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Abstract
In this article, we propose geometric vitality function introduced by Nair and Rajesh
(IAPQR Trans 25(1):1–8, 2000) for the past lifetime of a random variable. This mea-
sure plays a vital role in analysing different characteristics of a system/component
when it fails in the interval (0, t). The monotonic behaviour and some ordering prop-
erties in terms of the proposed measure were studied under certain conditions. Similar
properties of the proposed measure were analysed for order statistics as well. Further,
bounds were obtained for the past geometric vitality function of order statistics. Apart
from this, characterizations of some lifetime probability distributions with respect to
order statistics were also discussed.

Keywords Past geometric vitality function · Order statistics · Monotone property ·
Characterizations

Mathematics Subject Classification 62B10 · 94A17

1 Introduction

Ageing is considered as an important phenomena which has received great attention
among researchers in the domain of reliability analysis. Because of its crucial influ-
ence on the lifetime of the components/devices under observation, Kupka and Loo
(1989) put forward a new strategy called the vitality function, a measure of ageing
process. Thereafter, for lifetime distributions Kotz and Shanbhag (1980) obtained sev-
eral characterizations based on this concept. Further, this measure would be helpful
in modelling lifetime data too.
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In many practical situations, geometric mean is regarded as the suitable average
compared to other averages. Mostly, it has been found useful in averaging ratios, rates
and percentages as well. For instance, this serves better in finding relative performance
of the system/components in the context of reliability. Apart from this, its influence
on the stock market has been discussed in detail by Cover and Thomas (2006).

The fascinating applications of geometricmean paved theway for the establishment
of a new measure called the Geometric Vitality Function (GVF) by Nair and Rajesh
(2000). For a non-negative random variable (rv) Z having an absolutely continuous
distribution function, F(z) with E[log Z ] < +∞, GVF is defined as

logG(t) = E
[
log Z |Z > t

] = 1

F̄(t)

∫ +∞

t
log z f (z) dz,

where F̄(t) = P(Z > t) denotes the survival function. This measure represents the
geometric mean of lifetimes of components which has survived up to time t. Although
vitality function explains the life expectancy of a device it cannot be regarded as
an appropriate tool for measuring the relative performance of the device/component
under examination. Hence GVF overcomes this limitation and was also found to be
applicable in the analysis of lifetime data as well. This measure has been studied
in detail by many authors in the literature. Accordingly, Sunoj et al. (2009) proposed
GVF for doubly-truncated random variables. Afterwards, Sathar et al. (2010) extended
the notion of GVF to a bivariate set up and studied characterization properties of
some bivariate models using the proposed measure. And finally, for the complete and
censored samples, Rajesh et al. (2014) established non-parametric kernel estimators
for GVF.

The foundation for the theory of information is the uncertainty measure introduced
by Shannon (1948), which quantifies the amount of information in a rv Z assumed
to be non-negative with the probability density function (pdf), f (z). Then Shannon
entropy is given by

H(Z) = −
∫ +∞

0
f (z) log f (z) dz.

According to information theory, it has come to light that under many experimental
situations uncertainty has greater impact on past lifetime similar to the future. For
instance, suppose a person has gone through a medical test at time t and the test
results in positive. If Z represents the age at which the person was diseased, then the
past lifetime or inactivity time refers to the time which has passed since the person had
been infected by the disease. On the basis of this notion, Di Crescenzo and Longobardi
(2002) proposed a new measure namely past entropy, which would be very effective
in measuring information on the inactivity time of the device. Suppose f (z) be the
pdf and F(z) be the cumulative distribution function (cdf) of the non-negative rv
Zt = (t − Z |Z ≤ t), then past entropy is given as

H̄(Zt ) = −
∫ t

0

f (z)

F(t)
log

(
f (z)

F(t)

)
dz. (1)
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This measure plays a vital role in forensic science as the lifetime distributions
truncated above has greater significance. Further, several works were carried out in
the literature based on the past lifetime, for instance one may refer to Di Crescenzo
and Longobardi (2004), Kundu et al. (2010), Kumar et al. (2011) and Di Crescenzo
and Toomaj (2015).

In the context of past lifetime, we define GVF as follows. For the rv
Zt = (t − Z |Z ≤ t) having the pdf f (z) and cdf F(z) with E

[
log Z

]
< +∞, then

past GVF (PGVF) is defined by

log Ḡ(t) = E
[
log Z |Z ≤ t

] = 1

F(t)

∫ t

0
log z f (z) dz. (2)

Simplification of (2) gives

log

(
Ḡ(t)

t

)
= − 1

F(t)

∫ t

0

F(z)

z
dz. (3)

Although Shannon entropy leads a central role in the information theory, it is not
suitable in certain circumstances for measuring the information. As a result of this,
variousmeasureswere developed by different authors in this domain. One among them
is the cumulative past entropy (CPE) introduced by Di Crescenzo and Longobardi
(2009) and is defined for a non-negative rv Z with cdf F(z) as

CPE(Z) = −
∫ +∞

0
F(z) log F(z) dz. (4)

In addition to this, Di Crescenzo and Longobardi (2009) also established dynamic
cumulative past entropy (DCPE), which would be useful when the uncertainty relies
on the inactivity time of the device. Consider Zt = (t − Z |Z ≤ t) be a non-negative
rv with the cdf F(z), then the DCPE of Z is given by

DCPE(Zt ) = −
∫ t

0

F(z)

F(t)
log

(
F(z)

F(t)

)
dz. (5)

Table1 represents the relative performance of PGVF with Past Entropy and DCPE for
different life distributions.

From Table1, it can be observed that in some situations PGVF results in smaller
values compared to the past entropy and DCPE measures. Hence one may conclude
that PGVF holds more information than some of the existing reliability measures.

Let Z1, Z2, . . . , Zn represents the random sample. Then the alignment of
Z1, Z2, . . . , Zn from the minimum to the maximum forms the order statistics of
the sample. It has been of greater use in characterizing probability distributions,
finding outliers, goodness-of-fit tests, reliability theory, statistical inference etc. For
1 ≤ k ≤ n, let Zk:n denote the kth order statistic of the sample. According to relia-
bility theory out of a sample of size n, the kth order statistic denotes the life length
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266 R. Gayathri, E. I. Abdul Sathar

Table 1 Comparison of PGVF and some reliability measures on specific lifetime distributions

Distribution pdf Parameters log Ḡ(t) H̄ (Zt ) DCPE(Zt )

Power
bzb−1

ab
, 0 ≤ z ≤ a b = 2 1.29176 1.59861 1.33333

Inverse Pareto
αβzα−1

(z + β)α+1 , z > 0 α = 1, β = 4 0.26461 1.65375 1.25803

Inverse exponential μ

z2
e−

μ
z , z > 0 μ = 1 0.16796 1.33592 0.89443

Inverse Rayleigh
2δ

z3
e
− δ

z2 , z > 0 δ = 3 0.71066 1.34022 0.82960

Gumbel Type II abz−a−1 e−bz−a
, z > 0 a = 1, b = 3 0.86885 1.63909 1.1531

of an (n − k + 1) − out − of − n-system. In particular k = 1 and k = n denotes the
lifetimes of series and parallel systems respectively.

The theoretical and practical aspects of order statistics has been discussed in detail
by David and Nagaraja (2003). In the literature, Wong and Chen (1990), Park (1995)
and Ebrahimi et al. (2004) contributed interesting results on entropy properties of
order statistics. Further, Thapliyal and Taneja (2013) established the notion of past
entropy on order statistics and under certain conditions characterization results are also
discussed. Subsequently on past lifetime, Thapliyal et al. (2013) proposed cumulative
and dynamic cumulative entropies for order statistics and has studied some of its
properties as well. Recently, Goel et al. (2018) analysed past entropy for nth upper
k-record value and provided certain characterization results for the proposed measure.
Inspired by the role of past lifetime over many real life situations, here an attempt is
made to study GVF on past lifetime in the context of order statistics. Throughout the
article U(0, 1) denotes uniform distribution over the interval (0, 1).

In this article, a measure of GVF is proposed for the random variable which is
truncated above the time point, t . The framework of the article is as follows. In Sect. 2,
some of the monotone properties of the proposed measure on certain conditions are
discussed. Further, the definition of PGVF in terms of probabilistic order along with
some sufficient conditions for the order to hold are also studied in this section, whereas
in Sect. 3 we have established those results in terms of ordered random variables par-
ticularly in order statistics. At the end of this section, we have established bounds for
the proposed measure of order statistics. Characterizations of some lifetime distribu-
tions based on order statistics are discussed in Sect. 3.2. And finally, we have given
the conclusion in Sect. 4.

2 Properties

In this section, we obtain several interesting properties for GVF based on the inactivity
time. The immediate one describes the uniquely determine property of PGVF (2).
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On past geometric vitality function of order statistics 267

Based on (3), the relationship between PGVF and the reversed hazard rate is given
by

δZ (t) = − d
dt

(
log Ḡ(t)

)

log
(
Ḡ(t)
t

) , (6)

where δZ (t) = f (t)
F(t) . Using (6), we can obtain the expression as follows

d

dt
log Ḡ(t) + δZ (t) log Ḡ(t) = log t δZ (t). (7)

Solving (7), we get

log Ḡ(t) = e− ∫ t
t0

δZ (z)dz
[∫ t

t0
log z δZ (z) e

∫ z
t0

δZ (w)dw
dz + K

]
, (8)

where we can choose t0 = 1. The constant of integration K is obtained by letting t = 1
in (3). Hence (8) implies that the PGVF determines the corresponding distribution
function uniquely.

The following definition might be helpful to prove the Theorem2.1.

Definition 2.1 A rv Z is said to have a non-increasing (non-decreasing) PGVF denoted
as DPGVF (IPGVF) if log Ḡ(t) is non-increasing (non-decreasing) in t ≥ 0.

The following theorem presents the expression for DPGVF (IPGVF) based on
Definition 2.1.

Theorem 2.1 Let Z be a non-negative rv. Z has DPGVF (IPGVF) if and only if
log Ḡ(t) ≥ (≤) log t .

Proof For a DPGVF, obviously
d

dt
log Ḡ(t) ≤ 0. Using (7), we get log Ḡ(t) ≥ log t .

By retracing the steps given above we can easily obtain the converse part and is
therefore omitted. Similarly, for an IPGVFwe can obtain the result as log Ḡ(t) ≤ log t .
Hence the theorem. ��

The application of Theorem2.1 is illustrated through the following example.

Example 2.1 Assume the rv Z follows power distribution with cdf of the form

F(z) =
( z

a

)b
, 0 ≤ z ≤ a; b > 0. Using (8), we obtain

log Ḡ(t) = K t−b − 1

b
+ log t .

Letting t = 1, we have log Ḡ(1) = − 1
b + K . Also from (3), we get log Ḡ(1) = − 1

b .
Thus K = 0 and the result follows immediately.
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Let us look back on the definitions of two stochastic orderings from Shaked and
Shanthikumar (2007), which might be helpful to prove the following theorem.

Definition 2.2 Let F̄ and Ḡ denotes the survival functions, f and g denotes the pdf’s
of two non-negative rv’s Z and X respectively, then Z is said to be smaller than X

(1) in the likelihood ratio order, denoted by Z ≤lr X , if f (z)
g(z) is decreasing in z ≥ 0,

(2) in the usual stochastic order, denoted by Z ≤st X , if F̄(z) ≤ Ḡ(z) for all z ≥ 0.

It is well known that Z ≤lr X �⇒ Z ≤st X and Z ≤st X if and only if
E[ψ(Z)] ≤ E[ψ(X)] for all increasing functions ψ .

The following theorem discusses the alternative condition under which PGVF (2)
is non-decreasing in t .

Theorem 2.2 Let Z be a non-negative rv having the cdf F and pdf f . If log
(
F−1(z)

)

is increasing in z ≥ 0, then log Ḡ(t) is non-decreasing in t ≥ 0.

Proof Suppose the rvWt follows U(0, F(t))with the pdf ht (z) = 1
F(t) , 0 < z < F(t).

Then (2) becomes,

log Ḡ(t) =
∫ F(t)

0
log

(
F−1(w)

)
ht (w)dw = E

[
log

(
F−1 (Wt )

)]
.

Assume 0 ≤ t1 < t2. Then

ht1(z)

ht2(z)
=

{
F(t2)
F(t1)

i f 0 < z ≤ F (t1)

0 i f F (t1) < z < F (t2)
, (9)

where F(t2)
F(t1)

is a constant in 0 < z ≤ F (t1). Thus
ht1 (z)
ht2 (z) is decreasing in z on the interval

(0, F (t2)). By Definition2.2, we have Wt1 ≤lr Wt2 which implies Wt1 ≤st Wt2 .
Obviously

0 ≤ E
[
log

(
F−1 (

Wt1

))]
≤ E

[
log

(
F−1 (

Wt2

))]
�⇒ log Ḡ (t1) ≤ log Ḡ (t2) ,

since log
(
F−1(z)

)
is increasing in z. Hence the theorem. ��

The following example shows the application of Theorem2.2.

Example 2.2 Let the rv Z be defined as in Example2.1. Then
log

(
F−1(z)

) = log a + 1
b log z, which satisfies the condition of Theorem2.2. Hence

the result follows.

Motivated by Di Crescenzo and Longobardi (2002), the order based on GVF for
the past lifetime is given through the following definition.

Definition 2.3 Let Z and X be two non-negative rv’s representing the lifetimes of two

components. Then Z
PGVF≥ X , if log Ḡ Z (t) ≥ log ḠX (t).
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On past geometric vitality function of order statistics 269

Example 2.3 Suppose Z and X follow inverse exponential distribution with the param-

eters λ1 and λ2

(
= λ1

3

)
respectively. Then obviously they satisfy the Definition2.3.

The expression for PGVF under scalar transformation is given in the following
lemma which might be useful to prove the upcoming theorem.

Lemma 2.1 Define V = Z

a
, where a > 0 is a constant and Z be any absolutely

continuous rv. Then for t > 0,

log ḠV (t) = log Ḡ Z (at) − log a,

where F, G and f , g are the cdf and pdf of V and Z respectively.

Proof Applying the transformation V = Z

a
in (2), the result is direct and is hence

omitted. ��
In the following theorem we show that the PGVF is closed under increasing scalar

transformation.

Theorem 2.3 Define U1 = Z

a1
and U2 = X

a2
, where a1, a2 > 0 are constants and Z,

X be any two absolutely continuous rv’s. Also, let (a) Z
PGVF≥ X and (b) a1 ≥ a2.

Then U1
PGVF≥ U2, if either log Ḡ Z (t) or log ḠX (t) is non-decreasing in t > 0.

Proof Suppose log Ḡ Z (t) is non-decreasing in t . Since a1t ≥ a2t ,

log Ḡ Z (a1t) ≥ log Ḡ Z (a2t). (10)

Also, according to (a) we get

log Ḡ Z (a2t) ≥ log ḠX (a2t). (11)

Combining (10) and (11), we have

log Ḡ Z (a1t) ≥ log ḠX (a2t).

Using Lemma2.1 and Definition2.3, we get

log ḠU1(t) ≥ log ḠU2(t) �⇒ U1
PGVF≥ U2.

The same proof holds if log ḠX (t) is non-decreasing and is therefore omitted. ��
The following example illustrates the application of Theorem2.3.

123



270 R. Gayathri, E. I. Abdul Sathar

Example 2.4 Suppose Z ∼F(z)= z

2
, 0≤ z≤2. Then log Ḡ Z (t) = log t −1, 0≤ t≤2

which is non-decreasing in t . Obviously, the condition for Theorem2.3 is satisfied.

Hence U1
PGVF≥ U2.

Taking a1 = a2 = a(> 0) in Theorem2.3 we have the following corollary.

Corollary 2.1 Define V1 = Z

a
, V2 = X

a
and on the assumptions of Theorem2.3, we

have V1
PGVF≥ V2, if either log Ḡ Z (t) or log ḠX (t) is non-decreasing in t > 0.

The following theorem discusses a more powerful result regardless of the condition
that non-decreasing PGVF in Theorem2.3.

Theorem 2.4 Define V1 = Z

a
and V2 = X

a
, where a > 0 is a constant and Z, X be

any two absolutely continuous rv’s. Then V1
PGVF≥ V2, if Z

PGVF≥ X.

Proof Suppose Z
PGVF≥ X , then by usingDefinition2.3 in viewof scalar transformation

we have

log Ḡ Z (at) ≥ log ḠX (at).

Using Lemma2.1 and Definition2.3, we get

log ḠV1(t) ≥ log ḠV2(t) �⇒ V1
PGVF≥ V2.

This completes the proof. ��

3 PGVF on order statistics

Let fk:n(z) and Fk:n(z) denote the pdf and cdf of the kth order statistic, Zk:n . Then,
for 1 ≤ k ≤ n,

fk:n(z) = 1

B (k, n − k + 1)
[F(z)]k−1 [1 − F(z)]n−k f (z),

where B (m, n) = ∫ 1
0 zm−1 (1 − z)n−1 dz, m, n > 0 and

Fk:n(z) =
n∑

i=k

(
n

i

)
[F(z)]i [1 − F(z)]n−i .

The GVF associated with Zk:n is given by

logGk:n(t) = 1

F̄k:n(t)

∫ +∞

t
log z fk:n(z) dz
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On past geometric vitality function of order statistics 271

= log t + 1

F̄k:n(t)

∫ +∞

t

F̄k:n(z)
z

dz,

where F̄k:n(z) = P (Zk:n > z).
For the kth order statistic, we define the PGVF as

log Ḡk:n(t) = E
[
log Zk:n|Zk:n ≤ t

] = 1

Fk:n(t)

∫ t

0
log z fk:n(z) dz. (12)

Suppose that a (n − k + 1) − out − of − n system is functioning at time t , then
log Ḡk:n(t) represents the geometric mean of lifetimes of systems in the past period
(0, t). Also, (12) can be rewritten as

log

(
Ḡk:n(t)

t

)
= − 1

Fk:n(t)

∫ t

0

Fk:n(z)
z

dz. (13)

Similar to (6), the relation between PGVF and the reversed hazard rate function based
on order statistics is as follows

δk:n(t) = − d
dt

(
log Ḡk:n(t)

)

log
(
Ḡk:n(t)

t

) , (14)

where δk:n(t) = fk:n(t)
Fk:n(t) .

3.1 Monotone properties

In this section we discuss the monotone properties of PGVF based on order statistics.
The following example illustrates the nature of PGVF defined in (12) with respect to
different time points.

Example 3.1 Let Z be a Weibull rv with the cdf F(z)=1−e
−

(
z
β

)α

, z ≥ 0, α, β > 0.
The cdf corresponding to the smallest and largest order statistics are given by

F1:n(z)=1−e
−n

(
z
β

)α

and Fn:n(z)=
[
1 − e

−
(
z
β

)α]n
. Keepingα = 5,β = 8 and n = 3

for different values of t we may obtain the following figures.

Figure1a and 1b depicts the PGVF of smallest and largest order statistics drawn
from Weibull distribution with respect to different choices of t and fixed values of α,
β and n as mentioned above.

From the figures, we can draw an outline that the PGVF of smallest as well as
largest order statistics drawn fromWeibull distribution shows a non-decreasing nature
for different choices of t . Hence one may conclude that the result in Theorem2.2 can
also be extended to order statistics.

Based on order statistics, the following theorem discuss another interesting mono-
tone property for the PGVF (12) with respect to different choices of n.
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(a) (b)

Fig. 1 PGVF of order statistics arising from Weibull distribution

Theorem 3.1 If log Z is increasing in z, then log Ḡn:n(t) is non-decreasing in n ≥ 1.

Proof Putting k = n in (12), we get

log Ḡn:n(t) = 1

Fn:n(t)

∫ t

0
log z fn:n(z) dz.

Substituting the pdf and cdf of largest order statistic, the above expression becomes

log Ḡn:n(t) =
∫ t

0
log z qtn:n(z) dz,

where qtn:n(z) = n[F(z)]n−1 f (z)
[F(t)]n , z ≤ t represents the pdf of [Zn:n|Zn:n ≤ t].

Therefore,

log Ḡn:n(t) = E[log Zn:n|Zn:n ≤ t]. (15)

Similarly, we get log Ḡn+1:n+1(t) = E[log Zn+1:n+1|Zn+1:n+1 ≤ t].
Consider

qtn:n(z)
qtn+1:n+1(z)

= n

n + 1

F(t)

F(z)
is decreasing in (0, t] .

Making use of Definition2.2, we get the relation

[Zn:n|Zn:n ≤ t] ≤lr [Zn+1:n+1|Zn+1:n+1 ≤ t]

which implies [Zn:n|Zn:n ≤ t] ≤st [Zn+1:n+1|Zn+1:n+1 ≤ t]. Since log Z is increas-
ing in z and using (15), we have log Ḡn:n(t) ≤ log Ḡn+1:n+1(t). Hence the theorem.

��
Next, the following counterexample analyse Theorem3.1 in view of smallest order

statistic of the PGVF.
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Counterexample 3.1 Continuing the assumptions on the rv Z as in Example3.1, from
(13) we have

log Ḡ1:n(t) = log t − 1

1 − e
−n

(
t
β

)α

∫ t

0

1 − e
−n

(
z
β

)α

z
dz.

Fixing α = 2, β = 6 and t = 5 for different values of n, we get

log Ḡ1:4(5) = 0.747755 < 0.521095 = log Ḡ1:7(5),

which implies log Ḡ1:n(t) is not non-decreasing in n ≥ 1.

Remark 3.1 From the above counterexample it has been observed that even if log Z is
increasing in z, the PGVF on smallest order statistic does not satisfy Theorem3.1 and
hence the result in Theorem3.1 could not be generalized to kth order statistic, Zk:n
respectively.

Here we discuss some order properties of PGVF in view of order statistics (12).
The following example illustrates the stochastic ordering property of PGVF on order
statistics.

Example 3.2 Suppose Z and X follows Inverse Rayleigh distribution with the param-

eters β1 and β2

(
= β1

4

)
respectively. Then for kth order statistic, we get the relation

as log Ḡ Z
k:n(t) ≥ log ḠX

k:n(t). Hence Z is greater than X in PGV order with respect to

kth order statistic and is denoted by Zk:n
PGVF≥ Xk:n . In general, one may conclude

that the Definition2.3 can be extended to order statistics also.

Lemma 3.1 Under the scalar transformation, the result in Lemma2.1 holds also for
the PGVF of order statistics (12).

The following example describes the closure of PGV order defined above under
the increasing scalar transformation.

Example 3.3 Let the rv Z be defined as in Example2.4. Keeping n = 8, we have

log Ḡ Z
n:n(t) = log t − 1

n
, 0 ≤ t ≤ 2 which is clearly non-decreasing in t . Similarly we

obtain log Ḡ Z
1:n(t) as a non-decreasing function in the same interval and is shown in

Fig. 2. So, in general log Ḡ Z
k:n(t) is non-decreasing in t . Hence U 1

k:n
PGVF≥ U 2

k:n and it
can be concluded that Theorem2.3 extends this result to so called the order statistics.

As a direct consequence of Example3.3 we get the result corresponding to
Corollary 2.1. Subsequently, by dropping the condition of non-decreasing PGVF we
can prove a stronger result similar to Theorem2.4 and hence one may conclude that
Theorem2.4 holds also for order statistics.

In general it seems that the PGVF on order statistics does not have closed form
expression. So by considering this fact here we obtain bounds for PGVF (13) through
the following theorem.
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Fig. 2 Plot of log Ḡ1:n(t) against t ∈ [0, 2]

Theorem 3.2 Let log Ḡk:n(t) denote the PGVF of Zk:n arising from Z, which is sup-
posed to be non-negative rv with an absolutely continuous distribution function F(z).
If Fk:n(z) is increasing in z, then

(i) For 0 < t ≤ 1, log Ḡk:n(t) ≤ Qk:n(0)
Fk:n(t) and

(ii) For t > 1, log Ḡk:n(t) >
Qk:n(0)
Fk:n(t) ,

where Qk:n(0) = − ∫ +∞
0

Fk:n(z)
z dz.

Proof (i) For 0 < t ≤ 1, we have log t ≤ 0. Hence (13) becomes

log Ḡk:n(t) ≤ − 1

Fk:n(t)

∫ t

0

Fk:n(z)
z

dz

≤ − 1

Fk:n(t)

∫ +∞

0

Fk:n(z)
z

dz = Qk:n(0)
Fk:n(t)

.

(ii) For t > 1, we have log t > 0. Along the same lines as in (i), we obtain

log Ḡk:n(t) >
Qk:n(0)
Fk:n(t)

.

��

3.2 Characterization results

This section presents characterizations of some lifetime distributions using PGVF in
the context of order statistics. In the following theorem, we show that PGVF (13) with
respect to maxima holds a constant value thereby it characterizes power distribution.
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Theorem 3.3 Let Z be a non-negative rv having the support [0, a] with an absolutely
continuous distribution functionand let log Ḡn:n(t) represents thePGVFof themaxima
(Zn:n). Then the relation

log

(
Ḡn:n(t)

t

)
= C

n
, (16)

where C < 0 is a constant and n ≥ 1, holds for all t > 0 if and only if Z follows

power distribution with the cdf F(z) =
( z

a

)b
, 0 ≤ z ≤ a; b > 0.

Proof Letting k = n in (13) and using (16), we get

∫ t

0

Fn:n (z)

z
dz = −

(
C

n

)
Fn:n(t). (17)

Differentiating (17) with respect to t and making some rearrangements, we get

δn:n(t) = fn:n(t)
Fn:n(t)

= nb

t
, where b = − 1

C
< 0. (18)

Using (18), we get Fn:n(z) = e− ∫ a
z δn:n (t)dt =

( z

a

)nb
, which is the cdf of power

distribution. Hence the result is direct. The converse part is straightforward from (13)
by considering k = n. This completes the result. ��

The following theorem characterize certain distributions using the functional rela-
tionship between PGVF (13) and the first order reciprocal moment of Z with respect
to maxima, S̄n:n(t).

Theorem 3.4 Let Z be a non-negative rv having an absolutely continuous distribution
with the support (0,+∞) and let log Ḡn:n(t) denotes the PGVF with respect to Zn:n
of Z. Then the relation

log

(
Ḡn:n(t)

t

)
= l + m S̄n:n(t), l > 0, (19)

where S̄n:n(t) = E[Z−1
n:n|Zn:n ≤ t], holds for all real t > 0 if and only if Z follows

(i) Type 3 extreme value distribution with the cdf

F(t) =
{
ea(t−b), t < b

1, t ≥ b, a > 0, b < +∞ for l = 0. (20)

(ii) the Negative Pareto distribution with the cdf

F(t) =
{

(1 − t)−a, t < 0
1, t ≥ 0, a > 1

for l > 0. (21)
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(iii) the Power distribution with the cdf

F(t) =
(
t

a

)b

, 0 ≤ t ≤ a; b > 0 for l < 0. (22)

Proof Letting k = n in (13) and using (19), we get

−
∫ t

0

Fn:n (z)

z
dz = l Fn:n(t) + m

∫ t

0

fn:n (z)

z
dz. (23)

Differentiating (23) with respect to t and on simplification, we obtain

δn:n(t) = − 1

lt + m
. (24)

But in accordance with the distributions mentioned in (20), (21) and (22), we get
δn:n(t) as

na,
1

1

na
− t

na

and
1
t

nb

.

(i) Comparing na with (24) we get l = 0, which characterizes the Type 3 extreme
value distribution.

(ii) On comparing

1
1

na
− t

na

= − 1

lt + m

we have obtained l > 0, thereby it characterizes the Negative Pareto distribution
and

(iii) We get l < 0 on comparing
1
t

nb

with (24), which characterizes the Power distri-

bution.

The converse part of the theorem is obtained by direct computation of log
(
Ḡn:n(t)

t

)
.

Then the expressions corresponding to the specified distributions are−(na)−1 S̄n:n(t),
(na)−1 − (na)−1 S̄n:n(t) and −(nb)−1, which are of the form as in (19). Hence the
result follows. ��

The following theorem characterizes Gumbel Type II distribution using the func-
tional relationship between PGVF (13) and the αth order moment of Z with respect
to maxima, T α

n:n(t).
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Theorem 3.5 Suppose Z be a rv defined as in Theorem3.4. Then the relation

log

(
Ḡn:n(t)

t

)
= −T α

n:n(t)
nαβ

, α, β > 0, (25)

where T α
n:n(t) = E[Zα

n:n|Zn:n ≤ t], holds for all t > 0 if and only if Z follows Gumbel
Type II distribution with cdf of the form F (z) = e−βz−α

, z > 0, α, β > 0.

Proof Letting k = n in (13) and using (25), we get

∫ t

0

Fn:n(z)
z

dz = 1

nαβ

∫ t

0
zα fn:n(z) dz. (26)

Differentiating (26) with respect to t and on simplification, we get

δn:n(t) = nαβ t−α−1, α > 0. (27)

Using (27), we get Fn:n(z) = e− ∫ b
z δn:n(t) dt = e−nβz−α

, which is the required result.
Conversely, let us assume Z follows Gumbel Type II distribution, then the result
immediately follows by integrating (27) with respect to z. Hence the theorem. ��
Remark 3.2 For α = 1, Theorem3.5 provides a characterization for inverse exponen-
tial distribution. Similarly it characterizes Inverse Rayleigh distribution when α = 2.

Next, we look back on the definition of past entropy based on order statistics which
would be useful to prove the following result. The past entropy function for the kth
order statistic is given by

H̄k:n(t) = −
∫ t

0

fk:n(z)
Fk:n(t)

log

(
fk:n(z)
Fk:n(t)

)
dz

= 1 − 1

Fk:n(t)

∫ t

0
fk:n(z) log δk:n (z) dz, (28)

where δk:n(z) denotes the reversed hazard rate of Zk:n .
In the following theorem we show that the difference between past entropy func-

tion (28) and PGVF (12) with respect to maxima holds a constant value thereby it
characterizes power distribution.

Theorem 3.6 Let Z be a non-negative rv having an absolutely continuous distribution
with the support [0, a] and let log Ḡn:n(t) and H̄n:n(t) denote the PGVF and the past
entropy function of Zn:n. Then the relation

H̄n:n(t) − log Ḡn:n(t) = c, (29)

where c is a constant, holds for all real t > 0 if and only if Z follows power distribution

with the cdf F(z) =
( z

a

)b
, 0 ≤ z ≤ a; b > 0.

123



278 R. Gayathri, E. I. Abdul Sathar

Proof When (28) and (12) holds in view of (29), for k = n we get

−
∫ t

0
log δn:n(z) fn:n(z) dz −

∫ t

0
log z fn:n(z) dz = (c − 1) Fn:n(t).

Differentiating the above expression with respect to t and on simplification, we obtain

δn:n(t) = β

t
, β = e1−c > 0. (30)

From (30), we get δZ (t) = β
nt . Using the relation F(z) = e− ∫ a

z δZ (t) dt , we obtain

F(z) =
( z

a

)b
, where b = n

β
> 0,

which is the required distribution. Conversely, let us assume Z follows power distribu-
tion, thenwe have obtained the difference of H̄n:n(t) and log Ḡn:n(t) as c = 1−log nb,
which is a constant. Thus the result follows. ��

The theorem and lemma from Gupta and Kirmani (1998) and Gupta and Kirmani
(2008) quoted below will be useful for proving the upcoming theorem.

Theorem 3.7 Gupta and Kirmani (1998). Let f be a continuous function defined in a
domain D ⊂ R2 and let f satisfy Lipschitz condition (with respect to y) in D, that is
| f (z, y1) − f (z, y2) | ≤ k|y1 − y2|, k > 0, for every point (z, y1) and (z, y2) in D.
Then the function y = φ(z) satisfying the IVP y

′ = f (z, y) and y (z0) = y0, z ∈ I
is unique.

Lemma 3.2 Gupta and Kirmani (2008) Suppose that the function f is continuous in a
convex region D ⊂ R2, ∂ f

∂ y exists and is continuous in D. Then f satisfies the Lipschitz
condition in D.

In the following theorem, we show that the PGVFwith respect to kth order statistic
uniquely determines the parent distribution function.

Theorem 3.8 Let log Ḡ Zk:n (t) denote the PGVF of Zk:n arising from Z, which is
assumed to be a non-negative rv with an absolutely continuous distribution function
F (z). Then log Ḡ Zk:n (t) uniquely determines the distribution function.

Proof Rearranging (14) and differentiating with respect to t , we get

d

dt
δZk:n (t) = − d2

dt2
log Ḡ Zk:n (t) − δZk:n (t)

[ d
dt log Ḡ Zk:n (t) − 1

t

]

[
log Ḡ Zk:n (t) − log t

] . (31)

Suppose that log Ḡ Zk:n (t) = log ḠXk:n (t) = γ (t) for all t > 0 and n ≥ k. Then

d

dt
δZk:n (t) = φ

(
t, δZk:n (t)

)
and

d

dt
δXk:n (t) = φ

(
t, δXk:n (t)

)
, (32)
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where φ(t, z) = −γ
′′
(t)−z

[
γ

′
(t)− 1

t

]

[γ (t)−log t] . As a result of Theorem3.7 and Lemma3.2, we

have δZk:n (t) = δXk:n (t) for all t ≥ 0 which in turn implies Fk:n(t) = Gk:n(t),
where Fk:n(t) and Gk:n(t) are the cdf’s of Zk:n and Xk:n respectively. Since we have
F(t) = B−1

k,n−k+1 (Fk:n(t)) and G(t) = B−1
k,n−k+1 (Gk:n(t)) for all t ≥ 0, which

implies F(t) = G(t). This completes the result. ��

4 Conclusion

In many practical situations it is often tedious to keep on monitoring the status of
the system. Hence in such situation, one might be curious in collecting information
regarding the history of the entire system for instance, the failure of the individual
components are considered as an important data. Also, according to system designers
it might be very important to have some knowledge about the average time elapsed
since the failure has occurred. Bearing this in mind, in the present work we extend
the concept proposed by Nair and Rajesh (2000) to the past lifetime of the random
variable. Subsequently, under certain conditions we have established monotone prop-
erties as well as some ordering properties based on the proposed measure. Analogous
results of the proposed measure of order statistics were also examined. As the PGVF
generally cannot be obtained in closed form, we have established bounds for PGVF of
order statistics. Some of the characterization results based on order statistics has been
discussed for various distributions using the interrelationship among other uncertainty
measure. The results obtained in this work has got much attention in both theoretical
as well as practical view point.
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