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Abstract
The α-mixtures is a new, flexible family of distributions that includes many mixture
models as special cases. This paper is mainly focused on relevant stochastic com-
parisons and ageing properties of α-mixtures of survival functions. In particular, we
prove that ageing properties of α-mixtures for additive and multiplicative hazards
models depend on the properties of the baseline failure rate functions and the corre-
sponding conditional moments of mixing distributions. Partial orderings of the finite
α-mixtures in the sense of the usual stochastic order and the hazard rate order are
discussed. Finally, we extend some results on the shape of the mixture failure rate
obtained in the literature for usual mixtures to the case of α-mixtures.
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1 Introduction

1.1 Motivation and related literature

Mixture models are useful statistical tools for analyzing heterogeneous populations
in different areas of research such as reliability, risk, survival analysis, etc. Hetero-
geneity in practice can arise in various ways. For instance, the manufactured items are
often heterogeneous and the corresponding reliability characteristics in a population
of items, therefore, are variable from one subpopulation to another. This occurs due to
manydifferent reasons such as quality of resources and components used in the produc-
tion process, operation and maintenance history, random environment, human errors,
etc. Neglecting existing heterogeneity can result in substantial errors when describing
reliability and performance characteristics of engineering systems. Another impor-
tant source of heterogeneity in data analysis can be described as follows. Let T be a
nonnegative random variable with the cumulative distribution function (CDF) F(t),
t ≥ 0. In reliability and survival analysis, this function is usually estimated based
on the failure times available from the experiments that are carried out. On the other
hand, some additional information is often available that is useful for the more precise
estimation procedure. Examples of additional information can be external conditions
of operation, observations of internal parameters and prior opinions of experts on
parameters values, etc.

Let a random variable � be an external covariate (that can be also interpreted as
frailty in our context) taking values in [0,∞) with the CDF, �(λ). Moreover, assume
that F(t |λ), F̄(t |λ), f (t |λ) and r(t |λ) are, respectively, the CDF, the survival function
(SF), the PDF and the failure rate of the random variable T conditioned on � = λ.
Obviously, F(t) and F(t |λ), are related as follows.

F(t) =
∫ ∞

0
F(t |λ)d�(λ). (1)

This is known in the literature as the mixture CDF (that is also often called the arith-
metic mixture). Many authors have investigated various properties of mixture models.
For some basic ageing properties of mixture models, we refer to Barlow and Proschan
(1981), Block and Savits (1976) and Savits (1985). Block et al. (1993) and Block and
Joe (1997) have studied the tail behavior of failure rates of mixtures. Lynch (1999)
showed that the necessary and sufficient condition for a mixture to have an increasing
failure rate is that the mixing distribution should have an increasing failure rate. Block
et al. (2003) have studied the closure properties of mixture models under different
ageing concepts. Badia et al. (2002) have considered the additive and multiplicative
failure rate mixing models and discussed the relevant ageing properties of these mod-
els. Cha and Badia (2016) have investigated an information-based burn-in procedure
for repairable systems.

Mixtures for themultivariate proportional hazardmodel have been studied byBadia
and Lee (2020). Finkelstein and Esaulova (2001) have considered additive and mul-
tiplicative models. Finkelstein and Esaulova (2006) have discussed the problem of
mixture failure rate ordering (in the sense of the likelihood ratio order) for the ordered

123



On Some Properties of α-Mixtures 1215

mixing distributions. Navarro and Hernandez (2004) have developed some techniques
to determine the shape of the failure rate andof themean residual life function. Navarro
(2008) have studied ordering properties, monotonicity and the limiting behaviour of
the Glaser’s function for mixtures. Ordering properties, monotonicity and the limiting
behavior of finite mixtures based on the mean residual life function were investigated
byNavarro andHernandez (2008). Shaked andSpizzichino (2001) have studiedmono-
tonicity and the limiting behaviour of the failure rate for a mixed distribution. Navarro
et al. (2009) have considered the generalized mixtures and have obtained some proper-
ties for the corresponding mixture failure rate. Navarro (2016) studied the hazard rate
and likelihood ratio orders in generalized mixtures and provided some applications.
Badia and Cha (2017) have extended the bending properties of the mixture failure
rates (see Section 5) to the cases of the reversed failure rate, the mean residual lifetime
and the mean inactivity time. Hazra and Finkelstein (2018) have considered two finite
mixtures and have obtained stochastic comparisons for the semiparametric families
such as proportional hazards, accelerated lifetimes and proportional reversed hazards.
Amini-Seresht and Zhang (2017) have obtained stochastic comparisons for two clas-
sical finite mixture models in the sense of the hazard rate, the reversed hazard rate,
the likelihood ratio, the mean residual lifetime and the mean inactivity time orders
with different baseline random variables and different mixing proportions. Navarro
and del Aguila (2017) have obtained necessary and sufficient conditions for stochastic
comparisons of the finite mixtures. For a comprehensive reference on failure modeling
of mixture models in reliability and risk, we refer to Finkelstein (2008).

1.2 The˛-mixturemodel

Recently, Asadi et al. (2019) have introduced a flexible mixture model indexed by
parameter α ∈ R that was called the α-mixture model. For the continuous mixing
random variable �, the α-mixture for the SF is defined as follows.

F̄(t, α) =
{(∫ ∞

0 F̄α(t |λ)π(λ)dλ
) 1

α , α �= 0,
F̄gm(t), α = 0,

(2)

where F̄gm(t) = limα→0 F̄(t, α) and π(λ) is the PDF of the random variable �.
In the discrete case, the finite α-mixture for n sub-populations with SFs F̄i , i =

1, 2, ..., n, is defined as

F̄(t, α) =
{[∑n

i=1 pi F̄
α
i (t)

]1/α
, α �= 0,

F̄gm(t), α = 0,
(3)

F̄gm(t) = limα→0 F̄(t, α) and pi is the mixing proportion such that pi ≥ 0, for
i ∈ {1, 2, ..., n} and

∑n
i=1 pi = 1. Clearly, in models (2) and (3), α = 1 yields

the well-known in the literature arithmetic (ordinary) mixture of survival functions.
Moreover, for α = −1 we arrive at the corresponding harmonic mixture, whereas the
case when α → 0, as shown by Asadi et al. (2019), defines the geometric mixture,
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which is the mixture of the corresponding failure rates. In particular, for the finite
mixture (3), the SF and the failure rate of the geometric mixture, denoted by F̄gm(t)
and rgm(t), respectively, can be written as:

F̄gm(t) =
n∏

i=1

F̄ pi
i (t),

and

rgm(t) =
n∑

i=1

piri (t),

where ri (t), i = 1, ..., n, is the failure rate that corresponds to the i-th sub-population.
For the continuous case, we have:

F̄gm(t) = exp

(∫ ∞

0
log(F̄(t |λ))π(λ)dλ

)
,

and

rgm(t) =
∫ ∞

0
r(t |λ)π(λ)dλ.

Thus we see that the α-mixture model is a meaningful generalization of conventional
mixture models.

Asadi et al. (2019) have discussed several stochastic and aging properties of the
α-mixture model. In the current study, on the one hand, we discuss in detail some
important specific models of mixing, whereas, on the other hand, further generaliza-
tions and new results for the basic model are presented.

In the following, we first provide some examples interpreting the use of the α-
mixture family.

(i) Asadi et al. (2019) compared the reliability function of two m-component series
systems, which are constructed based on the following two different policies:
First, a component is randomly selected from a set of n components in which the
probability of selecting the i th component is pi , i = 1, 2, . . . , n. Then the selected
component is used to construct an m-component series system of same type. In
this case the reliability function of constructed m-component series system is:

F̄1(t) =
n∑

i=1

pi F̄
m
i (t) = F̄m(t,m),

where F̄(t,m), is the SF of the finite α-mixture with α = m, and F̄i (t), i =
1, . . . , n, is the SF of the i-th component. This model can be considered as “mixing
at the system level”. In the second policy, first wemixed n components and assume
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that the proportion of i-th component in mixed population is pi , i = 1, . . . , n and
drawn all of m components randomly from the mixed population to construct a
series system. Let the SF of the i-th component is F̄i (t), i = 1, . . . , n, then the
reliability function of constructed m-component series system is:

F̄2(t) =
(

n∑
i=1

pi F̄i (t)

)m

= F̄m(t, 1),

where F̄(t, 1), is the SF of the finite α-mixture with α = 1. This model can be
considered as “mixing at the component level ”. Bymonotone decreasing property
of α-mixture, we have F̄2 ≤st F̄1. That means, the constructed series system with
homogeneous components are more reliable than the constructed series system
with heterogeneous components.

(ii) Cha (2011) and Hazra et al. (2017) have considered some variants of the model
described in part (i), that can be expressed as in terms of finite α-mixtures. Let
we have a mixed population of n components such that the proportion of the i-th
component in the population is pi , i = 1, . . . , n. According to cited authors, to
build an m-component series system, first one component is randomly selected
from n components and then l1 components are extracted from the selected com-
ponent; then another component is randomly selected from the n components and
l2 components are extracted of the newly selected component; and so on. The
process continues until them components of the series system are completed after
d steps. Thus, the SF of constructed m-components series system is:

F̄3(t) =
d∏
j=1

(
n∑

i=1

pi F̄
l j
i (t)

)
=

d∏
j=1

F̄l j (t, l j ),

where
∑d

j=1 l j = m, for 1 ≤ d ≤ m. In this model F̄(t, l j ) is the SF of the finite
α-mixture with α = l j , j = 1, . . . , d.

Another interpretation of the α-mixture can be given as follows. Assume that a single
component (from a homogeneous population) is operating in a laboratory (mild) con-
ditions and its the lifetime is described by the failure rate r(t) and the survival function
F̄(t). Let the severe conditions in the field act according to the multiplicative-additive
hazard model in such a way that the failure rate of an item becomes rs(t) = αr(t)+β,
where α > 1 and β ≥ 0. Assume that this item is shielded from the severe conditions
to arrive at the laboratory conditions, which obviously can be modelled as

r(t) = rs(t) − β

α
,
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with the ’original’ survival function F̄(t). Assume now that we have a mixed popula-
tion with the mixture survival function

F̄m(t) =
n∑

i=1

pi F̄i (t).

Denote the failure rates for sub-populations by ri (t), i = 1, 2, ..., n. Then the mixture
failure rate (the failure rate of a randomly selected from the population item) is

rm(t) =
n∑

i=1

pi (t)ri (t),

where

pi (t) = pi F̄i (t)∑n
j=1 p j F̄j (t)

, i = 1, ..., n,

see, for example, Navarro and Hernandez (2004) and Finkelstein (2008). If the severe
condition acts on each sub-population uniformly, then this failure rate will change to

rα,β
s (t) =

n∑
i=1

pα,β
i (t)(αri (t) + β)

=α

n∑
i=1

pα,β
i (t)ri (t) + β,

where

pα,β
i (t) = pi e−βt F̄α

i (t)∑n
i=1 pi e

−βt F̄α
i (t)

= pi F̄α
i (t)∑n

i=1 pi F̄
α
i (t)

≡ pα
i (t).

Similar to the homogeneous case, let us shield the selected item from the severe
conditions, thus putting it back to laboratory conditions. This can be modelled as

rα,β
s (t) − β

α
=

n∑
i=1

pα
i (t)ri (t). (4)

The right hand side of (4) is, in fact, the failure rate that corresponds to (3) (see Asadi
et al. (2019)). Thus, the α-mixture had naturally emerged in this practical setting.
Another important observation that can be drawn from this example is that hetero-
geneity destroys the natural property for items from homogeneous populations, i.e.,
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when one goes from the laboratory conditions to severe condition (by multiplicative-
additive transformation of the corresponding failure rate) and then back again, the
failure rate of an item does not change. This can be considered as some paradox,
although its explanation is quite clear from our discussion. It is worth noting also that
the location parameter of the transformation, β does not have any effect on the failure
rate and only the scale parameter, α is relevant. It should be also emphasized that the
above discussion with obvious alterations can be applied to the case of an environment
which is milder than the laboratory environment, i.e., when 0 < α ≤ 1.

1.3 Organization of the paper

The rest of the paper is organized as follows. In Section 2, we obtain some expressions
for the conditional mean of the mixing distribution and investigate its relation to the
failure rate of the conditional random variable T conditioned on �. Section 3, is
devoted to the study of some ageing properties of α-mixtures of survival functions.
In Section 4, we discuss the partial orderings of finite α-mixtures in the sense of usual
stochastic order and the hazard rate order. Finally, in Section 5, we obtain results on
’down and up bending properties’ of the failure rate in α-mixtures, which extends
some results reported in the literature for the ordinary (arithmetic) mixture models.

2 Some ageing properties of˛-mixtures

Consider the parametric α-mixture model (2). The corresponding PDF is

f (t, α) =
(∫ ∞

0
f (t |λ)F̄α−1(t |λ)π(λ)dλ

)(∫ ∞

0
F̄α(t |λ)π(λ)dλ

) 1
α
−1

. (5)

Let α �= 0. In this case, the failure rate for the α-mixture family can be given as
follows:

r(t, α) = f (t, α)

F̄(t, α)
=

∫ ∞
0 f (t |λ)F̄α−1(t |λ)π(λ)dλ∫ ∞

0 F̄α(t |λ)π(λ)dλ
(6)

=
∫ ∞

0
r(t |λ)πα(λ|t)dλ, (7)

where

πα(λ|t) = F̄α(t |λ)π(λ)∫ ∞
0 F̄α(t |λ)π(λ)dλ

. (8)

Note that, in the case of α > 0, πα(λ|t) can be considered as the conditional PDF of
�|Tα ≥ t , where Tα is described by the SF F̄α(t |λ) for α > 0. For α ≤ 0, for each
t > 0, πα(λ|t) can be considered as the weighted density corresponding to π(λ), with
the weight function F̄α(t |λ). Denote by Eα(�|t) the conditional expectation of �,
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that is,

Eα(�|t) =
∫ ∞

0
λπα(λ|t)dλ.

The derivative of Eα(�|t) with respect to t is

φα(t) = ∂

∂t
Eα(�|t) =

∫ ∞

0
λ

∂

∂t
πα(λ|t)dλ,

where

∂

∂t
πα(λ|t) = α

(
r(t, α)

π(λ)F̄α(t |λ)∫ ∞
0 π(λ)F̄α(t |λ)

− π(λ) f (t |λ)F̄α−1(t |λ)∫ ∞
0 π(λ)F̄α(t |λ)

)

= απα(λ|t) [r(t, α) − r(t |λ)] . (9)

Therefore,

φα(t) = α (r(t, α)Eα(�|t) − Eα(�r(t |�)))

= −αCovα(�, r(t |�)). (10)

Thus, if r(t |λ) is increasing in λ and α > 0 (α < 0), then Eα(�|t) is decreasing
(increasing) in t . If r(t |λ) is decreasing in λ and α > 0 (α < 0), then Eα(�|t)
is increasing (decreasing) in t . It should be noted also that when α = 0, we have
φα(t) = 0 and, therefore, Eα(�|t) does not depend on t .

Consider the following examples.

Example 2.1 Let F(t |λ)be theWeibull distributionwith parameters (λ, β). In this case,
r(t |λ) = λβ(λt)β−1, which is increasing in λ. Let � be described by the truncated
exponential distribution with parameter ϑ in the interval [0, 5]. Then

Eα(�|t) =
∫ 5

0
λ

ϑe−ϑλe−α(λt)β

∫ 5
0 ϑe−ϑλe−α(λt)βdλ

dλ.

Since r(t |λ) is increasing in λ, Eα(�|t) is a decreasing (increasing) function of t for
α > 0 (α < 0). Figure 1 depicts the plots of Eα(�|t) for different values of α and
ϑ = 1 and β = 1.5.

Example 2.2 Let the baseline distribution F(t) be exponential with parameter θ and
assume that the population’s heterogeneity is modelled by r(t |λ) = θ

λ
, with �

described by the truncated exponential distribution with parameter ϑ in the interval
[5,∞). In this case, we have

Eα(�|t) =
∫ ∞

5
λ

ϑe−ϑλe−α θ
λ
t

∫ ∞
5 ϑe−ϑλe−α θ

λ
t dλ

dλ.
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(a) (b)

Fig. 1 The plots of Eα(�|t) in Example 2.1: For α < 0 (left) and α > 0 (right) for parameter values ϑ = 1
and β = 1.5

(a) (b)

Fig. 2 The plots of Eα(�|t) in Example 2.2 for α < 0 (left) and α > 0 (right) for parameter values ϑ = 3
and θ = 2

Since r(t |λ) decreasing in λ, Eα(�|t) is an increasing (decreasing) function of t for
α > 0 (α < 0). Figure 2 shows the plots of Eα(�|t) for different values of α and
ϑ = 3 and θ = 2.

3 Additive andmultiplicativemodels

Two special important cases of r(t |λ) in (7) are the additive and the multiplicative
hazard models. In this section, we will discuss these two models. The results of this
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section are the extensions of the results of Finkelstein and Esaulova (2001). We will
formulate the conditions for the preservation of the IFR (DFR) closure property for
this specific models. It will be shown that the conditional PDF (8) plays an important
role in determining the shape of r(t, α).

3.1 Additive model

In the additive hazard model, we have r(t |λ) = r(t) + λ, where r(t) is the baseline
failure rate. Hence, the failure rate r(t, α) in this case is

r(t, α) =
∫ ∞

0
r(t |λ)π(λ|t)dλ = r(t) + Eα(�|t) (11)

and φα(t) in (10) becomes

φα(t) = −αVarα(�|t). (12)

The following lemma can be formulated as a consequence of this result .

Lemma 3.1 The conditional expectation of � in the additive model is a decreasing
(increasing) function of t ∈ [0,∞) for α > 0 (α < 0).

The following theorem explores the behavior of r(t, α) in the additive model.

Theorem 3.2 Let r(t) be an increasing (decreasing) convex (concave) function in
[0,∞) in the additive model. Assume that V arα(�|t) is decreasing in t ∈ [0,∞) and

αVarα(�|0) > (<)r ′(0). (13)

Then, r(t, α) decreases (increases) in [0, c) and increases (decreases) in [c,∞) for
α > 0 (α < 0), where c can be uniquely determined by αVar(�|t) = r ′(t) .

Proof from (11) and (12), we have

r ′(t, α) = r ′(t) + ∂

∂t
Eα(�|t) = r ′(t) − αVarα(�|t).

Since αVarα(�|0) > (<)r ′(0), we have r ′(0, α) < (>)0. Again, since r(t) is
increasing (decreasing) and convex (concave), we have (r ′(t))′ > (<)0 and r ′(t)
is increasing (decreasing) in t . On the other hand, when Varα(�|t) is decreasing
in t , then αVarα(�|t) is decreasing (increasing). Thus, there exists c > 0 such
that r ′(t) > (<)αVarα(�|t). This implies for all t > c, r ′(t, α) > (<)0 and
for all t < c, r ′(t, α) < (>)0. Consequently, r(t, α) is decreasing (increasing) in
[0, c) and is increasing (decreasing) in [c,∞) and c can be obtained from equation
αVarα(�|t) = r ′(t). This completes the proof. 
�
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Corollary 3.3 If other assumptions of Theorem 3.2 aremet, whereas instead of inequal-
ity (13), the following inequality holds

αVarα(�|0) ≤ (≥)r ′(0),

then, r(t, α) is increasing (decreasing) in [0,∞). This means that the IFR (DFR)-
closure property holds under this assumption for the α-mixture when α > 0 (α < 0).

3.2 Multiplicative model

In the multiplicative hazard model, we have r(t |λ) = λr(t). Hence,

r(t, α) =
∫ ∞

0
r(t |λ)π(λ|t)dλ = r(t)Eα(�|t) (14)

and

φα(t) = −αr(t)Varα(�|t). (15)

Thus,

r ′(t, α) = r ′(t)Eα[�|t] + r(t)
∂

∂t
Eα(�|t). (16)

From (16), the α-mixture will be IFR (DFR) if and only if for all t ∈ (0,∞)

r ′(t)
r(t)

≥ (≤) −
∂
∂t Eα(�|t)
Eα[�|t] . (17)

Similar to Lemma 3.1, we have the following result for the multiplicative model.

Corollary 3.4 From the identity (10), we conclude that the conditional expectation of
� in the multiplicative model is a decreasing (increasing) function of t ∈ (0,∞) for
α > 0 (α < 0). Also, by (15), the inequality in (17) can be rewritten as

r ′(t)
r2(t)

≥ (≤)
αVarα(�|t)
Eα[�|t] . (18)

Thus, the IFR (DFR) (DFR (IFR)) properties of the α-mixture model depend on the
behavior of the baseline failure rate function r(t) and the first and the second condi-
tional moments of �.

4 Stochastic comparisons of˛-mixtures

The goal of this section is to investigate partial orderings of finite α-mixtures in the
sense of the usual stochastic order and the hazard rate order. But first, we recall the
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definitions of the usual stochastic and the hazard rate orders and then obtain some
basic comparisons for the continuous α-mixtures

• The random variable X (with the CDF F) is said to be smaller than Y (with
the CDF G) in the usual stochastic order (denoted by X ≤st Y or F ≤st G) if
F̄(x) ≤ Ḡ(x) for all x , where F̄(x) and Ḡ(x) denote the survival functions of X
and Y , respectively.

• The randomvariable X is said to be smaller thanY in the hazard rate order (denoted
by X ≤hr Y or F ≤hr G) if Ḡ(x)/F̄(x) is increasing in x , for all x . When F
and G are absolutely continuous, F ≤hr G if and only if rX (x) ≥ rY (x), for
all x , where rX (x) and rY (x) denote the failure rates corresponding to F and G,
respectively.

The following theorems provide generalizations of Theorems 1.A.6 and 1.B.14 of
Shaked and Shanthikumar (2007) obtained for ordinary mixtures.

Theorem 4.1 Consider a family of SFs
{
F̄(t |λ), λ ∈ [0,∞)

}
. Suppose that �1 and

�2 are two random variables with distribution functions �1 and �2, respectively,
with supports in [0,∞). Assume that the SF of Ti , i = 1, 2, is given by

F̄i (t, α) =
(∫ ∞

0
F̄α(t |λ)d�i (λ)

) 1
α

.

If T |λ ≤st T |λ′ whenever λ ≤ λ′ and if �1 ≤st �2, then T1 ≤st T2.

Proof We consider three different cases for α.

• Assume first, that α > 0. By assumption T |λ ≤st T |λ′, we have: F̄(t |λ) is
increasing in λ and hence, F̄α(t |λ) is increasing in λ for all t since α > 0. Thus,
assumption �1 ≤st �2 implies that

∫ ∞

0
F̄α(t |λ)d�1(λ) ≤

∫ ∞

0
F̄α(t |λ)d�2(λ).

Raising both sides of the inequality to the power 1
α
results in T1 ≤st T2.

• Assume now that α → 0. In this case,

F̄gm,i (t) = exp

(∫ ∞

0
log(F̄(t |λ))d�i (λ)

)
.

Again, as T |λ ≤st T |λ′, F̄(t |λ) is increasing in λ for all t , and hence log(F̄(t |λ))

is increasing in λ for all t . Thus by �1 ≤st �2, we have

∫ ∞

0
log(F̄(t |λ))d�1(λ) ≤

∫ ∞

0
log(F̄(t |λ))d�2(λ).

Hence,

F̄gm,1(t) = exp

(∫ ∞

0
log(F̄(t |λ))d�1(λ)

)
≤ exp

(∫ ∞

0
log(F̄(t |λ))d�2(λ)

)
= F̄gm,2(t).
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This means that T1 ≤st T2 and the proof is completed.
• When α < 0, assumption T |λ ≤st T |λ′ and the property that F̄(t |λ) is increasing,
in λ for all t imply that F̄α(t |λ) is decreasing in λ for all t . Thus, by assumption
�1 ≤st �2, we get

∫ ∞

0
F̄α(t |λ)d�1(λ) ≥

∫ ∞

0
F̄α(t |λ)d�2(λ).

Raising both sides of the inequality to the power 1
α
, gives the result since α < 0.

Hence, for all values of α, assumptions of the theorem give T1 ≤st T2 . 
�
We need also the following definition and the theorem from Joag-dev et al. (1995).

Definition 4.2 Joag-dev et al. (1995). A pair of measurable real functions (g1, g2), is
said to satisfy positivity of the second order determinant (DP2) condition if

(i) g1 is nonnegative while g2 may take negative values.
(ii) for every x1 ≤ x2,

g1(x1)g2(x2) ≥ g1(x2)g2(x1).

Theorem 4.3 Joag-dev et al. (1995). Let (g1, g2) be a pair of functions satisfying
the DP2 property and the SFs F̄(t, λ) be T P2 in (λ, t). Suppose that for i = 1, 2,∫
gi (t)dFλ(t) exists and is finite. Further, suppose that gl(t) is increasing in t. Then

for i = 1, 2, hi (t) = ∫
gi (t)dFλ(t) is DP2, or equivalently,

∫
g1(t)dF1(t)

∫
g2(t)dF2(t) ≥

∫
g1(t)dF2(t)

∫
g2(t)dF1(t).

The following theorem extends Theorem 1.B.14 of Shaked and Shanthikumar (2007)
to the α-mixture family.

Theorem 4.4 Let assumptions of Theorem 4.1 be met. If T |λ ≤hr T |λ′, whenever
λ ≤ λ′ and if �1 ≤hr �2, then T1 ≤hr T2.

Proof • Let α > 0. By assumption T |λ ≤hr T |λ′, the function F̄(t |λ) and hence,
F̄α(t |λ) are T P2 as functions of λ ∈ [0,∞) and t ∈ R. By �1 ≤hr �2, �̄i (λ),
as a function of λ ∈ [0,∞) and i ∈ {1, 2}, is T P2. Also, F̄(t |λ) is increasing in λ

(because X ≤hr Y �⇒ X ≤st Y ) and so is F̄α(t |λ). Therefore, by Theorem 4.3

∫ ∞

0
F̄α(t |λ)d�1(λ)

∫ ∞

0
F̄α(t ′|λ)d�2(λ) ≥

∫ ∞

0
F̄α(t |λ)d�2(λ)

∫ ∞

0
F̄α(t ′|λ)d�1(λ).

If both sides are raised into power 1
α
, we get

F̄1(t, α)F̄2(t
′, α) ≥ F̄2(t, α)F̄1(t

′, α).

Thus, F̄i (t, α) is T P2 ∈ {1, 2} and t ∈ R.
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• The case α −→ 0 is similar to the case α > 0.
• Assume that α < 0. In this case, the initial inequality is reversed and since α < 0
it follows that:

F̄1(t, α)F̄2(t
′, α) ≥ F̄2(t, α)F̄1(t

′, α).

Consequently, F̄i (t, α) is T P2 ∈ {1, 2} and t ∈ R and hence, T1 ≤hr T2. This
completes the proof. 
�

4.1 Stochastic comparisons of finite˛-mixtures

The finite α-mixture of SFs, F̄i with PDF’s fi , for i = 1, 2, .., n, is defined by rela-
tionship (3). When α = 1, we get the arithmetic mixture of F̄i ’s. When α → 0, we
obtain the geometric means of F̄i ’s.

F̄gm(t) =
n∏

i=1

F̄ pi
i (t),

which can be considered as a generalized proportional hazards model. Note that,
when pi = 1

n , we get F̄n
gm(t) = ∏n

i=1 F̄i (t), which is the reliability function of a
series system that consists of n independent components, where the i − th component
has reliability F̄i (t). If α = −1, we get the harmonic means of F̄i ’s. In this case, the
reliability function can be written as

F̄hm(t) = 1∑n
i=1

pi
F̄i (t)

.

The corresponding PDF of (3) is as follows:

f (t, α) =
[

n∑
i=1

pi fi (t)F̄
α−1
i (t)

][
n∑

i=1

pi F̄
α
i (t)

] 1
α
−1

. (19)

Denote by r(t, α) and ri (t) the failure rate of the finite α-mixture and the failure
rate of the i − th component. Then

r(t, α) = f (t, α)

F̄(t, α)
=

n∑
i=1

ri (t)p
α
i (t), (20)

where

pα
i (t) = pi F̄α

i (t)∑n
i=1 pi F̄

α
i (t)

.
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The following theorem extends a result of Navarro and del Aguila (2017) on arith-
metic mixture of survival functions to the α-mixture family

Theorem 4.5 Let Fp(t, α) and Fq(t, α) be two n-component finite α-mixture models
with mixing probabilities p = (p1, ..., pn) and q = (q1, ..., qn), respectively. Assume
that

F1 ≥st F2 ≥st ... ≥st Fn .

Then,

Fp(t, α) ≤st Fq(t, α)

if and only if p ≥st q (i.e.
∑k

i=1 qi ≥ ∑k
i=1 pi for all k ∈ {1, 2, ..., n − 1}).

Proof The “if ” part of the theorem follows from Theorem 4.1 . We will prove now the
“only if ” part of this theorem. First, assume that α > 0. From Fp(t, α) ≤st Fq(t, α),
we have

[
n∑

i=1

pi F̄
α
i

] 1
α

≤
[

n∑
i=1

qi F̄
α
i

] 1
α

.

Since α > 0,

[
n∑

i=1

pi F̄
α
i

]
≤

[
n∑

i=1

qi F̄
α
i

]
.

From the assumption that F1 ≥st F2 ≥st ... ≥st Fn with the choice F̄1 = F̄2 = ... =
F̄k = 1 and F̄k+1 = ... = F̄n = 0, we have

∑k
i=1 pi ≤ ∑k

i=1 qi . That is, p ≥st q.
If α → 0, from Fgm,p ≤st Fgm,q we have

F̄ p1
1 ...F̄ pk

k ...F̄
1−∑n−1

i=1 pi
n ≤ F̄q1

1 ...F̄qk
k ...F̄

1−∑n−1
i=1 qi

n .

This is equivalent to

1 ≤ (
F̄1
F̄n

)q1−p1 ...(
F̄k
F̄n

)qk−pk ...(
F̄n−1

F̄n
)qn−1−pn−1 .

From the assumption F1 ≥st F2 ≥st ... ≥st Fn with choosing F̄1 = F̄2 = ... = F̄k =
1 and F̄k+1 = ... = F̄n−1 = F̄n , we have

1 ≤ (F̄n)
(
∑k

i=1 pi−∑k
i=1 qi ).
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This, in turn, implies that
∑k

i=1 qi ≥ ∑k
i=1 pi , i.e., p ≥st q.

Assume that α < 0. From Fp(t, α) ≤st Fq(t, α). we have

[
n∑

i=1

pi F̄
α
i

] 1
α

≤
[

n∑
i=1

qi F̄
α
i

] 1
α

.

Since α < 0, we have

[
n∑

i=1

qi F̄
α
i

]
≤

[
n∑

i=1

pi F̄
α
i

]
.

From the assumption F1 ≥st F2 ≥st ... ≥st Fn with the choice F̄1 = F̄2 = ... =
F̄k = 1 and F̄k+1 = ... = F̄n = F̄n , we have

[
k∑

i=1

qi + F̄α
n

n∑
i=k+1

qi

]
≤

[
k∑

i=1

pi + F̄α
n

n∑
i=k+1

pi

]

or

[
k∑

i=1

qi + F̄α
n (1 −

k∑
i=1

qi )

]
≤

[
k∑

i=1

pi + F̄α
n (1 −

k∑
i=1

pi )

]
.

Thus,

[
k∑

i=1

qi (1 − F̄α
n )

]
≤

[
k∑

i=1

pi (1 − F̄α
n )

]
.

As α < 0 and 0 ≤ F̄n ≤ 1, then (1 − F̄α
n ) ≤ 0. Hence,

∑k
i=1 qi ≥ ∑k

i=1 pi , i.e.,
p ≥st q completing the proof. 
�

The following theorem gives an extension to the “if” part of Theorem 4.5.

Theorem 4.6 Let Fp(t, α) and Gq(t, α) be two n-component finite α-mixture models
with mixing probabilities p = (p1, ..., pn) and q = (q1, ..., qn), respectively. Assume
that

(i) F1 ≥st F2 ≥st ...≥st Fn,
(ii) p ≥st q (i.e. p1 + ... + pk ≤ q1 + ... + qk for all k ∈ {1, 2, ..., n − 1}),
(iii) Fi ≤st Gi for all i ∈ {1, ..., n}.
Then, we have:

Fp(t, α) ≤st Gq(t, α).
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Proof First, we prove that Fq(t, α) ≤st Gq(t, α). Let α > 0. From Fi ≤st Gi for
i = 1, ..., n, we have F̄i (t) ≤ Ḡi (t) for any t , i = 1, ..., n. Since α > 0, F̄α

i ≤ Ḡα
i

for i = 1, ..., n. Thus,

n∑
i=1

qi F̄
α
i ≤

n∑
i=1

qi Ḡ
α
i .

Consequently,

[
n∑

i=1

qi F̄
α
i

] 1
α

≤
[

n∑
i=1

qi Ḡ
α
i

] 1
α

.

This means Fq(t, α) ≤st Gq(t, α) for α > 0.
Let α < 0. The assumption Fi ≤st Gi implies that F̄α

i ≥ Ḡα
i for i = 1, ..., n.

Thus,

n∑
i=1

qi Ḡ
α
i ≤

n∑
i=1

qi F̄
α
i .

and since α < 0, we have

[
n∑

i=1

qi F̄
α
i

] 1
α

≤
[

n∑
i=1

qi Ḡ
α
i

] 1
α

.

This means Fq(t, α) ≤st Gq(t, α) for α < 0.
If α → 0, F̄gm,q = ∏n

i=1 F̄
qi
i and Ḡgm,q = ∏n

i=1 Ḡ
qi
i and from assumption

F̄i (t) ≤ Ḡi (t) for i = 1, ..., n, we have

n∏
i=1

F̄qi
i ≤

n∏
i=1

Ḡqi
i .

Thus, Fgm,q(t) ≤st Ggm,q(t) and for all values of α, we obtain

Fq(t, α) ≤st Gq(t, α). (21)

From conditions (i), (ii) and Theorem 4.5 we have: Fp(t, α) ≤st Fq(t, α). By relation
(21), Fq(t, α) ≤st Gq(t, α). Thus, Fp(t, α) ≤st Gq(t, α) and hence, the proof is
complete. 
�

4.2 The hazard rate order of˛-mixture

The following theorem is an extension of Proposition 7 of Navarro and del Aguila
(2017).
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Theorem 4.7 Let Fp(t, α) and Fq(t, α) be two n-component finite α-mixture models
with mixed proportions p = (p1, ..., pn) and q = (q1, ..., qn), respectively. Assume
that

F1 ≥hr ... ≥hr Fn .

Then,

Fp(t, α) ≤hr Fq(t, α)

if and only if

H(v2, v3, ..., vn) =
[
q1 + q2vα

2 + q3(v2v3)α + ... + qn(v2...vn)α

p1 + p2vα
2 + p3(v2v3)α + ... + pn(v2...vn)α

] 1
α

is decreasing in [0, 1]n−1. 1

Proof The case of α → 0 follows from Navarro and del Aguila (2017). In what
follows, we assume that α �= 0. The assumption F1 ≥hr ... ≥hr Fn implies that the

function F̄i+1(t)
F̄i (t)

∈ [0, 1] is decreasing in t , i = 1, ..., n− 1. The ratio of the respective
reliability functions can be written as

F̄q(t, α)

F̄p(t, α)
=

[
q1 + q2vα

2 + q3(v2v3)α + ... + qn(v2...vn)α

p1 + p2vα
2 + p3(v2v3)α + ... + pn(v2...vn)α

] 1
α = H(v2, v3, ..., vn)

for all t , where vi+1 = F̄i+1(t)
F̄i (t)

, i = 1, ..., n − 1.

To prove the ’if’ part, note that, for α �= 0, as F̄i+1(t)
F̄i (t)

is decreasing, H is also

decreasing. Hence, Fp(t, α) ≤hr Fq(t, α). This completes the ‘if’ part of the theorem.
To prove the ‘only if’ part, we need to show that under the conditions of the theorem,

if Fp(t, α) ≤hr Fq(t, α), H is decreasing over (0, 1)n−1. For fixed u ≤ v2 with
u = (u2, ..., un) and v = (v2, ..., vn), we have to show that H(u) ≥ H(v). Consider
the following reliability functions from Navarro and del Aguila (2017)

F̄i (t) =

⎧⎪⎪⎨
⎪⎪⎩

1, t < 1
v2...vi , 1 < t < 2
u2...ui , 2 < t < 3
0, t ≥ 3

1 We say that a function h : Rm → R is increasing (decreasing) if h(x1, ..., xm ) ≤ (≥)h(y1, ..., ym ) for
all xi ≤ yi , i = 1, ...,m.
2 For two vectors u and v, we say that u ≤ v if for all i , i = 2, ..., n, ui ≤ vi .

123



On Some Properties of α-Mixtures 1231

for i = 1, ..., n. It is easy to see that F1 ≥hr ... ≥hr Fn . On the other hand,
Fp(t, α) ≤hr Fq(t, α) implies

F̄q(1, α)

F̄p(1, α)
≤ F̄q(2, α)

F̄p(2, α)
,

which is equivalent to H(u) ≥ H(v) for α �= 0.
This completes the proof. 
�

Theorem 4.8 Let Fp(t, α) and Gq(t, α) be two n-component finite α-mixture models
with mixed proportions p = (p1, ..., pn) and q = (q1, ..., qn), respectively. Suppose
that

(i) G1 ≥hr ... ≥hr Gn and F1 ≥hr ... ≥hr Fn;

(ii) F̄i (t)
Ḡi (t)

is increasing (decreasing) in i ∈ {1, 2, ..., n};
(iii) Fi ≤hr Gi for all i ∈ {1, 2, ..., n};
(iv) piq j ≤ p jqi for all 1 ≤ i ≤ j ≤ n.

Then, Fp(t, α) ≤hr Gq(t, α) for α > 0 (α < 0).

Proof First, we prove that, for α �= 0, Fp(t, α) ≤hr Fq(t, α). In order to prove this,

we have to show that F̄q (t,α)

F̄p(t,α)
is increasing in t . That is, we should show that

R(t) ≡ [A(t)]1/α,

is increasing in t , where

A(t) =
[∑n

i=1 qi F̄
α
i (t)∑n

i=1 pi F̄
α
i (t)

]
.

Differentiating R(t) with respect to t , gives

R′(t) = 1

α
A′(t)[A(t)] 1

α
−1,
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where

A′(t) sign= α

⎧⎨
⎩−

n∑
i=1

qi fi (t)F̄
α−1
i (t)

n∑
j=1

p j F̄
α
j (t) +

n∑
i=1

pi fi (t)F̄
α−1
i (t)

n∑
j=1

q j F̄
α
j (t)

⎫⎬
⎭

=α

⎧⎨
⎩

n∑
i=1

n∑
j=1

(piq j − p jqi ) fi (t)F̄
α−1
i (t)F̄α

j (t)

⎫⎬
⎭

=α

⎧⎨
⎩

n−1∑
i=1

n∑
j=i+1

(piq j − p jqi )
(
fi (t)F̄

α−1
i (t)F̄α

j (t) − f j (t)F̄
α−1
j (t)F̄α

i (t)
)⎫⎬
⎭

=α

⎧⎨
⎩

n−1∑
i=1

n∑
j=i+1

(piq j − p jqi )
(
ri (t) − r j (t)

)
F̄α
i (t)F̄α

j (t)

⎫⎬
⎭ .

Consequently,

R′(t) sign=
⎧⎨
⎩

n−1∑
i=1

n∑
j=i+1

(piq j − p jqi )
(
ri (t) − r j (t)

)
F̄α
i (t)F̄α

j (t)

⎫⎬
⎭ .

As Fi ≥hr Fj for i ≤ j from condition (i), we have ri (t) − r j (t) ≤ 0 for i ≤ j . From
condition (iv), piq j − p jqi ≤ 0. Hence , R′(t) ≥ 0 which, in turn, implies that for
α �= 0

Fp(t, α) ≤hr Fq(t, α). (22)

Now, let us prove that Fp(t, α) ≤hr G p(t, α) for α > 0.
From (20), the expressions for the failure rate functions that correspond to Fp(t, α)

and Gp(t, α) can be written as

rF (t, α) =
n∑

i=1

rFi (t)pi (t)

and

rG(t, α) =
n∑

i=1

rGi (t)qi (t)

respectively, where qi (t) = pi Ḡα
i (t)∑n

i=1 pi Ḡα
i (t)

for i = 1, ..., n. To prove Fp(t, α) ≤hr

G p(t, α) for α > 0, we need to show that ψ(t) = rF (t, α) − rG(t, α) is non-negative
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for all t ≥ 0. Note that,

ψ(t) =
n∑

i=1

rFi (t)pi (t) −
n∑

i=1

rGi (t)qi (t)

≥
n∑

i=1

rGi (t)pi (t) −
n∑

i=1

rGi (t)qi (t) ≡ ξ(t),

where the inequality follows from condition (iii). Thus, it suffices to show that ξ(t)
is non-negative for all t ≥ 0. Consider two non-negative discrete random variables
W and V on a sample space {1, ..., n} with probability mass functions qi (t) and
pi (t),i = 1, ..., n, respectively. Thus ξ(t) can be written as

ξ(t) = E[φ(V )] − E[φ(W )], (23)

where φ(i) = rGi (.), i = 1, ..., n. To prove that (23) is non-negative, it is sufficient
to show that φ(i) is increasing in i and W ≤st V . Based on condition (i), we have
rG1(t) ≤ ... ≤ rGn (t) for all t ≥ 0. Thus, φ(i) is increasing in i . On the other hand,
one can see that

pi (t)

qi (t)
∝ (

F̄i (t)

Ḡi (t)
)α i ∈ {1, ..., n}.

Hence, condition (ii) implies that pi (t)
qi (t)

is increasing in i ∈ {1, ..., n}, which means that
W ≤lr V , which in turn implies W ≤st V . Thus, ξ(t) is non-negative and for α > 0,

Fp(t, α) ≤hr G p(t, α). (24)

Under assumptions of the theorem, from (22) and (24), we conclude that for α > 0,
Fq(t, α) ≤hr Gq(t, α).

The case α < 0 can be considered in a similar way. This completes the proof. 
�
Remark 4.1 When α = 1, a result similar to Theorem 4.8 (with slightly different
conditions) is obtained by Amini-Seresht and Zhang (2017).

In Theorem 4.8, we assumed that α �= 0. In the following theorem, we prove a result
for α → 0, under conditions different from those given in Theorem 4.8.

Theorem 4.9 Let Fgm,p(t) and Ggm,q(t) be two n-component finite α-mixture models
when α → 0 with mixing proportions p = (p1, ..., pn) and q = (q1, ..., qn), respec-
tively. Assume that

(i) F1 ≥hr ... ≥hr Fn;
(ii) p ≥st q (i.e. p1 + ... + pk ≤ q1 + ... + qk for all k ∈ {1, 2, ..., n − 1});
(iii) Fi ≤hr Gi for all i ∈ {1, 2, ..., n}.
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Then,

Fgm,p(t) ≤hr Ggm,q(t).

Proof First we prove that Fgm,p(t) ≤hr Ggm,p(t). Denote by rF,p(t) and rG,p(t) the
failure rates of Fgm,p(t) and Ggm,p(t), respectively. Thus,

rF,p(t) =
n∑

i=1

pirFi (t)

and

rG,p(t) =
n∑

i=1

pirGi (t).

We must to show that rF,p(t) ≥ rG,p(t) or, equivalently, rF,p(t) − rG,p(t) ≥ 0.
Obviously,

rF,p(t) − rG,p(t) =
n∑

i=1

pi (rFi (t) − rGi (t)).

From Fi ≤hr Gi , we have: rFi (t) − rGi (t) ≥ 0 and thus,

Fgm,p(t) ≤hr Ggm,p(t). (25)

Under assumptions F1 ≥hr ... ≥hr Fn and
∑n

i=k qi ≤ ∑n
i=k pi for all

k ∈ {1, 2, ..., n − 1}, it follows from results of Section 5 in Navarro and del Aguila
(2017), that Fgm,p(t) ≤hr Fgm,q(t). On the other hand , from (25), it can be derived
that Fgm,q(t) ≤hr Ggm,q(t). Hence, we obtain that Fgm,p(t) ≤hr Ggm,q(t). 
�
Remark 4.2 It was assumed while defining the geometric mixture model F̄gm(t) in
(3) that

∑n
i=1 pi = 1. This is a special case of the generalized proportional hazards

model defined in Navarro and del Aguila (2017) for the case when pi ’s are arbitrary
positive real numbers. It can be easily shown that our results obtained throughout the
paper for the geometric model, remain valid for this case as well.

5 Bending properties of˛-mixtures

In this section, we provide some generalizations of results on “bending properties” for
’ordinary’ mixture failure rates (see Finkelstein and Esaulova (2006) and Badia and
Cha (2017)). These properties are about comparing the general α-mixture failure rate
r(t, α) with its specific case when α = 0, which is the geometric mixture failure rate
that was defined in the Introduction. The latter is just the mixture of sub-populations
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failure rates via the unconditional mixing distribution. See the discussion on impor-
tance of these comparisons for heterogeneous populations modelling in Finkelstein
(2008).

First, we need the following definitions:

Definition 5.1 Theweak bending down (up) property holds for the failure rate function
r(t, α) if

r(t, α) ≤ (≥)rgm(t), ∀t > 0.

In addition to this inequality, if

rgm(t) − r(t, α) ↑ (↓) in t > 0, (26)

holds, then the strong bending down (up) property holds for the failure rate r(t, α).

In Definition 5.1, if we replace the condition (26) by “ r(t,α)
rgm (t) is decreasing (increas-

ing) in t” then we say that the modified strong bending down (up) property holds for
the failure rate r(t, α).

We need also the following lemma ( Cuadras (2002)):

Lemma 5.2 Let � be a random variable and f (x), g(x) be real functions.

(a) If both f (x) and g(x) are increasing; or if both f (x) and g(x) are decreasing,
then E[ f (�)g(�)] ≥ E[ f (�)]E[g(�)].

(b) If f (x) is increasingand g(x) is decreasing, then E[ f (�)g(�)] ≤ E[ f (�)]E[g(�)].
The following theorem shows theweak bending down (up) property forα > 0 (α < 0).

Theorem 5.3 Let T be the α-mixture of the family of random variables {T |λ : λ ∈
[0,∞)} with the mixing random variable �. If T |λ ↑ [↓] in λ in hr stochastic order,
then r(t, α) ≤ (≥) rgm(t) for α > 0 (α < 0).

Proof The proof for the case of finite α-mixture can be found in Asadi et al. (2019).
The proof for general mixtures is similar. 
�

Let us consider the following example.

Example 5.1 Let T |λ have Pareto distribution with hazard rate, r(t |λ) = λ
β+t , where

λ > 0 and β > 0 are the shape and the location parameters, respectively. Obviously,
for fixed β, r(t |λ) is an increasing function of λ and hence T |λ ↓ in hr stochastic
order. Thus, for any mixing distribution with support in [0,∞), the bending down (up)
property holds in the weak sense for the hazard rate for α > 0 (α < 0). Let � have
an exponential distribution with density π(λ) = θe−θλ, λ > 0, θ > 0. Thus

rgm(t) =
∫ ∞

0

λ

β + t
θe−θλ dλ = 1

θ(β + t)
,
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Fig. 3 The plot of rgm (t) and r(t, α) for different values of α, for parameter values β = 1 and θ = 5, in
Example 5.1

and

r(t, α) =
∫ ∞

0

λ

β + t

(
β

β+t )
λαθe−θλ

∫ ∞
0 (

β
β+t )

λαθe−θλdλ
dλ = 1

(β + t)(θ − α ln( β
β+t ))

.

Figure 3 shows the plots of rgm(t) and r(t, α) for different values of α, α =
1, 1.5,−1,−1.5, for β = 1 and θ = 5. (Note that in the case of α < 0 we must
have θ > α ln( β

β+t )).

The following theorem establishes conditions for a strong bending property to hold.
It will be proved under the following regularity conditions. We assume that:

(i) the support of the random variable T |λ does not depend on �;
(ii) partial derivatives exist.
(iii) interchanging derivatives and integrals are allowed.

Theorem 5.4 Let T be the α-mixture for the family of random variables {T |λ : λ ∈
[0,∞)} with the mixing random variable �. Assume that ∂

∂t r(t |λ) is decreasing
[increasing] in λ and T |λ ↑ [↓] in λ in the usual stochastic order. Then the strong
bending down (up) property holds for α > 0 (α < 0). That is, the weak bending down
(up) property holds for α > 0 (α < 0) and

rgm(t) − r(t, α) = E[r(t |�)] − E[r(t |�)F̄α(t |�)]
E[F̄α(t |�)]
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is an increasing (decreasing) function of t for α > 0 (α < 0).

Proof Let A(t) = rgm(t) − r(t, α). We show that A′(t) is non negative (non positive)
for α > 0 (α < 0). After some algebra, we have

A′(t) =E[ ∂

∂t
r(t |�)] − E

[
∂
∂t r(t |�)F̄α(t |�)

]
E[F̄α(t |�)]

− α{E[ f (t |�)F̄α−1(t |�)r(t |�)]E[F̄α(t |�)] − E2[ f (t |�)F̄α−1(t |�)]}
E2[F̄α(t |�)] .

Let h(t |�) = f (t |�)F̄
α
2 −1(t |�) and g(t |�) = F̄

α
2 (t |�). Then, the Cauchy-

Schwartz inequality implies that

E2[ f (t |�)F̄α−1(t |�)] = E2(h(t |�)g(t |�))

≤ E(h2(t |�))E(g2(t |�))

= E[ f (t |�)F̄α−1(t |�)r(t |�)]E[F̄α(t |�)].

Hence

A′(t) ≥ (≤) E[ ∂

∂t
r(t |�)] − E[ ∂

∂t r(t |�)F̄α(t |�)]
E[F̄α(t |�)] .

From lemma 5.2 (b) for α > 0 (lemma 5.2 (a) for α < 0) with functions f (λ) =
∂
∂t r(t |λ) and g(λ) = F̄α(t |λ), which are monotone in the different (same) directions
for α > 0 (α < 0), under the assumptions, we have

E[ ∂
∂t r(t |�)F̄α(t |�)]
E[F̄α(t |�)] ≤ (≥)

E[ ∂
∂t r(t |�)]E[F̄α(t |�)]

E[F̄α(t |�)] = E[ ∂

∂t
r(t |�)].

Hence, A(t) is ↑ (↓) in t .
The weak bending down (up) property follows by monotonicity of A and the fact

that

r(0, α) = E[r(0|�)F̄α(0|�)]
E[F̄α(0|�)] = E[r(0|�)] = rgm(0).


�
Consider the following example as an illustration of the strong bending property for
hazard rate for α-mixtures.

Example 5.2 Let T |λ have an exponential distribution with hazard rate, r(t |λ) = λ.
Thus all conditions of Theorem 5.4 are met. Now, assume that λ ∼ G(θ, 1), where
G(θ, 1) is Gamma distribution with parameters θ and 1. Then,

rgm(t) =
∫ +∞

0
λ

λθ−1e−λ

�(θ)
dλ = θ,
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and

r(t, α) =
∫ +∞

0
λ

(e−λt )αλθ−1e−λ

∫ +∞
0 (e−λt )αλθ−1e−λ dλ

dλ = θ

(1 + αt)
.

Thus,

A(t) = rgm(t) − r(t, α) = θ (
αt

1 + αt
),

which is an increasing (decreasing) function of t for α > 0 (α < 0). Thus the strong
bending down (up) property holds for α > 0 (α < 0).

The next theorem provides a result on the modified strong bending property of
α-mixtures.

Theorem 5.5 Let T be the α-mixture of the family of random variables {T |λ : λ ∈
[0,∞)} with the mixing random variable �. Assume that ∂

∂t r(t |λ) is decreasing
[increasing] in λ, F̄(t |λ) is increasing [decreasing] in λ and T |λ is DFR for all
λ. Then T satisfies the modified strong bending down (up) property for α > 0 (α < 0).
That is,

r(t, α)

rgm(t)

is the decreasing (increasing) function of t for α > 0 (α < 0).

Proof The proof follows using the same arguments as in part (a) of Theorem 3 of
Badia and Cha (2017). 
�
Theorem 5.6 Let r(t) be the baseline failure rate and let the family of random vari-
ables, {T |λ : λ > 0}, satisfy the proportional hazards model, r(t |λ) = λr(t). Then the
α-mixture for this family possesses the modified strong bending down (up) property
for α > 0 (α < 0).

Proof Using (7) and considering representation F̄(t |λ) = exp(− ∫ t
0 r(u|λ)du), the

α-mixture failure rate can be written as

r(t, α) = E[r(t |�)F̄α(t |�)]
E[F̄α(t |�)]

= r(t)
E
[
� exp

{
−α�

∫ t
0 r(u)du

}]

E
[
exp

{
−α�

∫ t
0 r(u)du

}]

= r(t)rexp

(
α

∫ t

0
r(u)du

)
, (27)

where, the second equality follows from the assumption r(t |λ) = λr(t), and in the
last equality rexp(t) is the failure rate of the α-mixture of a family of random variables
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{T |λ : λ > 0}, in which T |λ is exponential with mean 1
λ
. The exponential distribution

isDFR (IFR) and theDFR (IFR) property is preserved underα-mixture forα > 0 (α <

0) (see, Asadi et al. (2019)). Therefore, rexp(t) for any mixing random variable λ is a
decreasing (increasing) function in t . According to (27), we have

r(t, α)

rgm(t)
= 1

E[�]rexp
(

α

∫ t

0
r(u)du

)

and the result follows since rexp(t) is decreasing (increasing) in t for α > 0 (α < 0).

�

6 Conclusions

The α-mixture model, as a parametric model, provides the unified tool to study various
heterogeneous populations that were described in the literature by ordinary mixtures,
geometric mixtures and harmonic mixtures of survival functions.

In this paper, we have studied stochastic comparisons and ageing properties of
α-mixtures of survival functions. In particular, we have investigated the α-mixture
under particular cases of additive and multiplicative hazards models. It was proved
that the aging characteristics of α-mixture model directly depend on the properties
of the baseline failure rate functions and the corresponding conditional moments of
mixing distributions. Stochastic comparisons of finite α-mixtures in the sense of the
usual stochastic order and the hazard rate order were also discussed.

We have extended the results available in the literature on “bending properties”
for mixture failure rates. More specifically, we compared the the failure rate of the
α-mixture, as a function of parameter α, with its specific case when α = 0. This latter
case corresponds to the geometric mixture failure rate, which is just the mixture of
sub-populations failure rates via the unconditional mixing distribution.
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