
Metrika (2021) 84:375–400
https://doi.org/10.1007/s00184-020-00783-1

Random discretization of stationary continuous time
processes

Anne Philippe1 · Caroline Robet1 ·Marie-Claude Viano2

Received: 12 September 2019 / Published online: 23 June 2020
© Springer-Verlag GmbH Germany, part of Springer Nature 2020

Abstract
This paper investigates second order properties of a stationary continuous time process
after random sampling. While a short memory process always gives rise to a short
memory one, we prove that long-memory can disappear when the sampling law has
very heavy tails. Despite the fact that the normality of the process is not maintained
by random sampling, the normalized partial sum process converges to the fractional
Brownian motion, at least when the long memory parameter is preserved.

Keywords Gaussian process · Long memory · Partial sum · Random sampling ·
Regularly varying covariance

1 Introduction

Most of the papers on time series analysis assume that observations are equally spaced
in time. However, irregularly spaced time series data appear in many applications,
for instance in astrophysics, climatology, high frequency finance, signal processing.
Elorrieta et al. (2019) andEyheramendy et al. (2018) propose generalisations of autore-
gressive models for irregular time series motivated by an application in astronomy.
The spectral analysis of these data is also studied inmany papers with applications into
astrophysics, climatology, physics [see for instance Scargle (1982), Broersen (2007),
Mayo (1978), Masry and Lui (1975)].

A possible way to address the problem of non-equally spaced data is to transform
the data into equally spaced observations using some methods of interpolation [see
for instance Adorf (1995), Friedman (1962), Nieto-Barajas and Sinha (2014)].
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An alternative one consists in assuming that time series can be embedded into a
continuous time process. The data are then interpreted as a realization of a continuous
temporal process observed at random times [see for instance Jones (1981), Jones
and Tryon (1987), Brockwell et al. (2007)]. This approach requires the study of the
effects of random sampling on the properties of continuous time process, as well as
the development of inference methods for these models. Mykland (2003) studies the
effects of the random sampling on the parameter estimation of time-homogeneous
diffusion [see also Duffie and Glynn (2004)]. Masry (1994) establishes the properties
of spectral density function estimation.

In this paper we focus particularly on time series with long-range dependence [see
Beran et al. (2013), Giraitis et al. (2012) for a review of available results for long-
memory processes].

Somemodels and estimationmethods have been proposed for continuous-time pro-
cesses [see Tsai and Chan (2005a), Viano et al. (1994), Comte and Renault (1996),
Comte (1996)]. Tsai and Chan (2005a) introduced the continuous-time autoregres-
sive fractionally integrated moving average (CARFIMA(p,d,q)) model. Under the
long-range dependence condition d ∈ (0, 1/2), they calculate the autocovariance
function of the stationary CARFIMA process and its spectral density function [see
Tsai and Chan (2005b)]. These properties are extended to the case d ∈ (−1/2, 1/2)
in Tsai (2009). In Viano et al. (1994), continuous-time fractional ARMA processes
are constructed. They establish the L2 properties (spectral density and autocovariance
function) and the dependence structure. Comte and Renault (1996) study the contin-
uous time moving average fractional process, a family of long memory model. The
statistical inference for continuous-time processes is generally constructed from the
sampled process [see Tsai andChan (2005a, b), Chambers (1996), Comte (1996)]. Dif-
ferent schemes of sampling canbe considered. InTsai andChan (2005a), the estimation
method is based on the maximum likelihood estimation for irregularly spaced deter-
ministic time series data. Under the assumption of identifiability, Chambers (1996)
considers the estimation of the long memory parameter of a continuous time frac-
tional ARMA process with discrete time data using the low-frequency behaviour of
the spectrum. Comte (1996) studied two methods for the estimation with regularly
spaced data: Whittle likelihood method and the semiparametric approach of Geweke
and Porter-Hudak. In this article we are interested in irregularly spaced data when
the sampling intervals are independent and identically distributed positive random
variables. In the light of previous results in discrete time, there was an effect of the
random sampling on the dependence structure of the process. Indeed, Philippe and
Viano (2010) show that the intensity of the long memory is preserved when the law of
sampling intervals has finite first moment, but they also pointed out situations where
a reduction of the long memory is observed.

We adopt the most usual definition of second order long memory process. Namely,
a stationary process U has the long memory property if its autocovariance function
σU satisfies the condition

∫
R+

|σU (x)| dx = ∞ in the continuous-time case,
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Random discretization of stationary continuous time… 377

∑
h≥0

|σU (h)| = ∞ in the discrete-time case.

We study the effect of random sampling on the properties of a stationary continuous
time process. More precisely, we start with X = (Xt )t∈R+ , a second-order stationary
continuous time process.We assume that it is observed at random times (Tn)n≥0 where
(Tn)n≥0 is a non-decreasing positive random walk independent of X. We study the
discrete-time process Y defined by

Yn = XTn , n ∈ N. (1.1)

The process Y obtained by random sampling is called the sampled process.
In this paper, we study the properties of this. In particular, we show that the results

obtained by Philippe and Viano (2010) on the auto-covariance function are preserved
for continuous time process X. The large-sample statistical inference relies often on
limit theorems of probability theory for partial sums. We show that Gaussianity is lost
by random sampling. However, we prove that the asymptotic normality of the partial
sum is preserved with the same standard normalization [see Giraitis et al. (2012),
Chapter 4 for a review].

In Sect. 2, we study the behavior of the sampled process (1.1) for the general case.
Weestablish thatGaussianity ofX is not transmitted toY.Under ratherweak conditions
on the covariance σX , the weak dependence is preserved. A stronger assumption on
the first moment of T1 is necessary to preserve the long memory property. Under
the condition E[T1] < ∞, if X is a long-memory process then Y also in the sense
of definition above. In Sect. 3, we present the more specific situation of a regularly
varying covariance where preservation or non-preservation of the memory can be
quantified. In particular, we prove that for heavy tailed sampling distribution, a long
memory processX can give raise to a short memory processY. In Sect. 4, we establish
a Donsker’s invariance principle when the initial process X is Gaussian and the long
memory parameter is preserved.

2 General properties

Throughout this document we assume that the following properties hold on the initial
process X and the random sampling scheme:
Assumption H:

H1: X = (Xt )t∈R+ is a second-order stationary continuous time process with zero
mean and autocovariance function σX .

H2: The random walk (Tn)n≥0 is independent of X.
H3: T0 = 0.
H4: The increments � j = Tj+1 − Tj ( j ∈ N ) are independent and identically

distributed. The common distribution admits a probability density function s
(with respect to the Lebesgue measure) supported by R+.
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Remark 1 In Assumption H3, we impose the specific initialization T0 = 0 only to
simplify our notations since it implies that � j = Tj+1 − Tj for all j ∈ N. However,
all the results remain true if we take T0 = �0 and � j = Tj − Tj−1, for j ≥ 1.

The following proposition gives the L2-properties of the sampled process Y.

Proposition 2.1 Under Assumption H, the discrete-time process Y defined in (1.1) is
also second-order stationary with zero mean and its autocovariance sequence is

{
σY (0) = σX (0),

σY (h) = E [σX (Th)] , h ≥ 1.
(2.1)

Proof These properties are obtained by applying Fubini’s theorem, and using the
independence between X and (Tn)n≥0. Indeed, for all h ∈ N, we have

E [Yh] = E
[
XTh

] =
∫ ∫

xt dPX,Th (x, t)

=
∫ {∫

xt dPX(x)

}
dPTh (t) =

∫
E [Xt ] dPTh (t) = 0

and

Cov(Yn,Yn+h) = E
[
XTn XTn+h

] =
∫ ∫

xt xs dPX,Tn ,Tn+h (x, t, s)

=
∫ {∫

xt xs dPX(x)

}
dPTn ,Tn+h (t, s)

=
∫

Cov(Xt , Xs) dPTn ,Tn+h (t, s)

=
∫

σX (t − s) dPT0,Th (t, s)

= E [σX (Th)] .

��

2.1 Distribution of the sampled process

This part is devoted to the properties of the finite-dimensional distributions of the
process Y.

Proposition 2.2 If X is a strictly stationary process satisfying H2 − H4, then the
sampled process Y is a strictly stationary discrete-time process.

Proof We arbitrarily fix n ≥ 1, p ∈ N
∗ and k1, . . . kn ∈ N such that 0 ≤ k1 < · · · <

kn . We show that the joint distribution of (Yk1+p, . . . ,Ykn+p) does not depend on
p ∈ N.

For (y1, . . . , yn) ∈ R
n , we have
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P(Yk1+p ≤ y1, . . . ,Ykn+p ≤ yn) = P
(
XTk1+p ≤ y1, . . . , XTkn+p ≤ yn

)

= E

[
P
(
X�0+···+�k1+p−1 ≤ y1, . . . , X�0+···+�kn+p−1 ≤ yn |�0, . . . �kn+p−1

)]
,

where (� j ) j∈N are the increments defined in AssumptionH. By the strict stationarity
of X the right-hand-side of the last equation is equal to

E

[
P
(
X�p+···+�k1+p−1 ≤ y1, . . . , X�p+···+�kn+p−1 ≤ yn |�0, . . . �kn+p−1

)]

= P(XU0+···+Uk1−1 ≤ y1, . . . , XU0+···+Ukn−1 ≤ yn) = P(Yk1 ≤ y1, . . . , Ykn ≤ yn),

where Ui = �i+p are i.i.d with density s. This concludes the proof. ��
The following proposition is devoted to the particular case of a Gaussian process.

We establish that the Gaussianity is not preserved by random sampling.

Proposition 2.3 Under Assumption H, if X is a Gaussian process then the marginals
of the sampled process Y are Gaussian. Furthermore, if σX is not almost everywhere
constant on the set {x : s(x) > 0}, then Y is not a Gaussian process.

Proof We first prove the normality of marginal distributions.
LetU be a random variable, we denote �U its characteristic function. We have, for

all t ∈ R

�Yk (t) = E

[
E[eit XTk |Tk]

]
.

Conditionally on Tk , the probability distribution of XTk is the Gaussian distribution
with zero mean and variance σX (0). We get

�Yk (t) = e−σX (0)t2/2,

and thus Yk is a Gaussian variable with zero mean and variance σX (0).
We are now proving that the process is not Gaussian by contraposition, i.e. if Y is

a Gaussian process then σX is almost everywhere constant on the set {x : s(x) > 0}.
IfY is a Gaussian process then the random variable Y1+Y2 has a Gaussian distribution
(since it is a linear combination of two components of Y),

�Y1+Y2(t) = e−Var(Y1+Y2)t2/2 = e−σX (0)t2e−t2E[σX (T2−T1)],

and

�Y1+Y2(t) = �XT1+XT2
(t)

= E

[
exp

{
− t2

2

(
1
1

)T ( σX (0) σX (T2−T1)
σX (T2−T1) σX (0)

) (
1
1

)}]
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= e−σX (0)t2
E

[
e−t2σX (T2−T1)

]
.

Then, for all t ∈ R,

e−t2E[σX (T2−T1)] = E

[
e−t2σX (T2−T1)

]
.

According to Jensen’s inequality, this equality is achieved if and only if σX (T2 − T1)
is constant almost everywhere. ��

Example 1 In Fig. 1, we illustrate the non-Gaussianity of the sampled process from
the distribution of (Y1,Y2). To simulate a realization from the distribution of (Y1,Y2),
we proceed as follows:
1. Generate the time interval T2 − T1 according to an
exponential distribution with mean 1.
2. Generate (Y1,Y2) as a Gaussian vector with zero mean and
covariance

(
σX (0) σX (T2 − T1)

σX (T2 − T1) σX (0)

)
.

We take X a long memory Gaussian process with the standard form of autocovari-
ance function,

σX (t) = (1 + t1−2d)−1 (2.2)

and (Ti )i∈N is a homogeneous Poisson counting process with rate 1. The parameter
d ∈ (0, 1/2) in 2.2measures the intensity of long-range dependence. In Sect 3we study
this specific form of autocovariance function, and specify the effect of subsampling
on the value of d.

We simulate from the distribution of (Y1,Y2) a sample of size p. In Fig. 1a we rep-
resent the kernel estimate of the joint probability density function of (Y1,Y2). In order
to compare the probability distribution of the sampled process with the corresponding
Gaussian one, we simulate a sample of centered Gaussian vector (W1,W2) having the
same variance matrix as (Y1,Y2) i.e.

�Y1,Y2 =
(

σX (0) E[σX (T1)]
E[σX (T1)] σX (0)

)
=
(

1 �1,2
�1,2 1

)
,

where �1,2 = ∫∞
0 σX (t)e−t dt = ∫∞

0 e−t (1 + t1−2d)−1 dt can be calculated numer-
ically. In Fig. 1b, we represent the kernel estimate of the density of (W1,W2). The
simulations are done with d = .05. We see that the form of the distribution of sampled
process differs widely fromGaussian distribution. Note that for stronger longmemory,
the difference is visually more difficult to detect.
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Fig. 1 a The estimated density of the centered couple (Y1, Y2) is represented for intervals � j having an
exponential distribution with mean 1 and Gaussian initial process with autocovariance function σX (t) =
(1 + t0.9)−1. b Represents the estimated density of the centered Gaussian vector (W1,W2) with the same
covariance matrix �Y1,Y2 as (Y1, Y2). Estimations are calculated on sample of size p = 50,000

2.2 Dependence of the sampled process

We are interested in the dependence structure of the Y process. In the following
propositions, we provide sufficient conditions to preserve the weak (respectively long)
memory after sampling.

Proposition 2.4 Assume AssumptionH holds. Let p be a real greater than 1 (p ≥ 1).
If there is a positive bounded function σ∗(.), non-increasing on R+, such that

1. |σX (t)| ≤ σ∗(t), ∀t ∈ R
+

2.
∫
R+

σ
p∗ (t)dt < ∞

then, the sampled process Y has an autocovariance function (2.1) in �p, i.e∑
h≥0

|σY (h)|p < ∞.

Remark 2 The proposition confirms an intuitive claim: random sampling cannot pro-
duce long memory from short memory. The particular case p = 1 implies that if X
has short memory then, the sampled process Y has short memory too.

Proof It is clearly enough to prove that

∑
h≥1

E
[
σ
p∗ (Th)

]
< ∞. (2.3)

Since σ∗ is a decreasing function, we have

�hσ
p∗ (Th + �h) = (Th+1 − Th)σ

p∗ (Th+1) ≤
∫ Th+1

Th
σ
p∗ (t) dt, ∀h ≥ 0. (2.4)

123



382 A. Philippe et al.

Taking the expectation of the left-hand-side and noting that�h and Th are independent,
we obtain, for every a > 0,

E
[
�hσ

p∗ (Th + �h)
] =

∫
R+

uE
[
σ
p∗ (Th + u)

]
dP�0(u)

=
∫ a

0
uE
[
σ
p∗ (Th + u)

]
dP�0(u) +

∫ +∞

a
uE
[
σ
p∗ (Th + u)

]
dP�0(u)

≥
∫ a

0
uE
[
σ
p∗ (Th + u)

]
dP�0(u) + a

∫ +∞

a
E
[
σ
p∗ (Th + u)

]
dP�0(u)

=
∫ a

0
uE
[
σ
p∗ (Th + u)

]
dP�0(u) + a

(∫
R+

E
[
σ
p∗ (Th + u)

]
dP�0(u)

−
∫ a

0
E
[
σ
p∗ (Th + u)

]
dP�0(u)

)

=
∫ a

0
(u − a)E

[
σ
p∗ (Th + u)

]
dP�0(u) + aE

[
σ
p∗ (Th+1)

]
.

Since σ
p∗ (Th + u) ≤ σ

p∗ (Th) and u − a ≤ 0, we get

E
[
�hσ

p∗ (Th + �h)
] ≥

(∫
[0,a[

(u − a) dP�0(u)

)
E
[
σ
p∗ (Th)

]+ aE
[
σ
p∗ (Th+1)

]
.

(2.5)

It is possible to choose a such that P(�0 ∈ [0, a]) < 1. For such a choice we obtain

0 ≤ −
∫

[0,a[
(u − a) dP�0(u) =: �(a) ≤ aP(�0 ∈ [0, a]) < a.

After summation, the inequalities (2.5) give, for every K ≥ 0

E

[ ∞∑
h=1

�hσ
p∗ (Th+1)

]
≥

K∑
h=1

[−�(a)E[σ p∗ (Th)] + aE[σ p∗ (Th+1)]
]

= a
(
E[σ p∗ (TK+1)] − E[σ p∗ (T1)]

)+ (a − �(a))

K∑
h=1

E
[
σ
p∗ (Th)

]

≥ −aσ
p∗ (0) + (a − �(a))

K∑
h=1

E
[
σ
p∗ (Th)

]
,

which implies

E

[ ∞∑
h=1

�hσ
p∗ (Th+1)

]
≥ −aσ

p∗ (0) + (a − �(a))
∑
h≥1

E
[
σ
p∗ (Th)

]
.
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Then, using (2.4)

E

⎡
⎣∑
h≥1

�hσ
p∗ (Th+1)

⎤
⎦ ≤ E

⎡
⎣∑
h≥1

∫ Th+1

Th
σ
p∗ (t) dt

⎤
⎦ ≤

∫
R+

σ
p∗ (t) dt < ∞,

and consequently, as a − �(a) > 0

∞∑
h=1

E
[
σ
p∗ (Th)

]
< ∞. (2.6)

��
We now consider the case of long memory processes. We give conditions on T1

that ensure the preservation of the long memory property.

Proposition 2.5 Assume Assumption H holds. We suppose that σX (.) is ultimately
positive and non-increasing on R

+, i.e there exists t0 ≥ 0 such that σX (.) is positive
and non-increasing on the interval [t0,∞). If E[T1] < ∞, then the long memory is
preserved after the subsampling, i.e.

∫
R+ |σX (x)| dx = ∞ implies

∑
h≥0 |σY (h)| =

∞.

Remark 3 In this proposition, we only show that the long memory is preserved in the
sense of the non-summability of autocovariance function. Additional assumptions are
required to compare the convergence rates of σX and σY . This question is addressed
in Sect. 3 where we impose semi parametric form on σX .

Remark 4 The assumptions on positivity and the decrease of the auto-covariance func-
tion are not too restrictive. They are satisfied in most of studied models. The condition
of integrability of intervals � j is the most difficult to verify since the underlying
process is generally not observed.

Proof Let h0 be the (random) first index such that Th0 ≥ t0. For every h ≥ h0,

∫ Th+1

Th
σX (t) dt ≤ (Th+1 − Th)σX (Th). (2.7)

Summing up gives

∑
h≥1

Ih≥h0

∫ Th+1

Th
σX (t) dt ≤

∑
h≥1

Ih≥h0�hσX (Th).

Now, taking expectations, and noting that, since E[T1] = E[�1] > 0, the law of large
numbers implies that Th

a.s.−−→ ∞, and in particular h0 < ∞ a.s., whence

E

[∫ ∞

Th0

σX (t) dt

]
≤ E

[ ∞∑
h=1

�hσX (Th) Ih0≤h

]
.
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The left hand side is infinite. Since �h is independent of σX (Th) Ih0≤h , the right hand

side is E[T1]
∑
h≥1

E[σX (Th) Ih0≤h]. Consequently, since E[T1] < ∞, we have

∑
h≥1

E[σX (Th) Ih0≤h] = ∞. (2.8)

It remains to be noted that E[h0] < ∞ [see for example Feller (1966) p. 185], which
implies

∑
h≥1

E[|σX (Th)| Ih0>h] ≤ σX (0)
∑
h≥1

P(h0 ≥ h) ≤ σX (0)E[h0] < ∞,

leading, via (2.8) to
∑

h≥1 |E[σX (Th)]| = ∞. ��

3 Longmemory processes

We consider a long memory process X and we impose a semi parametric form to
autocovariance function. We assume that the autocovariance σX is regularly varying
function at infinity of the form

σX (t) = t−1+2d L(t), ∀t ≥ 1 (3.1)

where 0 < d < 1/2 and L is ultimately non-increasing and slowly varying at infinity,
in the sense that L is positive on [t0,∞) for some t0 > 0 and

lim
x→+∞

L(ax)

L(x)
= 1, ∀a > 0.

This class of models contains for instance CARFIMA models.
The parameter d characterizes the intensity of the memory of X. In the following

propositions, we evaluate the long memory parameter of the sampled process Y as a
function of d and the probability distribution of T1.

3.1 Preservation of thememory whenE[T1] < ∞

Theorem 3.1 Under Assumption H and (3.1), if 0 < E[T1] < ∞, the discrete time
process Y has a long memory and its covariance function behaves as

σY (h) ∼ (hE[T1])−1+2d L(h), h → ∞.

Remark 5 We can rewrite

σY (h) = h−1+2d L̃(h)
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where L̃ is slowly varying at infinity and L̃(h) ∼ (E[T1])−1+2d L(h) as h → ∞. In
particular, X and Y have the same memory parameter d.

Proof • We show first that

lim inf
h→∞

σY (h)

(hE[T1])−1+2d L(h)
≥ 1.

Let 0 < c < E[T1], and h ∈ N such that ch ≥ 1,

σY (h) ≥ E
[
σX (Th) ITh>ch

] ≥ inf
t>ch

{L(t)t2d}E
[
ITh>ch

Th

]
.

Thanks to Hölder inequality,

(P(Th > ch))2 ≤ E[Th]E
[
ITh>ch

Th

]
,

that is

E

[
ITh>ch

Th

]
≥ (P(Th > ch))2

hE[T1] .

Summarizing,

σY (h) ≥ inf
t>ch

{L(t)t2d} (P(Th > ch))2

hE[T1] ,

σY (h)

(hE[T1])−1+2d L(h)
≥ inf

t>ch
{L(t)t2d} (P(Th > ch))2

(hE[T1])2d L(h)
. (3.2)

Using Bingham et al. (1989) (Th 1.5.3, p23), we obtain, since d > 0

inf
t≥ch

{L(t)t2d} ∼ L(ch)(ch)2d , as h → ∞. (3.3)

The law of large numbers implies that Th/h
a.s.−−→ E[T1]. As c < E[T1], we have

P(Th > ch) → 1 and the r.h.s. of (3.2) tends to (c/E[T1])2d as h → ∞. Finally,
for all c < E[T1],

lim inf
h→∞

σY (h)

(hE[T1])−1+2d L(h)
≥
(

c

E[T1]
)2d

.

Taking the limit as c → E[T1], we get the lower bound.
• Let us now prove

lim sup
h→∞

σY (h)

(hE[T1])−1+2d L(h)
≤ 1.
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We use a proof similar to that presented in Shi et al. (2010) (Theorem 1). We
denote for h ≥ 1 and 0 < s < 1,

μh = E[Th] = hE[T1],

Th,s =
h−1∑
j=0

� j I� j≤μs
h/

√
h ,

μh,s = E
[
Th,s
] = hE

[
�0 I�0≤μs

h/
√
h

]
.

Since E[T1] < ∞, we have for 1
2 < s < 1, μh,s ∼ μh as h → ∞.

Let 1
2 < s < τ < 1, t0 such that L(.) is non-increasing on [t0,∞) and h such that

μh,s − μτ
h,s ≥ t0,

σY (h) = E

[
T−1+2d
h L(Th) ITh,s≥μh,s−μτ

h,s

]
+ E

[
T−1+2d
h L(Th) ITh,s<μh,s−μτ

h,s

]

=: M1 + M2.

We will now establish upper bounds for the terms M1 and M2. We have

M1 ≤ E

[
T−1+2d
h,s L(Th,s) ITh,s≥μh,s−μτ

h,s

]
≤ (μh,s − μτ

h,s

)−1+2d
L(μh,s − μτ

h,s)

= (hE[T1])−1+2d L(h)

(
μh,s − μτ

h,s

hE[T1]
)−1+2d L(μh,s − μτ

h,s)

L(h)
. (3.4)

As τ < 1 and 1/2 < s < 1,
(

μh,s−μτ
h,s

hE[T1]
)−1+2d → 1 as h → ∞. Then,

L(μh,s − μτ
h,s)

L(h)
=

L
(
hE[T1]μh,s−μτ

h,s
hE[T1]

)

L(hE[T1])
L(hE[T1])

L(h)
.

As we have uniform convergence of λ 
→ L(hE[T1]λ)
L(hE[T1]) to 1 (as h → ∞) in each

interval [a, b] and as
μh,s−μτ

h,s
hE[T1] → 1, we get

L(μh,s − μτ
h,s)

L(h)
→ 1,

as h → ∞. We obtain

M1 ≤ (μh,s − μτ
h,s

)−1+2d
L(μh,s − μτ

h,s) ∼ (hE[T1])−1+2d L(h). (3.5)

Since sup
t∈R+

|σX (t)| = σX (0) < ∞, we have

M2 ≤ σX (0)P
(
Th,s < μh,s − μτ

h,s

) = σX (0)P
(−Th,s + E[Th,s] > μτ

h,s

)
.
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We apply Hoeffding inequality to variables Z j = −� j I� j≤μs
h/

√
h which are a.s

in [− μs
h√
h
, 0] to get,

M2 ≤ σX (0) exp

(
−2

(
μτ
h,s

μs
h

)2
)

and

(
μτ
h,s

μs
h

)2

∼ (hE[T1])2(τ−s). Finally

M2 = o((hE[T1])−1+2d L(h)). (3.6)

With (3.5) and (3.6), we get the upper bound.
��

3.2 Decrease of memory

The phenomenon is the same as in the discrete case [see Philippe and Viano (2010)]:
starting from a long memory process, a heavy tailed sampling distribution can lead to
a short memory process.

Proposition 3.2 Assume that the covariance of X satisfies

|σX (t)| ≤ cmin(1, t−1+2d) ∀t ∈ R
+, (3.7)

where 0 < d < 1/2. If there exists β ∈ (0, 1) such that

lim inf
x→∞

(
xβ P(T1 > x)

)
> 0 (3.8)

then, there exists C > 0 such that

|σY (h)| ≤ Ch
−1+2d

β . (3.9)

Remark 6 The condition (3.8) implies that E[T β
1 ] = ∞. As β ∈ (0, 1), the first

moment of increments is infinite contrary to assumption of Sect. 3.1.

Proof From assumption (3.7),

|σY (h)| ≤ E[|σX (Th)|] ≤ cE[min{1, T−1+2d
h }].

We have

E[min{1, T−1+2d
h }] = E[ITh≤1 + T−1+2d

h ITh>1]
= P(Th ≤ 1) +

∫ ∞

1
x−1+2d dPTh (x).
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As E[min{1, T−1+2d
h }] ≤ 1, the integral in the right hand side is finite

∫ ∞

1
x−1+2d dPTh (x) dx < ∞.

Since −2 + 2d ∈ [−2 , −1[, we also have

∫ ∞

1
x−2+2d P(Th ≤ x) dx < ∞.

Thus, the integration by parts can be applied, and we get

∫ ∞

1
x−1+2d dPTh (x) = (1 − 2d)

∫ ∞

1
x−2+2d P(Th ≤ x) dx − P(Th ≤ 1)

and

E[min{1, T−1+2d
h }] = (1 − 2d)

∫ ∞

1
x−2+2d P(Th ≤ x) dx . (3.10)

From assumption (3.8) on the tail of the sampling law, it follows that, there exists
C > 0 and x0 ≥ 1 such that

∀x ≥ x0, P(T1 > x) ≥ Cx−β.

Furthermore for x ∈ [1, x0],

xβ P(T1 > x) ≥ P(T1 > x0) ≥ Cx−β
0 .

We obtain: ∀x ≥ 1, P(T1 > x) ≥ C̃x−β with C̃ = Cx−β
0 , and then

P(Th ≤ x) ≤ P

(
max

0≤l≤h−1
�l ≤ x

)
= P (T1 ≤ x)h ≤

(
1 − C̃x−β

)h ≤ e
− C̃h

xβ .

(3.11)

Gathering (3.10) and (3.11) then gives

E[min{1, T−1+2d
h }] ≤ (1 − 2d)

∫ ∞

1
x−2+2de

− C̃h
xβ dx

= 1 − 2d

β
h−(1−2d)/β

∫ h

0
u(1−2d)/β−1e−C̃u du.

Since

∫ h

0
u(1−2d)/β−1e−C̃u du

h→∞−−−→ D :=
∫ ∞

0
u(1−2d)/β−1e−C̃u du < ∞
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we obtain

|σY (h)| h 1−2d
β ≤ cE[min{1, T−1+2d

h }] h 1−2d
β ≤ cD

1 − 2d

β
.

Thus (3.9) is proven with C = cD 1−2d
β

. ��
Under some additional assumptions, we show that the bound obtained in Proposi-

tion 3.2 is equal to the convergence rate (up to a multiplicative constant).

Proposition 3.3 Assume that

σX (t) = t−1+2d L(t)

where 0 < d < 1/2 and where L is slowly varying at infinity and ultimately monotone.
We denote

β := sup{γ ∈ R
+ : E[T γ

1 ] < ∞}. (3.12)

If β ∈ (0, 1) then, for every ε > 0, there exists Cε > 0 such that

σY (h) ≥ Cεh
− 1−2d

β
−ε

, ∀h ≥ 1. (3.13)

Proof Let ε > 0. We have

σX (Th)

h− 1−2d
β

−ε
= T−1+2d

h

h− 1−2d
β

−ε
L(Th) = T

−1+2d− βε
2

h

h− 1−2d
β

−ε
T

βε
2

h L(Th) =
(
Th
hδ

)−1+2d− βε
2

T
βε
2

h L(Th)

where

δ = (1 − 2d)/β + ε

1 − 2d + βε
2

= 1

β

(
1 − 2d + βε

1 − 2d + βε/2

)
.

Using Proposition 1.3.6 in Bingham et al. (1989),

T
βε
2

h L(Th)
a.s.−−→ ∞ as h → ∞. (3.14)

Moreover δ > 1
β
. From (3.12), this implies E[T 1/δ

1 ] < ∞. Then, the law of large
numbers of Marcinkiewicz-Zygmund [see Stout (1974) Theorem 3.2.3] yields

Th
hδ

a.s.−−→ 0 as h → ∞. (3.15)

From (3.14) and (3.15) we obtain

σX (Th)

h− 1−2d
β

−ε

a.s.−−→ ∞ as h → ∞.
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Therefore by Fatou’s Lemma, we get

lim inf
h→∞

σY (h)

h− 1−2d
β

−ε
= lim inf

h→∞ E

[
σX (Th)

h− 1−2d
β

−ε

]
≥ E

[
lim inf
h→∞

σX (Th)

h− 1−2d
β

−ε

]
h→∞−−−→ ∞.

This convergence implies the inequality (3.13). ��
Remark 7 In this context the long memory parameter d of the initial process X is not
identifiable using the sampled process. Information on probability distribution of �1
is required.

4 Limit theorems in semiparametric case

We consider the process of partial sums

Sn(τ ) =
[nτ ]∑
j=1

Y j , 0 ≤ τ ≤ 1. (4.1)

In Theorem 4.2, we show that if X is a Gaussian process and X and Y have the same
long memory parameter, the normalized partial sum process converges to a fractional
Brownian motion. According to Proposition 2.3, Gaussianity is lost after sampling,
however we get the classical behavior obtained by Taqqu (1975) and Davydov (1970).

4.1 Convergence of the partial sum process

To prove the convergence of the normalized partial sum process, we first need a result
on the convergence in probability of conditional variance of Sn .

Lemma 4.1 Let X be a Gaussian process with regularly varying covariance function

σX (t) = L(t)t−1+2d ,

where 0 < d < 1/2 and where L is slowly varying at infinity and ultimately non-
increasing.
If E[T1] < ∞, then we have

L(n)−1n−1−2dVar(XT1 + · · · + XTn |T1 , . . . , Tn)
p−−−→

n→∞ γd , (4.2)

where γd := E[T1]−1+2d

d(1+2d)
.

Proof See “Appendix”. ��
Theorem 4.2 Assume AssumptionH holds. If X is a Gaussian process with regularly
varying covariance function σX (t) = L(t)t−1+2d , with 0 < d < 1/2 and L slowly
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varyingat infinity andultimately non-increasing (Hypothesis 3.1). Then, ifE[T1] < ∞,
we get

γ
−1/2
d L(n)−1/2n−1/2−d Sn(.) ⇒ B 1

2+d(.), in D[0, 1] with the uniform metric,
(4.3)

where B 1
2+d is the fractional Brownian motion with parameter 1

2 + d, and where γd

is defined in Lemma 4.1.

Proof We first prove the weak convergence in finite-dimensional distributions of

γ
−1/2
d L(n)−1/2n−1/2−d Sn(.)

to the corresponding finite-dimensional distributions of B 1
2+d(.).

It suffices to show that for every k ≥ 1, (b1, . . . , bk) ∈ R
k , 0 ≤ t1, . . . , tk ≤ 1,

An := γ
−1/2
d L(n)−1/2n−1/2−d

k∑
i=1

bi Sn(ti )

satisfies

An
d−→

k∑
i=1

bi B 1
2+d(ti ).

If t1 = · · · = tk = 0, thenγ
−1/2
d L(n)−1/2n−1/2−d∑k

i=1 bi Sn(ti ) =∑k
i=1 bi B 1

2+d(ti )

= 0. So we fix n large enough to have [nmaxi (ti )] ≥ 1 and denote T (n) =
(T1, . . . , T[nmaxi (ti )]). The characteristic function of An is

�An (t) = E[eit An ] = E[e− t2
2 Var(An |T (n))].

Moreover, we have

Var(An|T (n))

=
k∑

i, j=1

bib jγ
−1
d L(n)−1n−1−2d

E[Sn(ti )Sn(t j )|T (n)]

=
k∑

i, j=1

bib jγ
−1
d L(n)−1n−1−2d

2

[
Var(Sn(ti )|T (n))

+Var(Sn(t j )|T (n)) − Var(Sn(ti ) − Sn(t j )|T (n))
]
.

By Lemma 4.1,

L(n)−1n−1−2dVar(Y1 + · · · + Yn|T1 , . . . , Tn)
p−−−→

n→∞ γd .
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Therefore

γ −1
d L(n)−1n−1−2dVar(Sn(ti )|T (n))

p−−−→
n→∞ t1+2d

i ,

and for ti > t j

γ −1
d L(n)−1n−1−2dVar(Sn(ti ) − Sn(t j )|T (n)) = γ −1

d L(n)−1n−1−2dVar(Y[nti ]+1

+ · · · + Y[nt j ]|T (n))
p−−−−→

n→∞ (ti − t j )
1+2d .

Finally, we have

Var(An|T (n))
p−−−→

n→∞

k∑
i, j=1

bib jr 1
2+d(ti , t j ),

where r 1
2+d is the covariance function of a fractional Brownian motion, and hence

exp

(
− t2

2
Var(An|T (n))

)
p−−−→

n→∞ exp

⎛
⎝− t2

2

k∑
i, j=1

bib jr 1
2+d(ti , t j )

⎞
⎠ .

Therefore, applying dominated convergence theorem, we get

�An (t) −−−→
n→∞ exp

⎛
⎝− t2

2

k∑
i, j=1

bib jr 1
2+d(ti , t j )

⎞
⎠ = �∑k

i=1 bi B 1
2+d

(ti )
(t).

The sequence of partial-sum processes L(n)−1/2n−1/2−d Sn(.) is tight with respect
to the uniform norm [see Giraitis et al. (2012) Prop 4.4.2 p78, for the proof of the
tightness] and then we get the convergence in D[0, 1] with the uniform metric. ��

4.2 Estimation of the longmemory parameter

An immediate consequence of this limit theorem is to provide a nonparametric esti-
mation of the long memory parameter d using the well-known R/S statistics. This is
a heuristic method for estimating the long memory parameter. To validate the conver-
gence of more efficient estimates (e.g. Whittle’s estimate or estimators based on the
spectral approach), a non trivial study of the asymptotic properties of periodogram is
required. Indeed the sampled process do not satisfied the classical assumptions (Gaus-
sian process, Linear process with independent and identically distributed innovations)
under which the properties are established [see Giraitis et al. (2012), Beran et al.
(2013)].
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The R/S statistic is defined as the quotient between Rn and Sn where

Rn := max
1≤k≤n

k∑
j=1

(Y j − Yn) − min
1≤k≤n

k∑
j=1

(Y j − Yn) (4.4)

and

Sn :=
⎛
⎝1

n

n∑
j=1

(Y j − Yn)
2

⎞
⎠

1/2

. (4.5)

Proposition 4.3 Under the same assumptions as Theorem 4.2, we have

1

L(n)1/2n1/2+d

Rn

Sn

d−−−→
n→∞ R :=

√
γd

σX (0)

(
max
0≤t≤1

B0
1
2+d

(t) − min
0≤t≤1

B0
1
2+d

(t)

)

(4.6)
where B0

1
2+d

(t) = B 1
2+d(t) − t B 1

2+d(1) is a fractional Brownian bridge and γd is a

constant defined in Lemma 4.1.

Proof Using the equality

k∑
j=1

(Y j − Yn) =
k∑
j=1

Y j − k

n

n∑
j=1

Y j = Sn

(
k

n

)
− k

n
Sn(1)

and the convergence of the partial-sum process given in Theorem 4.2, we get

Rn

L(n)1/2n1/2+d
d−−−→

n→∞
√

γd

(
max
0≤t≤1

B0
1
2+d

(t) − min
0≤t≤1

B0
1
2+d

(t)

)
.

Then, we establish the convergence in probability of S2n defined in (4.5). As

Var

⎛
⎝ n∑

j=1

Y j

⎞
⎠ ∼ Cn1+2d as n → ∞,

we have for ε > 0

P

⎛
⎝
∣∣∣∣∣∣
1

n

n∑
j=1

Y j

∣∣∣∣∣∣ > ε

⎞
⎠ ≤ 1

n2ε2
Var

⎛
⎝ n∑

j=1

Y j

⎞
⎠ −−−→

n→∞ 0

and

P

⎛
⎝
∣∣∣∣∣∣
1

n

n∑
j=1

Y 2
j − σX (0)

∣∣∣∣∣∣ > ε

⎞
⎠ ≤ 1

n2ε2
Var

⎛
⎝ n∑

j=1

Y 2
j

⎞
⎠
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= 1

n2ε2

n∑
j=1

n∑
k=1

Cov
(
Y 2
j ,Y

2
k

)

= 1

n2ε2

n∑
j=1

n∑
k=1

(
E

[
E[X2

Tj
X2
Tk |Tj , Tk]

]
− σX (0)2

)
.

For (s, t) ∈ (R+)2, we decompose X2
s and X2

t in the complete orthogonal system of
Hermite polynomials (Hk)k≥0:

(
Xs√
σX (0)

)2

= H0

(
Xs√
σX (0)

)
+ H2

(
Xs√
σX (0)

)
,

thus, we get

E[X2
s X

2
t ]

σX (0)2
= E

[
H0

(
Xs√
σX (0)

)
H0

(
Xt√
σX (0)

)]
+ E

[
H2

(
Xs√
σX (0)

)
H0

(
Xt√
σX (0)

)]

+ E

[
H0

(
Xs√
σX (0)

)
H2

(
Xt√
σX (0)

)]
+ E

[
H2

(
Xs√
σX (0)

)
H2

(
Xt√
σX (0)

)]
.

Using the orthogonality property ofHermite polynomials for a bivariate normal density
with unit variances [see Giraitis et al. (2012), Prop 2.4.1], we obtain

E[X2
s X

2
t ] = σ 2

X (0)

[
1 + 2Cov2

(
Xs√
σX (0)

,
Xt√
σX (0)

)]

= σ 2
X (0) + 2σ 2

X (t − s).

Finally,

P

⎛
⎝
∣∣∣∣∣∣
1

n

n∑
j=1

Y 2
j − σX (0)

∣∣∣∣∣∣ > ε

⎞
⎠ ≤ 2

n2ε2

n∑
j=1

n∑
k=1

E

[
σ 2
X (Tj − Tk)

]

= 4

n2ε2

n−1∑
j=0

(n − j)E
[
σ 2
X (Tj )

]
.

If 0 ≤ d ≤ 1/4, we apply Proposition 2.4 with p = 1 and the function σ 2
X to obtain

1

n2

n−1∑
j=0

(n − j)E
[
σ 2
X (Tj )

]
≤ 1

n

∞∑
j=0

E

[
σ 2
X (Tj )

]
−−−→
n→∞ 0.

If 1/4 < d < 1/2, Theorem 3.1 can be applied to σ 2
X , and we get

E

[
σ 2
X (Th)

]
∼ L2(h)E[T1]−2+4dh−2+4d as h → ∞.
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Since L is positive, ultimately non-increasing, it admits a limit L(x)
x→∞−−−→ L∞, and

so

E

[
σ 2
X (Th)

]
∼ L2∞E[T1]−2+4dh−2+4d as h → ∞.

According to Giraitis et al. (2012) (Proposition 3.3.1 page 43), we get

1

n2

n−1∑
j=0

(n − j)E
[
σ 2
X (Tj )

]
∼ L2∞E[T1]−2+4d 2

4d(4d − 1)
n−2+4d as n → ∞.

Therefore, we get in both cases

P

⎛
⎝
∣∣∣∣∣∣
1

n

n∑
j=1

Y 2
j − σX (0)

∣∣∣∣∣∣ > ε

⎞
⎠ −−−→

n→∞ 0.

We conclude that Sn
p−−−→

n→∞
√

σX (0) and

1

L(n)1/2n1/2+d

Rn

Sn

d−−−→
n→∞ R :=

√
γd

σX (0)

(
max
0≤t≤1

B0
1
2+d

(t) − min
0≤t≤1

B0
1
2+d

(t)

)
.

��
An application of this result is the estimation of long-memory parameter by the R/S

estimate [see e.g. Mandelbrot and Wallis (1969), Li et al. (2019)]. We assume that the
autocovariance function satisfies the following condition σX (t) ∼ ct2d−1 as t → ∞
(or equivalently L(t) → c > 0 as t → ∞). Taking the logarithm of both sides of (4.6)
we get the heuristic identity

log

(
Rn

Sn

)
= (1/2 + d) log(n) + log(

√
cR) + εn,

where (εn)n is a sequence of random variables which converges to zero in probability.
Then we estimate the slope of the regression line of (log(n), log(Rn/Sn)), which
gives the R/S estimate of d. Because of the asymptotic linear relation, we do not fit
the straight line on all points, but only on values of n large enough.

Example 2 Let us consider the same model as in Example 1, i.e. the intervals � j have
an exponential distribution and X is a Gaussian process with autocovariance function
(2.2).

To evaluate the effects of randomsamplingon theR/S estimator,we also estimate the
longmemoryparameter ofGaussianFARIMA(0, d, 0)processes.AFARIMA(0, d, 0)
process is a stationary discrete-time process whose autocovariance function behaves
as

σ(k) ∼ 
(1 − 2d)


(d)
(1 − d)
k2d−1, k ∈ N, k → ∞.
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Fig. 2 Boxplots of the estimation error d̂n − d and representation of the mean squared error (MSE)

E

[
(d̂n − d)2

]
for different values of n and E[T1]. The samples are simulated from the models defined

in Example 2. The true value of the long memory parameter is d = 0.25. Estimations are done on p = 500
independent copies

See Giraitis et al. (2012) and Beran et al. (2013) for detailed presentations of this
model.

We compare the performance of R/S estimate d̂n for different values of E[T1] ∈
{1/2, 1, 2} and different sample sizes n ∈ {1000, 5000, 100,000}. We fix d =
0.25, the long memory parameter is the same for all simulated processes. We regress
log(Rk/Sk) against log(k) with k > m. The value of m is fixed according to the
bias-variance tradeoff on the FARIMA model. In Fig. 2 we represent the boxplots of
estimation errors. For all the models, the bias and the variance decrease as function
of the sample size n. The boxplots show that the precision is of the same order of
magnitude for sampled processes and for the FARIMA process. The R/S estimate is
less efficient in terms of mean squared error for the sampled processes in particular
for the small values of E[T1]. This effect can be explained by the fact that continuous
time process is observed inside a random time interval [0, Tn] with Tn ∼ E[T1]n as
n → ∞.
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5 Appendix

To prove Lemma 4.1, we need the following intermediate result:

Lemma 5.1 If E[T1] < ∞ and X has a regularly varying covariance function

σX (t) = L(t)t−1+2d
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with 0 < d < 1/2 and L slowly varying at infinity and ultimately non-increasing.
Then,

Var(σX (Th)) = ◦(L(h)2h−2+4d), as h → ∞. (5.1)

Proof By Theorem 3.1, we have E[σX (Th)] ∼
h→∞ L(h)(hE[T1])−1+2d . To get the

result, it is enough to prove that

E[σX (Th)
2] ∼

h→∞ L(h)2(hE[T1])−2+4d .

To prove the asymptotic behavior of E[σX (Th)2], we will follow a similar proof as
theorem 3.1:

• Let 0 < c < E[T1], and h ∈ N such that ch ≥ 1,

E[σX (Th)
2] ≥ E

[
σX (Th)

2
ITh>ch

]
≥ E

[
L(Th)

2T−2+4d
h ITh>ch

]

≥ inf
t>ch

{L(t)2t4d}E
[
ITh>ch

T 2
h

]
.

Thanks to Jensen and Hölder inequalities,

E

[
ITh>ch

T 2
h

]
≥ E

[
ITh>ch

Th

]2
and P(Th > ch)2 ≤ E[Th]E

[
ITh>ch

Th

]
,

that is

E

[
ITh>ch

T 2
h

]
≥ P(Th > ch)4

E[Th]2 .

Summarizing,

E[σX (Th)2]
L(h)2(hE[T1])−2+4d ≥ inf t>ch{L(t)2t4d}

L(h)2h4dE[T1]4d P(Th > ch)4. (5.2)

Then, for c < E[T1], we have P(Th > ch) → 1 and inf t>ch{L(t)2t4d} ∼
L(ch)2(ch)4d . Finally, for all c < E[T1],

lim inf
h→∞

E[σX (Th)2]
L(h)2(hE[T1])−2+4d ≥

(
c

E[T1]
)4d

.

Taking the limit as c → E[T1], we get

lim inf
h→∞

E[σX (Th)2]
L(h)2(hE[T1])−2+4d ≥ 1.
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• Let 1
2 < s < τ < 1, t0 such that L(.) is non-increasing and positive on [t0,∞)

and h such that μh,s − μτ
h,s ≥ t0, with the same notation as Theorem 3.1,

E[σX (Th)2] = E

[
L(Th)2T−2+4d

h ITh,s≥μh,s−μτ
h,s

]
+ E

[
σ(Th)

2
ITh,s<μh,s−μτ

h,s

]

≤ L(μh,s − μτ
h,s)

2
(
μh,s − μτ

h,s

)−2+4d + σX (0)2P
(
Th,s < μh,s − μτ

h,s

)
.

We get

E[σX (Th)2]
L(h)2(hE[T1])−2+4d ≤

(
L(μh,s − μτ

h,s)

L(h)

)2 (μh,s − μτ
h,s

hE[T1]
)−2+4d

+ σX (0)2
P
(
Th,s < μh,s − μτ

h,s

)

L(h)2(hE[T1])−2+4d ,

and finally

lim sup
h→∞

E[σX (Th)2]
L(h)2(hE[T1])−2+4d ≤ 1.

��

Proof of Lemma 4.1:
Denote

Wn = L(n)−1n−1−2d
n∑

i=1

n∑
j=1

σX (Tj − Ti ) = L(n)−1n−1−2dVar(XT1

+ · · · + XTn |T1 , . . . , Tn).

Wewant to prove thatWn converges in probability to γd . To do this, we will show that
E[Wn] −−−→

n→∞ γd and Var(Wn) −−−→
n→∞ 0.

• As X is a centered process E[Wn] = L(n)−1n−1−2dVar(Y1 + · · · + Yn). By
Theorem 3.1, we have

σY (h) ∼ L(h)(hE[T1])−1+2d h → ∞,

then
L(n)−1n−1−2dVar(Y1 + · · · + Yn) −−−→

n→∞ γd , (5.3)

[see Giraitis et al. (2012) Proposition 3.3.1, page 43].
Therefore we obtain

E[Wn] −−−→
n→∞ γd .
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• Furthermore,

Var(Wn) = L(n)−2n−2−4dVar

⎛
⎝ n∑

i=1

n∑
j=1

σX (Tj − Ti )

⎞
⎠

≤ L(n)−2n−2−4d

⎛
⎝ n∑

i=1

n∑
j=1

√
Var(σX (Tj − Ti ))

⎞
⎠

2

=
(
2n−1−2d L(n)−1

n∑
h=1

(n − h)
√
Var(σX (Th))

)2

.

Then, by Lemma 5.1,
√
Var(σX (Th)) = ◦(L(h)h−1+2d) and 2

∑n
h=1(n −

h)L(h)h−1+2d ∼ L(n)n1+2d

d(1+2d)
.

We get

2
n∑

h=1

(n − h)
√
Var(σX (Th)) = ◦(L(n)n1+2d).

Finally, Var(Wn) = ◦(1) which means that Var(Wn) −−−→
n→∞ 0. We obtain

Wn
L2, p−−−→
n→∞ γd .
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