (Fax) = Fa1(0)) (Pn — qn)

i=1

+ (Fam1 @) = a2 @) (Y i —a)

i=n—1

+ (Fam20) = Fams ) (D2 (i =) + -+
i=n—2

+ (R - A@) (Y —a))

i=2

+ﬁ(x>(i(pi —a)).

i=1

(it is clear that the coefficients of 7;’s are equal on both sides of the equation) Thus
> Fi(x)(pi —gqi) < Obecause (7 (x) —7j(x)) <Oforalli > j,i,j=1,2,...,n
and also from assumption, Y *_, p;i > > ¢, gi forallk € {1,2,...,n — 1}. Thus,

Fe(x; p) <rn F(x; q). (6)
Now, we prove that Fg(x; p) <, Gg(x; p). We must to show that 7r, (x; p) <

FGg(x; p) or, equivalently, 7r; (x; p) — F'g,(x; p) < 0, where 7g.;(x; p) is the
reversed hazard rate of G (x; p). Obviously,

Fro(x; p) = 66 (6 p) = Y _ pi(Fr (X) — Fo, (v),

i=1

where 7, (x) and 7g,(x), i = 1, ..., n are the reversed hazard rates of F; and G;,
i =1,...,n,respectively. From assumption F; <,; G;, wehave: 7r, (x)—7g,(x) <0
and thus,

FG(x; p) <rn GG(x; p). (N

From (6), Fg(x; p) <,n Fg(x;q). On the other hand, from (7), it can be derived
that Fg(x; q) <,» Gg(x;q). Hence, we obtain that Fg(x; p) <, Gg(x;¢q). This
complete the proof. O

Remark 4.5 All the results of Sect. 4 for the geometric mixture model Fg(x; p) in
(4) were based on assumption Z?: 1 pi = 1. This model, as mentioned before, is a
special case of generalized proportional reversed hazards model in which p;’s can be
any arbitrary positive real numbers. It should be noted that all the results related to the
geometric mixture model are remain valid for the generalized proportional reversed
hazard model.
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To end this section, we can give the following lower bound for the arithmetic mixture
by using the weighted arithmetic mean-geometric mean inequality (Li et al., 2018):

FoO; p) =[] F'() <) piFitx) = F(x; p).

i=1 i=1

5 Conclusions

In this paper, we have considered the mixture models as suitable tools for considering
heterogeneity in populations. Our interest stems from the fact that populations with
specific components, such as the lifetime, are usually heterogeneous. We have pro-
posed the arithmetic (finite) mixture models by using the effect of severe conditions (in
the terms of proportional reversed hazard rate model). We have arrived at the geomet-
ric mixture models. Furthermore, we have provided some examples interpreting the
use of the arithmetic and the geometric mixture models. We have obtained the suffi-
cient conditions, using the concept of majorization, to compare two arithmetic mixture
models in the sense of the usual stochastic order, the hazard rate order, the reversed
hazard rate order and the dispersive order. In fact, we have extended the results given
in the literature to a general case and some other semiparametric families of distribu-
tions. To help better understand the assumptions and limitations, we have employed
the some numerical examples and counterexamples. We have provided the sufficient
conditions for stochastic comparisons of two geometric mixture models in the sense
of the usual stochastic order and the reversed hazard rate order with different mixing
probabilities and different baseline random variables. Finally, the obtained results can
straightforwardly be used on reliability analysis when populations are heterogeneous.

Acknowledgements The authors thank an associate editor and anonymous reviewers for their constructive
comments which led to improve the contributions and exposition of this article.

Declarations

Conflicts of interest On behalf of all authors, the corresponding author states that there is no conflict of
interest.

References

Albabtain AA, Shrahili M, Al-Shehri MA, Kayid M (2020) Stochastic comparisons of weighted distributions
and their mixtures. Entropy 22(8):843

Amini-Seresht E, Zhang Y (2017) Stochastic comparisons on two finite mixture models. Oper Res Lett
45(5):475-480

Asadi M, Ebrahimi N, Soofi ES (2019) The alpha-mixture of survival functions. ] Appl Probab 56(4):1151—
1167

Badia FG, Lee H (2020) On stochastic comparisons and ageing properties of multivariate proportional
hazard rate mixtures. Metrika 83(3):355-375

Barlow RE, Proschan F (1975) Statistical theory of reliability and life testing: probability models. Florida
State University Tallahassee

@ Springer



On some stochastic comparisons of arithmetic and geometric... 515

Bartoszewicz J (1987) A note on dispersive ordering defined by hazard functions. Stat Probab Lett 6:13-16

Block HW, Savits TH, Wondmagegnehu ET (2003) Mixtures of distributions with increasing linear failure
rates. J Appl Probab 40:485-504

Cha JH, Finkelstein M (2013) The failure rate dynamics in heterogeneous populations. Reliab Eng Syst Saf
112:120-128

Davis DJF (1952) An analysis of some failure data. J Am Stat Assoc 47(258):113-150

Everitt BS, Hand DJ (1981) Finite mixture distributions. Chapman and Hall, New York

Finkelstein M (2008) Failure rate modelling for reliability and risk. Springer, Berlin

Hazra NK, Finkelstein M (2018) On stochastic comparisons of finite mixtures for some semiparametric
families of distributions. TEST 27:988-1006

Li Y, Gu XM, Zhao J (2018) The weighted arithmetic mean-geometric mean inequality is equivalent to the
Holder inequality. Symmetry 10(9):380

Marshall AW, Olkin I, Arnold BC (2011) Inequalities: theory of majorization and its applications. Springer,
New York

Mirhossaini SM, Dolati A (2008) On a new generalization of the exponential distribution. J] Math Ext
3(1):27-42

Misra N, Naqvi S (2018) Stochastic comparison of residual lifetime mixture models. Oper Res Lett
46(1):122-127

Nadeb H, Torabi H (2020) New results on stochastic comparisons of finite mixtures for some families of
distributions. Commun Stat Theory Methods 2:1-16

Navarro J (2008) Likelihood ratio ordering of order statistics, mixtures and systems. J Stat Plan Inference
138(5):1242-1257

Navarro J (2016) Stochastic comparisons of generalized mixtures and coherent systems. TEST 25(1):150—
169

Navarro J, del Aguila Y (2017) Stochastic comparisons of distorted distributions, coherent systems and
mixtures with ordered components. Metrika 80(6—8):627-648

Navarro J, Del Aguila Y, Suérez-Llorens SMAA (2016) Preservation of stochastic orders under the forma-
tion of generalized distorted distributions. Applications to coherent systems. Methodol Comput Appl
Probab 18(2):529-545

Shaw WT, Buckley IR (2009). The alchemy of probability distributions: beyond GramCharlier expan-
sions, and a skew-kurtotic-normal distribution from a rank transmutation map. arXiv Preprint
arXiv:0901.0434

Shaked M, Shanthikumar JG (2007) Stochastic orders. Springer, Berlin

Shojaee O, Asadi M, Finkelstein M (2021) On some properties of a-mixtures. Metrika 84(8):1-28

Shojaee O, Asadi M, Finkelstein M (2021) Stochastic properties of generalized finite «-mixtures. Probab
Eng Inform Sci 5:1-25

Titterington DM, Smith AFM, Makov UE (1985) Statistical analysis of finite mixture distributions. Wiely,
New York

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the

author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is
solely governed by the terms of such publishing agreement and applicable law.

@ Springer


http://arxiv.org/abs/0901.0434

	On some stochastic comparisons of arithmetic  and geometric mixture models
	Abstract
	1 Introduction
	2 Preliminaries
	3 Stochastic comparisons of arithmetic mixtures using majorization concept
	3.1 Usual stochastic order
	3.2 Hazard rate order
	3.3 Dispersive order
	3.4 Reversed hazard rate order

	4 Stochastic comparisons of geometric mixtures
	5 Conclusions
	Acknowledgements
	References




