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Abstract
In this paper, we consider a coherent system composed of components whose lifetimes
are independent and identically discretely distributed random variables. We study
several aging and stochastic properties of the conditional residual lifetimeof the system
under the condition that some of its components have failed by time t . Moreover, we
compare the conditional residual lifetimes of two coherent systems by using various
stochastic orders.
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1 Introduction

In technical systems, a coherent system is a very important structure, which works as
long as a given selections of its elements work. Consider a system which consists of
n two-state (i.e., working or failed) components. Let us denote by y = (y1, . . . , yn) ∈
{0, 1}n the state vector, where for each i , yi = 1 if the i th component is functioning
and yi = 0 if it is not functioning. The structure function τ : {0, 1}n → {0, 1} is a
mapping that associates those state vectors y for which the system operates with the
value 1 and those vectors y for which the system fails with the value 0. Moreover,
the system is said to be coherent when its structure function τ is increasing in each
vector argument and each component of the system is relevant (that is, actually affects
the working or failure of the system). The classical monograph here is Barlow and
Proschan (1975).
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If the random variable (rv) Yi (t) represents the state of the i th component at time
t ≥ 0, where Yi (t) = 0 (Yi (t) = 1), i = 1, . . . , n, means that the i th component has
failed (is functioning) at time t , the system state at time t isY (t) = τ(Y1(t), . . . , Yn(t)).
Analogously we can define the component lifetimes as Xi = sup {t ≥ 0 : Yi (t) = 1},
i = 1, . . . , n, and the coherent system lifetime as T = sup {t ≥ 0 : Y (t) = 1}.

We assume that the component lifetimes X1, . . . , Xn are independent and identi-
cally distributed (iid) discrete random variables with cumulative distribution function
(cdf) F(t) = P(Xi ≤ t), i = 1, . . . , n, and take values in finite or infinite subsets of
the set of non-negative integers.

The case when the component lifetimes are discretely distributed is more com-
plicated than the continuous one because of the positive probability of ties between
times of component failures. However, in various practical situations componentmight
have discrete operation times e.g. when we consider systems in which the component
lifetimes represent the numbers of turn-on and switch-off up to the failure or when
the components of the system operate in discrete cycles. The systems with discrete
operating components have been studied over the years, see Weiss (1962), Young
(1970), Tank and Eryilmaz (2015), Dembińska (2018), Davies and Dembińska (2019),
Dembińska and Goroncy (2020), Dembińska et al. (2021), Jasiński (2021). The sys-
tems with arbitrary lifetime distributions which can be discrete in particular were
discussed by Navarro et al. (2008), Miziuła and Rychlik (2014) or Eryilmaz et al.
(2016).

We recall the concept of minimal paths of a coherent system. It is useful in the
efficient probability calculations. We say that P ⊂ {1, 2, . . . , n} is a path set of the
system if it operates when all the elements with indices in P work. A path is said to
be minimal if it does not contain any strict subset being a path set. Denoting by z the
number of minimal path sets, the system lifetime T can be represented as

T = max
1≤ j≤z

min
p∈Pj

X p, (1)

where P1, . . . , Pz are the minimal paths sets, see Barlow and Proschan (1975, p. 13).
Under the assumption that the component lifetimes X1, . . . , Xn are exchangeable (that
is, for any permutation ( j1, . . . , jn) of (1, . . . , n), the random vector (X j1 , . . . , X jn )

has the same distribution as (X1, . . . , Xn)), the existence of a vector s = (s1, . . . , sn)

such that

P(T > t) =
n∑

i=1

si P(Xi :n > t),

where X1:n ≤ . . . ≤ Xn:n are the order statistics of lifetimes X1, . . . , Xn , was proved
by Navarro et al. (2008). We have si ≥ 0, i = 1, . . . , n, and

∑n
i=1 si = 1. They gen-

eralized the earlier results established by Samaniego (1985) and Navarro and Rychlik
(2007). The vector s is called the Samaniego signature of a coherent system. It depends
only on the structure of the system and is independent of the distribution of the com-
ponent lifetimes. Assume that S̃i =∑n

m=i+1 sm , 0 ≤ i ≤ n − 1. Using the concept of
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minimal paths, Jasiński (2021, formula (25)) proposed the following formula

S̃i =
n−i∑

m=1

⎡

⎣
(n−i

m

)
(n

m

)
z∑

j=1

(−1) j+1
∑

1≤k1<...<k j ≤z

I

⎛

⎝|
j⋃

w=1

Pkw |= m

⎞

⎠

⎤

⎦ , (2)

0 ≤ i ≤ n − 1, where |⋃ j
w=1 Pkw | denotes the cardinality of each⋃ j

w=1 Pkw and I(·)
stands for the indicator function, that is I(A) = 1 if the event A occurs and I(A) = 0
otherwise. The domain of I(·) is a Boolean domain consisting of exactly two elements
whose interpretations include false and true.

The k-out-of-n system, k = 1, . . . , n, is a coherent system that functions as long
as at least k of the components function. Thus T = Xn−k+1:n . For k = n and k = 1
we have the series and the parallel systems, respectively. Here there are

(n
k

)
minimal

path sets, namely, all of the sets consisting of exactly k components. The Samaniego
signature of a k-out-of-n system has the form s = (0, . . . , 0, sn−k+1, 0, . . . , 0) with
sn−k+1 = 1. Maximum likelihood estimation based on discrete component lifetimes
of a k-out-of-n system was considered by Dembińska and Jasiński (2021).

For the rv X and the event A with positive probability by [X |A] we denote any rv
having the same distribution as the conditional distribution of X given A, i.e., for any
x ,

P([X |A] > x) = P(X > x |A).

Furthermore, a/0 is taken to be equal to ∞ whenever a > 0.
In this paper we focus on the coherent systems with the Samaniego signature

s = (0, . . . , 0, sk, sk+1, . . . , sn), for k = 2, . . . , n (3)

that is, at the (k − 1)th failure, the system is still working with probability one. The
assumption (3) holds throughout the whole paper except for Theorem 2. Then we
concentrate on the following residual lifetime of the system

[T − t |X j :n ≤ t < Xk:n], 1 ≤ j ≤ k − 1, (4)

which describes the system lifetime after time t , given that, at time t , at least j ( j < k)

elements have been broken but the kth failure has not occurred yet and so the system
functions.

In Sect. 2, we obtain a mixture representation for the residual lifetime given in (4)
and we study some of its aging properties. Then we use it to compare two coherent
systems with identically distributed components and ordered signatures. We extend
the respective results obtained by Goliforushani et al. (2012) and Parvardeh and Bal-
akrishnan (2013) when the component lifetimes are continuously distributed.

Before proceeding to present the main result, we recall the definitions of various
stochastic orders. Let X and Y be two discrete non-negative rvs with the distribution
functions F and G, the reliability functions F = 1 − F and G = 1 − G and the
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probability mass functions (pmfs) f (x) = P(X = x) and g(x) = P(Y = x),
respectively. X is said to be less than Y in

i) the usual stochastic order (denoted by X ≤st Y ), if F(x) ≤ G(x) for all x ,
ii) the hazard rate order (denoted by X ≤hr Y ), if G(x)/F(x) is increasing in x for

x such that F(x) > 0 or G(x) > 0,
iii) the likelihood ratio order (denoted by X ≤lr Y ), if g(x)/ f (x) is increasing in x

on the union of the supports of X and Y .

It is well known that X ≤lr Y implies X ≤hr Y and X ≤st Y .

Definition 1 Let X be a discrete non-negative rv. Then X is said to have increasing
failure rate distribution (denoted by IFR distribution), if the function f (x)/F(x) is
increasing in x on the support of X .

Throughout the paper decreasing (increasing)means non-increasing (non-decreasing).
We also make use of the following notation. P stands for the set of all permutations

( j1, . . . , jn) of (1, . . . , n). Moreover, by
d= let us denote the equality in distribution.

2 Main results

Under a more general assumption that X1, . . . , Xn are arbitrary dependent and not
necessarily identically distributed discrete rvs,Dembińska (2018) obtained the formula
for the survival function

P(Xi :n − t > x |Xl:n ≤ t < Xl+1:n) = P(Xi :n > t + x, Xl:n ≤ t < Xl+1:n)

P(Xl:n ≤ t < Xl+1:n)
(5)

=

i−l−1∑
v=0

(n−l
v

) ∑
p∈P

P
(

p Dt,t+x
l,v

)

∑
p∈P

P
(

p Ht
l

) , l < i ≤ n,

(6)

where t is such that P(Xl:n ≤ t < Xl+1:n) > 0 and

( j1,..., jn)Dt,t+x
l,v =

(
l⋂

r=1

{X jr ≤ t}
)

∩
(

l+v⋂

r=l+1

{t < X jr ≤ t + x}
)

∩
(

n⋂

r=l+v+1

{X jr > t + x}
)

and

( j1,..., jn)Ht
l =

(
l⋂

r=1

{X jr ≤ t}
)

∩
(

n⋂

r=l+1

{X jr > t}
)

.
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It describes the lifetime of (n − i + 1)-out-of-n system after time t , given that, at
time t , exactly l elements are broken and the system functions. Next it was simplified
depending on the structure between X1, . . . , Xn . In particular, if X1, . . . , Xn are iid
rvs with a cdf F and t is such that P(Xl:n ≤ t < Xl+1:n) > 0, we have

P(Xi :n − t > x |Xl:n ≤ t < Xl+1:n) = αn
i,l(t, x), (7)

where

αn
i,l(t, x) =

i−l−1∑

v=0

(
n − l

v

)(
F(t + x) − F(t)

F(t)

)v
(

F(t + x)

F(t)

)n−l−v

. (8)

Using the result proposed by Dembińska (2018), we can rewrite (8) as

αn
i,l(t, x) =

i−l−1∑

v=0

(
n − l

v

)
(P(Z1 ≤ t + x))v(P(Z1> t + x))n−l−v

= P(Zi−l:n−l − t > x),

where Z1, Z2, . . . , Zn−l are iid rvs with cdf FZ defined as

FZ (z) = P(X1 ≤ z|X1 > t) =
{

F(z)−F(t)
F(t)

, if z > t,

0, if z ≤ t .
(9)

Consequently, the function defined in (8) is the unconditional survival function of
a (n− i +1)-out-of-(n − l) system consisting of homogeneous elements with lifetimes
Z1, Z2, . . . , Zn−l having cdf FZ given by (9). Thus for l < i ≤ n, we have

(Xi :n − t |Xl:n ≤ t < Xl+1:n)
d= Zi−l:n−l .

Remark 1 The above result readily yields

(Xi :n − t |Xl:n ≤ t < Xl+1:n)
d= (Xi−l:n−l − t |X1:n−l > t).

Using Theorem 1.C.37 and Corollaries 1.C.38 and 1.C.39 proved by Shaked and
Shanthikumar (2007), we have

Xk−1:m−1 ≤lr Xk:m, k = 2, 3, . . . , m

and

Xk:m−1 ≥lr Xk:m, k = 1, 2, . . . , m − 1.

123



210 K. Jasiński

Hence

Zi−l:n−l ≤lr Zi+1−l:n−l+1 = Zi−(l−1):n−(l−1), l < i ≤ n,

where Zi−l:n−l , Zi−(l−1):n−(l−1) are the order statistics corresponding to the respective
iid rvs with the cdf defined in (9). Now since Zi−l:n−l ≤lr Zi−(l−1):n−(l−1) implies
Zi−l:n−l ≤st Zi−(l−1):n−(l−1), we obtain the relation

αn
i,l(t, x) ≤ αn

i,l−1(t, x). (10)

Remark 2 For m ≤ l < i , under the conditions that t is such that P(Xl:n ≤ t <

Xl+1:n) > 0 and P(Xm:n ≤ t < Xm+1:n) > 0, we have

(Xi :n − t |Xl:n ≤ t < Xl+1:n) ≤lr (Xi :n − t |Xm:n ≤ t < Xm+1:n).

Now, under the assumption that the component lifetimes are IFR, we show that the
function given in (8) is a decreasing function of time t .

Lemma 1 If X’s are IFR, then for all x > 0 and l < i ≤ n, αn
i,l(t, x) defined in (8) is

a decreasing function of t .

Proof From (8) we have

αn
i,l(t, x) =

i−l−1∑

v=0

(
n − l

v

)(
1 − F(t + x)

F(t)

)v (
F(t + x)

F(t)

)n−l−v

=
∫ 1

1−F(t+x)/F(t)

(n − l)!
(i − l − 1)!(n − i)! yi−l−1(1 − y)n−i dy. (11)

We conclude from the assumption that the function F(t + x)/F(t) is decreasing in t
(see e.g. Lai and Xie 2007, p. 171 for discrete failure time models), which implies by
(11) that αn

i,l(t, x) is a decreasing function of t , which completes the proof. 	

Remark 3 If X ’s are IFR and t is such that P(Xl:n ≤ t < Xl+1:n)>0, then using (7), (8)
and Lemma 1, we obatin for all x >0 and l < i ≤n, P(Xi :n −t > x |Xl:n ≤ t < Xl+1:n)

is a decreasing function of t .

In the same manner as the expression for the probability P(Xi :n − t > x, Xl:n ≤ t <

Xl+1:n), in the iid case we obtain

P(Xi :n − t > x, X j :n ≤ t < Xk:n)=
k−1∑

v= j

(
n

v

)
Fv(t)

i−1−v∑

u=0

(
n − v

u

)

· (F(t + x)−F(t))u (F(t+x))n−v−u . (12)

We are now in a position to prove the extended version of Remark 3.
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Theorem 1 Let the discrete lifetimes X1, . . . , Xn are iid rvs. If X’s are IFR, and t is
such that P(X j :n ≤ t < Xk:n) > 0, then for all x > 0 and 1 ≤ j < k ≤ i ≤ n,
P(Xi :n − t > x |X j :n ≤ t < Xk:n) is a decreasing function of t .

Proof Note that using (12), we obtain

γ n
i, j,k(t, x)= P(Xi :n − t > x |X j :n ≤ t < Xk:n)= P(Xi :n − t > x, X j :n ≤ t < Xk:n)

P(X j :n ≤ t < Xk:n)

=

k−1∑
v= j

(n
v

)
Fv(t)

i−1−v∑
u=0

(n−v
u

)
(F(t + x) − F(t))u (F(t + x))n−v−u

k−1∑
m= j

(n
m

)
Fm(t)F

n−m
(t)

=

k−1∑
v= j

(n
v

) ( F(t)
F(t)

)v i−1−v∑
u=0

(n−v
u

) ( F(t+x)−F(t)
F(t)

)u ( F(t+x)

F(t)

)n−v−u

k−1∑
m= j

(n
m

) ( F(t)
F(t)

)m
,

=

k−1∑
v= j

(n
v

)
φv(t)αn

i,v(t, x)

k−1∑
m= j

(n
m

)
φm(t)

,

where φ(t) = F(t)
F(t)

is increasing in t , and αn
i,v(t, x) defined in (8) is a decreasing

function of t (cf. Lemma 1). We need to show that, for t1 < t2,

γ n
i, j,k(t1, x)−γ n

i, j,k(t2, x)

=

k−1∑
v= j

k−1∑
m= j

(n
v

)(n
m

) [
αn

i,v(t1, x)φv(t1)φm(t2)− αn
i,v(t2, x)φv(t2)φm(t1)

]

k−1∑
m= j

(n
m

)
φm(t1)

k−1∑
m= j

(n
m

)
φm(t2)

≥ 0.

Since the denominator is positive, it suffices to check the sign of the numerator. It can
be rewritten as

k−1∑

v= j

k−1∑

m= j

(
n

v

)(
n

m

)
[αn

i,v(t1, x) − αn
i,v(t2, x)]φv(t1)φ

m(t2)

+
k−1∑

v= j

k−1∑

m= j

(
n

v

)(
n

m

)
[αn

i,v(t2, x) − αn
i,m(t2, x)]φv(t1)φ

m(t2). (13)

We conclude from Lemma 1 that αn
i,v(t1, x) ≥ αn

i,v(t2, x), for t2 > t1 and all x > 0
and finally that the first term of (13) is non-negative. What is left is to show that the
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second one is non-negative too. It is seen to be equal to

k−1∑

v= j

⎛

⎝
v−1∑

m= j

+
k−1∑

m=v+1

⎞

⎠
(

n

v

)(
n

m

)
[αn

i,v(t2, x)−αn
i,m(t2, x)]φv(t1)φ

m(t2)

=
k−1∑

v= j

v−1∑

m= j

(
n

v

)(
n

m

)
[αn

i,v(t2, x) − αn
i,m(t2, x)]φv(t1)φ

m(t2)

−
k−1∑

v= j

v−1∑

m= j

(
n

v

)(
n

m

) [
αn

i,v(t2, x) − αn
i,m(t2, x)

]
φv(t2)φ

m(t1)

=
k−1∑

v= j

v−1∑

m= j

(
n

v

)(
n

m

) [
αn

i,v(t2, x)−αn
i,m(t2, x)

] [φv(t1)φ
m(t2)−φv(t2)φ

m(t1)].

(14)

Since αn
i,v(t2, x) ≤ αn

i,m(t2, x) for m ≤ v < i (cf. (10)), we further obtain

φv(t1)φ
m(t2)− φv(t2)φ

m(t1)=φm(t2)φ
m(t1)

[
φv−m(t1) − φv−m(t2)

] ≤ 0,

because the function φ is increasing in t . Thus we prove the non-negativity of (14).
This completes the proof of the theorem. 	

To extend Theorem 1 to the arbitrary coherent system we need the following mixture
representation for the residual lifetime of the system. In the case when the cdf F
is continuous, it has been already obtained by Parvardeh and Balakrishnan (2013,
Theorem 1) by the use of Theorem 1 of Kochar et al. (1999). Below representation
holds for the coherent system with arbitrary Samaniego signature s = (s1, . . . , sn),
si ≥ 0, i = 1, . . . , n, and

∑n
i=1 si = 1.

Theorem 2 Let T be the lifetime of a coherent system with n iid components whose
discrete lifetimes are denoted by X1, . . . , Xn.Then, for 1 ≤ l < n, we obtain

P(T − t > x |Xl:n ≤ t < Xl+1:n) =
n∑

i=l+1

si P(Xi :n − t > x |Xl:n ≤ t < Xl+1:n)

=
n∑

i=l+1

si αn
i,l(t, x). (15)

Proof Our purpose is to prove the equality

P(T − t > x, Xl:n ≤ t < Xl+1:n) =
n∑

i=l+1

si P(Xi :n − t > x, Xl:n ≤ t < Xl+1:n).

(16)
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Using the formula for the numerator of (5) in the iid case, the right-hand side of (16)
can be rewritten as

n∑

i=l+1

si P (Xi :n > t + x, Xl:n ≤ t < Xl+1:n)

=
n∑

i=l+1

si

i−l−1∑

v=0

(
n

l

)(
n − l

v

)
(F(t))l(F(t + x) − F(t))v(F(t + x))n−l−v. (17)

Now by the representation (1), the left hand side of (16) has the form

P(T > t + x, Xl:n ≤ t < Xl+1:n)= P(Xl:n ≤ t < Xl+1:n, max
1≤ j≤z

min
p∈Pj

X p > t + x)

= P

⎛

⎝Xl:n ≤ t < Xl+1:n,

z⋃

j=1

{min
p∈Pj

X p > t + x}
⎞

⎠

= P

⎛

⎝
z⋃

j=1

{Xl:n ≤ t < Xl+1:n, min
p∈Pj

X p > t + x}
⎞

⎠ .

Further, using the inclusion-exclusion formula, we deduce that

P(Xl:n ≤ t < Xl+1:n, T > t + x)

=
z∑

j=1

(−1) j+1
∑

1≤k1<...<k j ≤z

P

⎛

⎝Xl:n ≤ t < Xl+1:n,

j⋂

w=1

{ min
p∈Pkw

X p > t + x}
⎞

⎠

=
z∑

j=1

(−1) j+1
∑

1≤k1<...<k j ≤z

P

(
Xl:n ≤ t < Xl+1:n, min

p∈Pk1∪...∪Pk j

X p > t + x

)

=
z∑

j=1

(−1) j+1
∑

1≤k1<...<k j ≤z

P

⎛

⎜⎝Xl:n ≤ t < Xl+1:n,
⋂

p∈Pk1∪...∪Pk j

{X p > t + x}
⎞

⎟⎠ .

Notice that

P

⎛

⎜⎝Xl:n ≤ t < Xl+1:n,
⋂

p∈Pk1∪...∪Pk j

{X p > t+x}
⎞

⎟⎠=
n−l−1∑

v=0

I

⎛

⎝|
j⋃

w=1

Pkw

∣∣≤n−l−v

⎞

⎠

· P

⎛

⎝for all p ∈
j⋃

w=1

Pkw , X p > t + x,

exactly l of X p are ≤ t,

exactly v of X p belong to (t, t + x],
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214 K. Jasiński

and the rest n− v− l− ∣∣
j⋃

w=1

Pkw

∣∣ of X p are > t+x

⎞

⎠ .

Consequently

P(Xl:n ≤ t < Xl+1:n, T > t + x)

=
n−l−1∑

v=0

(
v + l

l

)
(F(t))l(F(t + x) − F(t))v(F(t + x))n−l−v

·
z∑

j=1

(−1) j+1
∑

1≤k1<...<k j ≤z

n−l−v∑

m=1

I

⎛

⎝|
j⋃

w=1

Pkw |= m

⎞

⎠
(

n − m

v + l

)
.

Since
(n−m

v+l

)
/
( n
v+l

) = (n−v−l
m

)
/
(n

m

)
and applying (2), we obtain

P(Xl:n ≤ t < Xl+1:n, T > t + x)

=
n−l−1∑

v=0

(
v + l

l

)(
n

v + l

)
(F(t))l(F(t + x) − F(t))v(F(t + x))n−l−v

n∑

i=v+l+1

si ,

which after changing the order of summation is equal to (17). This proves the theorem.
	


Remark 4 Under the assumption of Theorem 2, if moreover the signature of the system
has the form (3), we have for 1 ≤ j < k ≤ n

P(T − t > x |X j :n ≤ t < Xk:n) =
n∑

i=k

si P(Xi :n − t > x |X j :n ≤ t < Xk:n)

=
n∑

i=k

si γ n
i, j,k(t, x). (18)

Proof Note that

P(T − t > x |X j :n ≤ t < Xk:n)=

k−1∑
l= j

P (T > t + x, Xl:n ≤ t < Xl+1:n)

P
(
X j :n ≤ t < Xk:n

)

=

k−1∑
l= j

n∑
i=l+1

si P (Xi :n > t + x, Xl:n ≤ t < Xl+1:n)

P
(
X j :n ≤ t < Xk:n

) ,

(19)
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where the last equality follows from (15). Since we consider the coherent systems
with the signatures of the form (3), the conditional probability given in (19) can be
rewritten as

P(T − t > x |X j :n ≤ t < Xk:n)=

k−1∑
l= j

n∑
i=k

si P (Xi :n > t + x, Xl:n ≤ t < Xl+1:n)

P
(
X j :n ≤ t < Xk:n

)

=

n∑
i=k

si P
(
Xi :n > t+ x, X j :n ≤ t < Xk:n

)

P
(
X j :n ≤ t < Xk:n

)

=
n∑

i=k

siγ
n
i, j,k(t, x),

which completes the proof. 	


Theorem 3 Consider a coherent system consisting of n elements whose discrete life-
times X1, . . . , Xn are assumed to be iid rvs. If X’s are IFR and the signature of the
system has the form (3), then for all x > 0, P(T − t > x |X j :n ≤ t < Xk:n) is a
decreasing function of t .

Proof FromTheorem 1, we know that for all x > 0, P(Xi :n − t > x |X j :n ≤ t < Xk:n)

is a decreasing function of t . Combining it with the representation given in (18), we
get the desired conclusion. 	


Theorem 4 Let the discrete lifetimes X1, . . . , Xn are iid rvs and t is such that P(X j :n ≤
t < Xk:n) > 0. Then for j < k ≤ i ≤ m, we have

(Xi :n − t |X j :n ≤ t < Xk:n) ≤hr (Xm:n − t |X j :n ≤ t < Xk:n).

Proof Our aim is to show that the function

γ n
m, j,k(t, x)

γ n
i, j,k(t, x)

= P(Xm:n − t > x, X j :n ≤ t < Xk:n)

P(Xi :n − t > x, X j :n ≤ t < Xk:n)

is increasing in x . Using the conditional probability given in (12) we have

γ n
m, j,k(t, x)

γ n
i, j,k(t, x)

=

k−1∑
v= j

(n
v

) ( F(t)
F(t+x)

)v
[

m−1−v∑
u1=0

(n−v
u1

) ( F(t+x)−F(t)
F(t+x)

)u1
]

k−1∑
v= j

(n
v

) ( F(t)
F(t+x)

)v
[

i−1−v∑
u2=0

(n−v
u2

) ( F(t+x)−F(t)
F(t+x)

)u2
]
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= 1 +

k−1∑
v= j

(n
v

) ( F(t)
F(t+x)

)v
[

m−1−v∑
u1=i−v

(n−v
u1

) ( F(t+x)−F(t)
F(t+x)

)u1
]

k−1∑
v= j

(
F(t)

F(t+x)

)v
[

i−1−v∑
u2=0

(n−v
u2

) ( F(t+x)−F(t)
F(t+x)

)u2
] . (20)

Note that to prove the desired property of the function in (20), it suffices to show the
following inequality

m−1−v∑
u1=i−v

(n−v
u1

) ( F(t+y)−F(t)
F(t+y)

)u1

m−1−v∑
u1=i−v

(n−v
u1

) ( F(t+x)−F(t)
F(t+x)

)u1
≥

i−1−v∑
u2=0

(n−v
u2

) ( F(t+y)−F(t)
F(t+y)

)u2

i−1−v∑
u2=0

(n−v
u2

) ( F(t+x)−F(t)
F(t+x)

)u2

for y > x . Considering the relation between the sums

m−1−v∑

u1=i−v

(
n−v

u1

)(
F(t+y)−F(t)

F(t + y)

)u1 i−1−v∑

u2=0

(
n−v

u2

)(
F(t+x)− F(t)

F(t + x)

)u2

≥
m−1−v∑

u1=i−v

(
n−v

u1

)(
F(t+x)−F(t)

F(t + x)

)u1 i−1−v∑

u2=0

(
n−v

u2

)(
F(t+y)−F(t)

F(t + y)

)u2
,

(21)

which consist of the same number of summands, it suffices to compare their respective
summands. For fixed u1 = i − l, . . . , m − l − 1 and u2 = 0, . . . , i − l − 1, we verify
that

(
n − v

u1

)(
n − v

u2

)(
F(t+y)−F(t)

F(t + y)

)u2 ( F(t+x)−F(t)

F(t + x)

)u2

·
[(

F(t+y)−F(t)

F(t + y)

)u1−u2
−
(

F(t+x)−F(t)

F(t + x)

)u1−u2
]

≥ 0.

(22)

Note that the expression in the brackets is positive because the function (F(t + x) −
F(t))/F(t +x) is increasing in x for all t and u1 > u2. Thus it proves (22). If the same
relation holds for each pair of summands, the inequality is inherited by the respective
sums (cf. (21)), which completes the proof. 	

As the consequence of the representation given in (18) and the mixture preservation
results established by Shaked and Shanthikumar (2007, Theorems 1.A.6 and 1.B.14),
we compare two coherent systems with identically distributed components and the
same ordered signatures.
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Theorem 5 Let si = (0, . . . , 0, si,k, si,k+1, . . . , si,n), i = 1, 2, be the signatures of
two coherent systems T1 = τ1(X1, . . . , Xn) and T2 = τ2(Y1, . . . , Yn) whose lifetimes
X1, . . . , Xn, Y1, . . . , Yn are iid rvs with a common discrete distribution function F.

a) If s1 ≤st s2 (
∑n

j=i s1, j ≤ ∑n
j=i s2, j , i = 2. . . . , n), then [T1 − t |X j :n ≤ t <

Xk:n] ≤st [T2− t |Y j :n ≤ t <Yk:n].
b) If s1 ≤hr s2, (

∑n
j=i s2, j/

∑n
j=i s1, j is increasing in i , i = 1, . . . , n), then [T1−

t |X j :n ≤ t < Xk:n] ≤hr [T2− t |Y j :n ≤ t < Yk:n].

Remark 5 Notice that the proofs of Theorems 1–5 still gowhenwedrop the assumption
that X1, . . . , Xn are the discrete rvs. Therefore they can be applied not only in the
discrete case but also in the general situation of any non-degenerate distribution of
component lifetimes.
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