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Abstract
In this paper, we study the number of failed components of a coherent system. We
consider the case when the component lifetimes are discrete random variables that
may be dependent and non-identically distributed. Firstly, we compute the probability
that there are exactly i , i = 0, . . . , n − k, failures in a k-out-of-n system under the
condition that it is operating at time t . Next, we extend this result to other coherent
systems. In addition, we show that, in the most popular model of independent and
identically distributed component lifetimes, the obtained probability corresponds to
the respective one derived in the continuous case and existing in the literature.

Keywords Coherent system · k-out-of-n system · Discrete lifetime distribution ·
Reliability · Order statistics

Mathematics Subject Classification 62N05 · 62E15 · 60K10

1 Introduction

Coherent systems are of special importance in reliability theory since they have been
widely used to model mathematically sophisticated technical devices composed of
simple elements. The system is said to be coherent if its structure function is increasing
in every component and such that each component is relevant (a component is irrelevant
if it does not matter whether or not it is working). The classical monograph here is
Barlow and Proschan (1975). Important examples for coherent systems are k-out-of-n
systems. The k-out-of-n system works as long as at least k of its components work.
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The cases k = 1 and k = n correspond to parallel and series systems, respectively.
During the last few years, the properties of coherent systems have been studied quite
extensively in the literature, see for example Navarro and Burkschat (2011), Eryilmaz
(2013), Kelkinnama et al. (2015), Nair et al. (2018), Ashrafi et al. (2018), Hazra and
Finkelstein (2019), Kelkinnama and Asadi (2019), and the references therein.

In real life situations, we may have only partial information on the status of the
system or its components. Based on this partial information many authors paid their
attention to the residual lifetime and inactivity time of coherent systems, especially
k-out-of-n systems. For more details and recent studies, we refer the reader to Tavan-
gar (2016), Navarro et al. (2017), Eryilmaz and Bayramoglu (2018), Navarro and
Calì (2019) and Goli (2019). Most results in this area have been obtained under the
assumption that the component lifetimes are absolutely continuous random variables
(rvs). The analysis is much easier than in the discrete case, where there are possi-
ble ties between component failures with non-zero probability. However, the discrete
models occur very often, for example, when the system performs a task repetitively
and its components have certain probabilities of breakdown upon each cycle or when
the component lifetimes represent the numbers of turn-on and switch-off up to fail-
ures. Reliability properties of coherent systems composed of components with discrete
lifetimes have been investigated by Weiss (1962), Young (1970), Tank and Eryilmaz
(2015), Dembińska (2018), Dembińska et al. (2021), Davies and Dembińska (2019)
and Dembińska and Goroncy (2020). Dembińska and Jasiński (2020) studied max-
imum likelihood estimation based on discrete component lifetimes of a k-out-of-n
system. Navarro et al. (2008), Miziuła and Rychlik (2014) or Eryilmaz et al. (2016)
considered the systems with arbitrary lifetime distributions which can be discrete in
particular.

For coherent systems, among other things, the authors have been interesting in the
number ofworking components while the system is still working, see Eryilmaz (2010).
In contrast, Ross et al. (1980) focused on the number of component failures in systems
whose component lifetimes are exchangeable. Asadi and Berred (2012) determined
the probability that there are exactly i , i = 0, . . . , n − k, failures in the k-out-of-n
system under the condition that it is operating at time t and the component lifetimes
are independent and identically distributed (IID) absolutely continuous rvs. Several
properties of this probability were considered. Further, these results were extended
to the coherent systems. Our aim is to compute this probability in the case of k-out-
of-n systems and next coherent systems consisting of n components whose discrete
lifetimes are possibly dependent and not necessarily identically distributed (DNID)
rvs. This was done in Sections 2 and 3, respectively. Moreover, we will prove that the
formulas obtained in the most popular case, that is in the model of IID rvs, correspond
to the respective ones derived by Asadi and Berred (2012).

Throughout the paper we use the following notation. Let Pn denote the set of
all permutations ( j1, j2, . . . , jn) of (1, 2, . . . , n), and Pn

s stand for the subset of Pn

consisting only of permutations satisfying

j1 < j2 < · · · < js, js+1 < js+2 < · · · < jn .
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2 Results on failed components in k-out-of-n systems

Consider a k-out-of-n system composed of n components whose discrete lifetimes
T1, . . . , Tn are allowed to be DNID rvs having cumulative distribution functions (cdfs)
Fi (t) = P(Ti ≤ t), i = 1, . . . , n, and taking values in finite or infinite subsets of the
set of non-negative integers. Then T1:n ≤ . . . ≤ Tn:n stand for the respective order
statistics. Since a k-out-of-n system functions as long as at least k of their components
function, its lifetime Tk,n is the (n − k + 1)th smallest of the component lifetimes, i.e.
Tk,n = Tn−k+1:n .

Let us denote by Nk,n(t) the number of failed components of a k-out-of-n system
at time t . We assume that at time t the system is still working, i.e. Tk,n > t . It is of
interest to determine the following conditional probability

pt (i, k, n) = P(Nk,n(t) = i |Tk,n > t), i = 0, 1, . . . , n − k.

Observe that

Sk,n(t) = n − Nk,n(t)

describes the number of working components of a used system at time t . Therefore
studying Nk,n(t) and Sk,n(t) is equivalent.

To compute pt (i, k, n), note that the event {Nk,n(t) = i} takes place if and only if
the event {Ti :n ≤ t < Ti+1:n} occurs. Then

pt (i, k, n) = P(Nk,n(t) = i, Tk,n > t)

P(Tk,n > t)
= P(Ti :n ≤ t < Ti+1:n, Tn−k+1:n > t)

P(Tn−k+1:n > t)

= P(Ti :n ≤ t < Ti+1:n)
P(Tn−k+1:n > t)

, i = 0, 1, . . . , n − k. (1)

By (1) we see at once that we need a method of dealing with order statistics corre-
sponding to discrete rvs which are DNID. Dembińska (2018) obtained the formula for
the probability of the event {Ti :n ≤ t, Ti+1:n > t}

P (Ti :n ≤ t, Ti+1:n > t) =
∑

( j1,..., jn)∈Pn
i

P
(

( j1,..., jn)Ht
i

)
, (2)

where

( j1,..., jn)Ht
i =

(
i⋂

l=1

{Tjl ≤ t}
)

∩
(

n⋂

l=i+1

{Tjl > t}
)

. (3)

Knowing the dependence structure between T1, . . . , Tn , we can give the simplified
forms of (2). Under the exchangeability assumption, the system components have
identical distributions, but they affect one another within the system. If T1, . . . , Tn
are exchangeable, that is for any ( j1, . . . , jn)∈ Pn , the random vector (Tj1 , . . . , Tjn )

has the same distribution as (T1, . . . , Tn) or if T1, . . . , Tn are independent, then we
have
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P(Ti :n ≤ t, Ti+1:n > t)

=

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(n
i
)
P

((
i⋂

l=1
{Tl ≤ t}

)
∩
(

n⋂
l=i+1

{Tl > t}
))

, if T1, . . . , Tn are exchangeable,

∑

( j1,..., jn)∈Pn
i

(
i∏

l=1
Fjl (t)

)(
n∏

l=i+1
F jl (t)

)
, if T1, . . . , Tn are independent.

(4)

Using (3), Davies and Dembińska (2019) proposed the representation of the relia-
bility function of Tk,n

P(Tk,n > t) = P(Tn−k+1:n > t) =
n−k∑

s=0

∑

( j1,..., jn)∈Pn
s

P
(

( j1,..., jn)Ht
s

)
. (5)

As before, expression (5) has the closed-forms in particular cases. Thus

P(Tn−k+1:n > t)

=

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

n−k∑
s=0

(n
s

)
P

((
s⋂

l=1
{Tl ≤ t}

)
∩
(

n⋂
l=s+1

{Tl > t}
))

, if T1, . . . , Tn are exchangeable,

n−k∑
s=0

∑
( j1,..., jn)∈Pn

s

(
s∏

l=1
Fjl (t)

)(
n∏

l=s+1
F jl (t)

)
, if T1, . . . , Tn are independent.

(6)

Combining (2) with (5) and (4) with (6), we prove the following result.

Theorem 1 Consider a k-out-of-n system consisting of n elements whose discrete
lifetimes T1, . . . , Tn are assumed to be DNID rvs. Then for any i = 0, . . . , n − k, we
get

pt (i, k, n) =
∑

( j1,..., jn)∈Pn
i
P
(
( j1,..., jn)Ht

i

)

∑n−k
s=0

∑
( j1,..., jn)∈Pn

s
P
(
( j1,..., jn)Ht

s

) , (7)

where ( j1,..., jn)Ht
v are defined in (3). In particular, we have

pt (i, k, n)

=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(ni)P

((
i⋂

l=1
{Tl≤t}

)
∩
(

n⋂
l=i+1

{Tl>t}
))

n−k∑
s=0

(ns)P

((
s⋂

l=1
{Tl≤t}

)
∩
(

n⋂
l=s+1

{Tl>t}
)) , if T1, . . . , Tn are exchangeable,

∑

( j1,..., jn )∈Pn
i

(
i∏

l=1
Fjl (t)

)(
n∏

l=i+1
F jl (t)

)

n−k∑
s=0

∑

( j1,..., jn )∈Pn
s

(
s∏

l=1
Fjl (t)

)(
n∏

l=s+1
F jl (t)

) , if T1, . . . , Tn are independent.

(8)
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Example 1 Let us consider a system that consists of four components which are at risk
for failure in a discretemanner. This implies that the lifetimes are discretely distributed.
During such a lifetime, there are cycles, and in each cycle, there is a shock to the i th
component, i = 1, 2, 3, 4, which it survives with probability p ∈ (0, 1). Moreover,
in each cycle there is a shock to all the four components, which all of them survive
with probability θ ∈ (0, 1) and neither of them survives with probability 1 − θ . The
events of surviving the different shocks are independent of each other and from cycle
to cycle. When a component fails, it remains forever inoperative.

Let Ti , i = 1, 2, 3, 4 represent the number of cycles up to and including the failure
of the i th component. Then, the survival function of the random vector (T1, T2, T3, T4)
has the form

P(T1 > t1, T2 > t2, T3 > t3, T4 > t4) =pt1+t2+t3+t4θmax {t1,t2,t3,t4},
t1, t2, t3, t4 = 0, 1, 2, . . . . (9)

The distribution of (T1, T2, T3, T4) is a special case of the multivariate geometric
distribution proposed by Esary and Marshall (1973). Note that T1, T2, T3, T4 are
exchangeable and dependent.

Additionally, we assume that the system operate as long as at least 3 of its compo-
nents function. Then T3,4 = T2:4. By (9) we get

P(T1 ≤ t, T2 > t, T3 > t, T4 > t)

=
t∑

x=1

[P(T1 > x − 1, T2 > t, T3 > t, T4 > t)

−P(T1 > x, T2 > t, T3 > t, T4 > t)] = p3tθ t (1 − pt ), t = 1, 2, . . . . (10)

Now combining (8) with (9) and (10), after simple algebra, we obtain

pt (0, 3, 4) = P(T1 > t, T2 > t, T3 > t, T4 > t)

P(T1> t, T2> t, T3> t, T4> t) +4P(T1≤ t, T2> t, T3> t, T4> t)

= pt

4 − 3pt
,

pt (1, 3, 4) = 4P(T1 ≤ t, T2 > t, T3 > t, T4 > t)

P(T1> t, T2> t, T3> t, T4> t) +4P(T1≤ t, T2> t, T3> t, T4> t)

= 4 − 4pt

4 − 3pt
.

Corollary 1 In the case when the discrete lifetimes T1, . . . , Tn are IID rvs with a com-
mon distribution function F, the probability in (7) can be simplified to

pt (i, k, n) =
(n
i

)
Fi (t)F

n−i
(t)

∑n−k
s=0

(n
s

)
Fs(t)F

n−s
(t)

=
(n
i

)
(φ(t))i

∑n−k
s=0

(n
s

)
(φ(t))s

, i = 0, . . . , n − k,

(11)
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where φ(t) = F(t)
F(t)

.

Remark 1 The formula given in (11) is the same as that obtained by Asadi and Berred
(2012), who considered the model of IID continuous rvs. Therefore several properties
proposed by Asadi and Berred (2012) are also valid in the discrete case.

3 Results on failed components in coherent systems

Our aim is to extend the results obtained in Section 2 to other coherent systems than
k-out-of-n structures. Let us consider a coherent system composed of n elements
numbered 1, . . . , n. We will denote by T the system lifetime. Then T1, . . . , Tn are its
discrete component lifetimes which are assumed to be DNID. Here there is a chance
that a number of components in the operating system may have already failed, but
the failure times are unknown. Hence, it is natural to ask what is the probability that
there are i , i = 0, . . . , n − 1, failures in the system under the condition that it is still
working at time t , i.e.

pct (i, n) = P(Ti :n ≤ t < Ti+1:n|T > t) = P(Ti :n ≤ t < Ti+1:n, T > t)

P(T > t)
,

for i = 0, . . . , n − 1, which is the extended version of the probability (1). We start
with recalling relevant concepts and facts.

We say that P ⊂ {1, . . . , n} is a path set of a coherent system if it operates when all
the elements with indices in P work. A path set is said to be minimal if it is a minimal
set of components whose functioning ensures the functioning of the system. Then the
lifetime T can be represented as

T = max
1≤ j≤s

min
p∈Pj

Tp, (12)

where P1, . . . , Ps are the minimal paths sets, see Barlow and Proschan (1975, p. 13).
This means that a system works if all the components in one of its paths work. In the
case of a k-out-of-n system, there are

(n
k

)
minimal path sets, namely, all of the sets

consisting of exactly k components. By the representation (12), Navarro et al. (2007,
Theorem 3.1) expressed the reliability function of T as

P(T > t) =
s∑

j=1

(−1) j+1
∑

1≤k1<···<k j≤s

P

⎛

⎜⎝
⋂

p∈Pk1∪···∪Pk j

{Tp > t}
⎞

⎟⎠ . (13)

We also apply (12) to determine the probability of the event {Ti :n ≤ t < Ti+1:n, T >

t} as follows
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P(Ti :n ≤ t < Ti+1:n, T > t) = P(Ti :n ≤ t < Ti+1:n, max
1≤ j≤s

min
p∈Pj

Tp > t)

= P

⎛

⎝Ti :n ≤ t < Ti+1:n,
s⋃

j=1

{
min
p∈Pj

Tp > t

}⎞

⎠

= P

⎛

⎝
s⋃

j=1

{Ti :n ≤ t < Ti+1:n, min
p∈Pj

Tp > t}
⎞

⎠ .

Further, using the inclusion-exclusion formula, we deduce that

P(Ti :n ≤ t < Ti+1:n, T > t)

=
s∑

j=1

(−1) j+1
∑

1≤k1<···<k j≤s

P

⎛

⎝Ti :n ≤ t < Ti+1:n,
j⋂

l=1

{
min
p∈Pkl

Tp > t

}⎞

⎠

=
s∑

j=1

(−1) j+1
∑

1≤k1<···<k j≤s

P

(
Ti :n ≤ t < Ti+1:n, min

p∈Pk1∪···∪Pk j
Tp > t

)

=
s∑

j=1

(−1) j+1
∑

1≤k1<···<k j≤s

P

⎛

⎜⎝Ti :n ≤ t < Ti+1:n,
⋂

p∈Pk1∪···∪Pk j

{Tp > t}
⎞

⎟⎠ . (14)

Combining (14) with (13), we are ready to state the following theorem.

Theorem 2 Consider a coherent system composed of n components. We assume that
the discrete component lifetimes T1, . . . , Tn areDNID rvs. Then for any i = 0, . . . , n−
1, we have

pct (i, n) =

∑s
j=1(−1) j+1∑

1≤k1<···<k j≤s P

⎛

⎝Ti :n ≤ t< Ti+1:n,
⋂

p∈Pk1∪···∪Pk j

{Tp > t}
⎞

⎠

∑s
j=1(−1) j+1∑

1≤k1<···<k j≤s P

⎛

⎝ ⋂
p∈Pk1∪···∪Pk j

{Tp > t}
⎞

⎠

.

(15)

Under the assumption that T1, . . . , Tn are exchangeable,Navarro et al. (2008) proposed
that the reliability function of T can be written as a mixture of the reliability functions
of the associated order statistics. Thus

P(T > t) =
n∑

m=1

sm P(Tm:n > t), (16)

where sm ≥ 0, m = 1, . . . , n and
∑n

m=1 sm = 1. They generalized the earlier results
established by Samaniego (1985) and Navarro and Rychlik (2007). The vector s =
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1088 K. Jasiński

(s1, . . . , sn) is called the Samaniego signature and it depends only on the structure of
the system and is independent of the distribution of (T1, . . . , Tn). The formula in (16)
can be equivalently rewritten as

P(T > t) =
n∑

m=1

αm P(T1:m > t), (17)

where

αm =
s∑

j=1

(−1) j+1
∑

1≤k1<···<ks≤ j

I

⎛

⎝

∣∣∣∣∣∣

j⋃

l=1

Pkl

∣∣∣∣∣∣
= m

⎞

⎠ , m = 1, . . . , n, (18)

where |⋃ j
l=1 Pkl | denotes the cardinality of each

⋃ j
l=1 Pkl and

∑n
m=1 αm = 1, see

for details Dembińska and Goroncy (2020, p. 19). The vector α = (α1, . . . , αn) is
called a minimal signature of a system. This notation was introduced and exploited
by Navarro et al. (2007). Now combining (17) with (18), we get

P(T > t)

=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

n∑
m=1

P

(
m⋂
l=1

{Xl > t}
)

s∑
j=1

(−1) j+1 ∑
1≤k1<···<ks≤ j

I

(∣∣∣∣∣
j⋃

l=1
Pkl

∣∣∣∣∣ = m

)
,

if T1, . . . , Tn are exchangeable,

n∑
m=1

(
m∏
l=1

Fl(t)

)
s∑

j=1
(−1) j+1 ∑

1≤k1<···<ks≤ j
I

(∣∣∣∣∣
j⋃

l=1
Pkl

∣∣∣∣∣ = m

)
,

if T1, . . . , Tn are independent.
(19)

In these particular cases we obtain the simplified forms of the numerator of (15). Since

{
Ti :n ≤ t < Ti+1:n,

⋂

p∈Pk1∪···∪Pk j

{Tp > t}
}

=
n−i⋃

∣∣∣
⋃ j

l=1 Pkl

∣∣∣=1

{
exactly

∣∣∣∣∣∣

j⋃

l=1

Pkl

∣∣∣∣∣∣
of Tp, p ∈

j⋃

l=1

Pkl , are > t,

exactly i of n −
∣∣∣∣∣∣

j⋃

l=1

Pkl

∣∣∣∣∣∣
of Tp are ≤ t,

and the rest n − i −
∣∣∣∣∣∣

j⋃

l=1

Pkl

∣∣∣∣∣∣
of Tp are > t

}
,
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we obtain

P

⎛

⎜⎝Ti :n ≤ t<Ti+1:n,
⋂

p∈Pk1∪···∪Pk j

{Tp > t}
⎞

⎟⎠ =
n−i∑

m=1

I

⎛

⎝

∣∣∣∣∣∣

j⋃

l=1

Pkl

∣∣∣∣∣∣
= m

⎞

⎠

·
∑

( j1,··· , jn−m )∈Pn−m
i

P

(
m⋂

l=1

{Tpl > t} ∩
i⋂

l=1

{Tjl ≤ t} ∩
n−m⋂

l=i+1

{Tjl > t}
)

,

where p1, . . . , pm ∈ Pk1 ∪ · · · ∪ Pk j and { j1, . . . , jn−m}= {1, . . . , n}− {p1, . . . , pm}.
Hence

P

⎛

⎜⎝Ti :n ≤ t< Ti+1:n,
⋂

p∈Pk1∪···∪Pk j

{Tp > t}
⎞

⎟⎠

=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

n−i∑
m=1

I

(∣∣∣∣∣
j⋃

l=1
Pkl

∣∣∣∣∣= m

)
(n−m

i

)
P

(
m⋂
l=1

{Tpl > t}∩
i⋂

l=1
{Tjl ≤ t}∩

n−m⋂
l=i+1

{Tjl > t}
)

,

if T1, . . . , Tn are exchangeable,

n−i∑
m=1

I

(∣∣∣∣∣
j⋃

l=1
Pkl

∣∣∣∣∣= m

)
m∏
l=1

F pl (t)
∑

( j1,..., jn−m )∈Pn−m
i

i∏
l=1

Fjl (t)
n−m∏
l=i+1

F jl (t),

if T1, . . . , Tn are independent.
(20)

Corollary 2 Combining (20)with (19)weget the closed-forms of (15), when T1, . . . , Tn
are exchangeable or independent not necessarily identically distributed, respectively.

Remark 2 The same proofs of Theorem 2 and the formulas (19) and (20) still go when
we drop the assumption that T1, . . . , Tn are the discrete rvs. Therefore Theorem 2 and
Corollary 2 can be applied not only in the discrete case but also in the general situation
of any distribution of component lifetimes.

In the model of IID rvs Theorem 2 specializes in the following result.

Theorem 3 Suppose that the discrete component lifetimes T1, . . . , Tn are IID rvs with
a common distribution function F. Then for any i = 0, . . . , n − 1, we have

pct (i, n) =
Fi (t)F

n−i
(t)

s∑
j=1

(−1) j+1 ∑
1≤k1<···<k j≤s

n−i∑
m=1

I
(∣∣∣
⋃ j

l=1 Pkl

∣∣∣ = m
) (n−m

i

)

n∑
m=1

F
m
(t)

s∑
j=1

(−1) j+1
∑

1≤k1<···<ks≤ j
I

(∣∣∣∣∣
j⋃

l=1
Pkl

∣∣∣∣∣ = m

) ,

(21)
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or equivalently by (16)

pct (i, n)=
Fi (t)F

n−i
(t)

s∑
j=1

(−1) j+1 ∑
1≤k1<···<k j≤s

n−i∑
m=1

I
(∣∣∣
⋃ j

l=1 Pkl

∣∣∣= m
) (n−m

i

)

n−1∑
w=0

(
n∑

m=w+1
sm

)
(n
w

)
Fw(t)F

n−w
(t)

.

(22)

Corollary 3 In the case of k-out-of-n systems, the probability (15) reduces to (7) and
(21), (22) to (11), respectively.

Asadi and Berred (2012) computed the probability pct (i, n) in the case of a coherent
system consisting of n components whose lifetimes are assumed to be IID, where F
is continuous. Denoted by S̃w = ∑n

m=w+1 sm , 0 ≤ w ≤ n − 1, they got

pct (i, n) =
(n
i

)
Fi (t)F

n−i
(t)S̃i

∑n−1
w=0 S̃w

(n
w

)
Fw(t)F

n−w
(t)

=
(n
i

)
φi (t)S̃i

∑n−1
w=0 S̃w

(n
w

)
φw(t)

. (23)

We will show that the above formula is equivalent to that obtained in (22). Studying
(23) and (22) it suffices to check the equality between the numerators. Comparing (16)
with (17) Dembińska and Goroncy (2020) determined the minimal signature from the
corresponding Samaniego signature as follows

αm =
(
n

m

) n∑

r=n−m+1

sr (−1)r−1−n+m
(
m − 1

n − r

)
, m = 1, . . . , n.

Thus we can derive the formulas for sm , m = 1, . . . , n in terms of α1, . . . , αn . It
follows that

sm =
n−m+1∑

r=1

(n−m
r−1

)
(n
r

) αr , m = 1, . . . , n. (24)

Using (24), we get

S̃i =
n∑

m=i+1

sm =
n∑

m=i+1

[
n−m+1∑

r=1

(n−i
r−1

)
(n
r

) αr

]
=

n−i∑

m=1

[
1(n
m

)
n−m+1∑

r=i+1

(
n − r

m − 1

)]
αm .

Combining
∑n−m+1

r=i+1

(n−r
m−1

) = (n−i
m

)
(see Feller 1957, p. 64) with (18), we have

S̃i =
n−i∑

m=1

⎡

⎣ 1(n
m

)
(
n − i

m

) s∑

j=1

(−1) j+1
∑

1≤k1<···<ks≤ j

I

⎛

⎝

∣∣∣∣∣∣

j⋃

l=1

Pkl

∣∣∣∣∣∣
= m

⎞

⎠

⎤

⎦ . (25)

Now putting (25) to the numerator of (23) and using the equality (ni)(
n−i
m )

(nm)
= (n−m

i

)
,

we obtain the numerator of (22). Thus the probability pct (i, n) can be computed by
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the same formula in the case when the component lifetimes T1, . . . , Tn are IID either
continuous or discrete rvs.

Remark 3 Using (25) we obtain the following formula for the Samaniego signature of
the system in terms of its minimal path sets. For 1 ≤ i ≤ n,

si = S̃i−1 − S̃i =
n−i+1∑

m=1

( n−i
m−1

)
(n
m

)
s∑

j=1

(−1) j+1
∑

1≤k1<···<k j≤s

I

⎛

⎝

∣∣∣∣∣∣

j⋃

w=1

Pkw

∣∣∣∣∣∣
= m

⎞

⎠ .

Example 2 Consider a coherent system with the lifetime

T = min {T1, T2,max {T3, T4}}, (26)

where Ti , i = 1, 2, 3, 4, are assumed to be independent rvs such that Ti has a geometric
distribution geo(pi ), i = 1, 2, 3, 4, where p1 = p3 = p ∈ (0, 1) and p2 = p4 = θ ∈
(0, 1), p �= θ . Hence in this example we have rvs of two different types: T1, T3 ∼ F1
and T2, T4 ∼ F2, where
F1(x) = 1 − (1 − p)t , F1(t) = (1 − p)t , F2(x) = 1 − (1 − θ)t , F2(t) = (1 − θ)t ,

for t = 0, 1, . . . . This coherent system has two minimal path sets, namely, P1 =
{1, 2, 3}, P2 = {1, 2, 4}. By Corollary 2 we obtain

pct (0, 4) = F
2
1(t)F

2
2(t)

F
2
1(t)F2(t) + F1(t)F

2
2(t) − F

2
1(t)F

2
2(t)

= 1

(1 − p)−t+ (1 − θ)−t− 1
,

pct (1, 4) = F2(t)F
2
1(t)F2(t) + F1(t)F

2
2(t)F1(t)

F
2
1(t)F2(t) + F1(t)F

2
2(t) − F

2
1(t)F

2
2(t)

= (1 − p)−t+ (1 − θ)−t− 2

(1 − p)−t+ (1 − θ)−t− 1
,

for t = 0, 1, . . .. Moreover, pct (2, 4) = pct (3, 4) = 0 because of the structure of the
system.

If p = θ that is when T1, T2, T3, T4 are IID rvs, we get

pct (0, 4) = 1

2(1 − p)−t − 1
,

pct (1, 4) = 2(1 − p)−t − 2

2(1 − p)−t − 1
, t = 0, 1, . . . . (27)

Alternatively, the formulas given in (27) can be obtained by (23). It suffices to use
the Samaniego signature of the system with the lifetime (26) which has the form
s = ( 1

2 ,
1
2 , 0, 0

)
, see Shaked and Suarez-Llorens (2003) for more details.
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Now we assume that the component lifetimes T1, T2, T3, T4 are the rvs as in Exam-
ple 1. By Corollary 2, after simple algebra, we obtain

pct (0, 4)

= P(T1> t, T2> t, T3> t, T4> t)

P(T1> t, T2> t, T3> t)+P(T1> t, T2> t, T4> t)−P(T1> t, T2> t, T3> t, T4> t)

= pt

2 − pt
,

pct (1, 4)

= P(T1> t, T2> t, T3> t, T4≤ t)+P(T1> t, T2> t, T4> t, T3≤ t)

P(T1> t, T2> t, T3> t)+P(T1> t, T2> t, T4> t)−P(T1> t, T2> t, T3> t, T4> t)

= 2 − 2pt

2 − pt
,

for t = 0, 1, . . ..

4 Summary and conclusions

Engineers and system designers are of interest to maintain the system in optimum
working condition. Therefore they need to determine the number of spares that should
be available in the depot for this purpose. This problem is important because the failure
and unavailability of the systemmay cause high unexpected costs to the potential users.

Coherent systemsplay an important role in variousfields of applications.Depending
on the type of utilization, each technical system has a specific design or structure. The
whole device can operate even if a number of its elements have already failed.However,
if the number of failed components passes a certain threshold, then the system does
fail. Hence, the computation of the probability of the number of failed components in
the system, proposed in this paper, is a useful quantity. This would allow the operators
of the systems for greater planning andmore efficient use of resources. The probability
provides crucial information for preventing the system’s failure. The system operators
can try to change or to restore a failed component to an operative state to avoid or
to diminish the occurrence of the system failure. These actions are very important to
establish optimal designs of production systems, telecommunication networks, supply
chains, etc.

Funding Not applicable.

Availability of data andmaterial Not applicable.

Declarations

Conflict of interest The author states that there is no conflict of interest.

Code availability Not applicable.

123



The number of failed components in a coherent working... 1093

OpenAccess This article is licensedunder aCreativeCommonsAttribution 4.0 InternationalLicense,which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included
in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If
material is not included in the article’s Creative Commons licence and your intended use is not permitted
by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the
copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

Asadi M, Berred A (2012) On the number of failed components in a coherent operating system. Stat Probab
Lett 82:2156–2163

Ashrafi S, Zarezadeh S, Asadi M (2018) Reliability modeling of coherent systems with shared components
based on sequential order statistics. J Appl Probab 55:845–861

Barlow RE, Proschan F (1975) Statistical theory of reliability and life testing: probability models. Holt,
Rinehart and Winston, New York
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Dembińska A, Nikolov NI, Stoimenova E (2021) Reliability properties of k-out-of-n systems with one cold
standby unit. J Comput Appl Math 388:113289

Eryilmaz S (2010) Number of working components in consecutive k-out-of-n system while it is working.
Commun Stat Simul Comput 39:683–692

Eryilmaz S (2013) On reliability of a k-out-of-n system equipped with a single warm standby component.
IEEE Trans Reliab 62:499–503

Eryilmaz S, Bayramoglu K (2018) Residual lifetime of consecutive k-out-of-n systems under double mon-
itoring. IEEE Trans Reliab 61:792–797

Eryilmaz S, Koutras MV, Triantatyllou JS (2016) Mixed three-state k-out-of-n systems under double mon-
itoring. IEEE Trans Reliab 61:792–797

Esary JD, Marshall AW (1973) Multivariate geometric distributions generated by a cumulative damage
process. Techinal Report 55#Y73041A. Naval Postgraduate School, Monterey, California

Feller W (1957) An introduction to probability theory and its applications, vol I, 2nd edn. Wiley, New York
Goli S (2019) On the conditional residual lifetime of coherent systems under double regularly checking.

Naval Res Logist 66:352–363
Hazra NK, Finkelstein M (2019) Comparing lifetimes of coherent systems with dependent components

operating in random environments. J Appl Probab 56:937–957
Kelkinnama M, Asadi M (2019) Stochastic and ageing properties of coherent systems with dependent

identically distributed components. Stat Papers 60:455–471
Kelkinnama M, Tavangar M, Asadi M (2015) New developments on stochastic properties of coherent

systems. IEEE Trans Reliab 64:1276–86
Miziuła P, Rychlik T (2014) Sharp bounds for lifetime variances of reliability systems with exchangeable

components. IEEE Trans Reliab 63:850–857
NairNU,SankaranPG,BalakrishnanN (2018)Reliabilitymodelling and analysis in discrete time.Academic

Press, London
Navarro J, Burkschat M (2011) Coherent systems based on sequential order statistics. Naval Res Logist

58:123–135
Navarro J, Calì C (2019) Inactivity times of coherent systems with dependent components under periodical

inspections. Appl Stoch Models Bus Ind 35:871–892

123

http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1007/s11749-020-00724-0


1094 K. Jasiński
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