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Abstract
For the special case of balanced one-way random effects ANOVA, it has been estab-
lished that the generalized likelihood ratio test (LRT) and Wald’s test are largely
equivalent in testing the variance component. We extend these results to explore the
relationships between Wald’s F test, and the LRT for a much broader class of linear
mixed models; the generalized split-plot models. In particular, we explore when the
two tests are equivalent and prove that when they are not equivalent, Wald’s F test is
more powerful, thus making the LRT test inadmissible. We show that inadmissibility
arises in realistic situations with common number of degrees of freedom. Further,
we derive the statistical distribution of the LRT under both the null and alternative
hypotheses H0 and H1 where H0 is the hypothesis that the between variance compo-
nent is zero. Providing an exact distribution of the test statistic for the LRT in these
models will help in calculating a more accurate p-value than the traditionally used
p-value derived from the large sample chi-square mixture approximations.

Keywords F-test · LRT · Generalized split-plot · Variance component · Random
effect · Mixed model

Mathematics Subject Classification 62C15 · 62E15 · 62F03 · 62F10 · 62K99

1 Introduction

For linear mixed models with one variance component beyond the usual error, Wald
proposed in 1947, for the first time, an exact F test for the variance component being
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zero. In 2010, Lu and Zhang have established the equivalence between the generalized
likelihood ratio test and the traditional F test for no group effects in the balanced one-
way random effects model, see also Herbach (1959). We extend this result to a much
broader family of linear mixed effects models with one random effect, compound
symmetry (CS) covariance structure, and other constraints– namely the generalized
split-plot (GSP)models introduced inChristensen (1987).GSPs assumeCScovariance
structure indicating heterogeneous variances and constant correlations among repeated
measures.GSPmodels include standard split-plotmodelswith nearly any experimental
design for the whole plot treatments and include some ability to incorporate covariates
into split-plot models. Further, the standard multivariate growth curve models (cf.
some standard multivariate text like Johnson and Wichern) with compound symmetry
covariance matrices are special cases of generalized split plot models as shown by
Christensen (2019, Section 11.7.1). The balanced one-way random effects model is
the simplest GSP model.

A general linear mixed model that specifies both fixed effects and random effects
can be written as

Y = X̃β + X1γ + ε, (1)

where Y is a vector of observations, X̃ is a known model matrix for fixed effects, β
is an unobservable parameter vector of fixed effects, X1 is a known model matrix for
random effects, γ is an unobservable vector of random effects, and ε is a vector of
residual errors with E(ε) = 0, Cov(ε) = R, E(γ ) = 0, Cov(γ ) = D, Cov(ε, γ ) = 0,
and therefore Cov(Y ) = X1DX

′
1 + R.

1.1 Notation

For the rest of this paper, we use the notation C(A) and r(A) to denote the column
space and rank of the matrix A respectively. In addition, the perpendicular projection
operator (PPO) onto C(A) is denoted by MA unless otherwise specified. In matrix
notation, J cr and 0r×c denote a matrix of ones and a matrix of zeros respectively
each of size r × c. When c = 1, for simplicity we suppress c so that Jr and 0r
denote a column vector of ones and a column vector of zeros respectively of length
r . In is the identity matrix of size n while I , with no subscripts, has size that can be
inferred fromcontext.Weuse diag(V1, . . . , VN ) to denote a block diagonalmatrixwith
square matrices V1, . . . , VN on its diagonal and Bdiag(V ) to denote a block diagonal
matrix whose diagonal entries are all V . Vertical lines denote the determinant when
enclosing a matrix and absolute value when enclosing a number. L(.), and �(.) denote
the likelihood, and −2Log-likelihood functions respectively while �∗(.) ≡ −�(.).

1.2 A class of linear mixedmodels of interest

Our class of linear mixed models of interest is of the form

Y = X∗δ + X2γ + (X1η + ε), (2)
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with η ∼ N (0, σ 2
w IN ), ε ∼ N (0, σ 2

s In), Cov(ε, η) = 0n×N , n = Nm, δ and γ are
fixed effects, C(X∗) ⊂ C(X1), and C([X∗, X2]) = C(X∗, (I − M1)X2) where M1
is the PPO onto C(X1). If V = Cov(Y ), then for this class of models it’s imme-
diate that C(V X) ⊂ C(X) given that X1 is a matrix of indicator variables for the
clusters with equal group sizes. GSPs are the class of such linear models for which

V = (
σ 2

w + σ 2
s

)
[(1 − ρ)In + ρ Jnxn] where ρ = σ 2

w

σ 2
w+σ 2

s
, σ 2

w is the variance between

clusters or blocks, and σ 2
s is the variance within clusters or blocks.

1.2.1 Generalized split plot (GSP) models

We summarize the definition and analysis of GSP models from Christensen (1984,
1987 and 2011). Consider a two-stage cluster sampling model

Y = Xβ + ξ, (3)

with n observations, mi subjects from each cluster, and includes fixed effects for each
cluster. Let X = [X1, X2] where the columns of X1 are indicators for the clusters and
X2 contains the other effects. Write β ′ = [α′, γ ′] so that α is a vector of fixed cluster
effects and γ is a vector of fixed non-cluster effects. Because it is a two-stage cluster
sampling model, the error vector ξ has uncorrelated clusters and intraclass correlation
structure and can be written with random effects as

ξ = X1η + ε, (4)

where η contains random cluster effects and ε is a random error. Assume that η and ε

are independent such that η ∼ N (0, σ 2
w IN ), ε ∼ N (0, σ 2

s In) with Cov(ε, η) = 0n×N

such that n = ∑N
i=1 mi then we get the mixed model

Y = X1α + X2γ + (X1η + ε), (5)

with

V ≡ Cov(Y ) = σ 2
wX1X

′
1 + σ 2

s In . (6)

The GSP models are obtained by imposing additional structure on the fixed cluster
effects within the cluster sampling model (5). To model the whole plot (cluster) effects
we put a constraint on C(X1) by considering a reduced model

Y = X∗δ + X2γ + (X1η + ε), C(X∗) ⊂ C(X1)

≡ X̃β∗ + ξ, (7)

where X̃ = [X∗, X2] and β ′∗ = [δ′
, γ

′ ] and the covariance matrix remains as in (6).
The δi s will be the whole plots fixed effects and the γi s will be the subplots fixed
effects. In this model, η is the whole plot error and ε is the subplot error.
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To develop a traditional split-plot analysis for GSP models, we need three assump-
tions:

(a) mi = m, i.e. all whole plots are of the same size,
(b) C(X∗) ⊂ C(X1), i.e. δ contains whole plot effects,
(c) C(X̃) = C(X∗, (I−M1)X2)whereM1 is the PPO ontoC(X1), i.e. subplot effects

are orthogonal to whole plots (not just whole plot effects).

In particular, with these three conditions, the least-squares estimates (LSEs) for model
(7) are best linear unbiased estimates (BLUEs) and standard split-plot F and t statistics
have null hypothesis F and t distributions, cf., Christensen (2011, Chapter 11).

We consider a GSPmodel with n total observations, r(M1) = N whole plots andm
subplots in eachwhole plot. Inmodel (7), with covariance structure (6) and assumption
(a) we can rewrite (6) as

V = σ 2
wBdiag(Jm J ′

m) + σ 2
s In = σ 2

s In + σ 2
wmM1. (8)

Also,

V = Bdiag(Ṽ ) = IN ⊗ Ṽ , (9)

where

Ṽ = σ 2
w Jm J ′

m + σ 2
s Im =

⎡

⎢
⎢⎢
⎣

σ 2
w + σ 2

s σ 2
w . . . σ 2

w

σ 2
w σ 2

w + σ 2
s . . . σ 2

w
...

...
. . .

...

σ 2
w σ 2

w . . . σ 2
w + σ 2

s

⎤

⎥
⎥⎥
⎦

. (10)

In a general mixed model (1) exact statistical inference cannot typically be performed
noting that approximation for exact calculations could be made (Lavine et al. 2015).
However, there are special cases such asWald’s tests for variance components and split-
plot models where exact inferences are available. The analysis of split-plot designs
is complicated by having two different errors in the model. If σ 2

w = 0, the model (7)
reduces to the standard linear model

Y = X∗δ + X2γ + ε, E(ε) = 0,Cov(ε) = σ 2
e In

= X̃β∗ + ε. (11)

In particular, if the whole plot model is a one-way ANOVA, i.e., the whole plot design
is a completely randomized design (CRD), and the subplot effects involve only subplot
main effects and whole plot by subplot interaction then the model reduces to two-way
ANOVAwith interaction. Further, if the whole plot one-way model is unbalanced this
might be an interesting two-way ANOVA model wherein the number of observations
on each pair of factors i j is k = 1, . . . ,mNi instead of the usual k = 1, . . . , Ni j

which makes whole plot treatments and subplot treatments orthogonal (Christensen
2011, Section 7.4). To test the appropriateness of the standard linear model (11), the
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hypothesis of interest is whether or not the covariance component for whole plots lies
on the boundary of the parameter space, i.e.,

H0 : σ 2
w = 0 vs. H1 : σ 2

w > 0. (12)

There are three competing test statistics for the null hypothesis in (12), the likelihood
ratio test (LRT) and the traditional, exact, F-test (Wald’s test) and the likelihood ratio
test based on the residual likelihood (RLRT). These tests have been studied extensively
over the past few decades (see Crainiceanu and Ruppert 2004; Greven et al. 2008;
Wiencierz et al. 2011; Molenberghs and Verbeke 2007; Scheipl et al. 2008), however
studies about their equivalnace in the context of split-plot designs are limited.

1.3 Objectives

In this work, we aim to show the inadmissibility of the LRT in testing the hypothesis
that the between variance component in a linear mixed model with CS covariance
structure and other constraints is zero (i.e. among GSP models). Firstly, we derive
explicit expressions for the maximum likelihood estimates (MLEs) for the variance
components of theGSPmodel. Further,we show that theLRTandF tests are equivalent
for testing (12) in GSP models when the size of the test, α, is reasonably small and
we derive the exact distribution for the LRT test statistics under both H0 and H1. In
particular, we show that the two tests are equivalent when α ≤ 1 − p where p is the
probability that the LRT statistic is zero and give a proof that the F test has a larger
power when α > 1 − p.

1.4 Additional notations

LetM ,M1, M̃ andM∗ be the PPOs ontoC(X),C(X1),C(X̃) andC(X∗), respectively,
so that

M1 = X1(X
′
1X1)

−1X
′
1 = Bdiag

(
1

m
Jm J ′

m

)
= 1

m
X1X

′
1, (13)

and define

M2 = (I − M1)X2

(
X

′
2(I − M1)X2

)−
X

′
2(I − M1) (14)

to be the PPO onto C(X1)
⊥
C(X) which under our assumptions is also the PPO onto

C(X∗)⊥C(X̃)
. From Christensen (2011, Chapter 11) the projection operators satisfy

M̃ = M∗ + M2, M∗M1 = M∗, M1M2 = 0 and M = M1 + M2. (15)
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For completeness, these properties are reproven in Appendix 1. The sum of squares
for whole plot error and subplot error are, respectively,

SSE(w) ≡ Y
′
(M1 − M∗)Y and SSE(s) ≡ Y

′
(I − M)Y , (16)

such that

SSE(s) = Y
′
(I − M)Y = Y

′
(I − M̃)Y − Y

′
(M1 − M∗)Y . (17)

The F statistic for testing (12) is defined as

F = MSE(w)

MSE(s)
= SSE(w)/[r(X1) − r(X∗)]

SSE(s)/[n − r(X)] = SSE(w)/[N − r(X∗)]
SSE(s)/[n − r(X)] . (18)

2 The equivalence between the LRT and F-test

2.1 Maximum likelihood estimators (MLEs)

The likelihood function for model (7) is:

L(β∗, σ 2
w, σ 2

s |Y ) = 1

(2π)n/2 |V |1/2 e
−1/2(Y−X̃β∗)′V−1(Y−X̃β∗), (19)

where

V = V (σ 2
w, σ 2

s ) = mσ 2
wM1 + σ 2

s In . (20)

We provide three lemmas:

Lemma 1 The inverse of a In + bP, where P is a PPO and a and b are real numbers
such that a 
= 0 and a 
= −b, is

(aIn + bP)−1 = 1

a

(
In − b

a + b
P

)
. (21)

Proof of Lemma 1 See Proposition 12.11.1 in Christensen (2011, p.322). ��
Lemma 2 The determinant of a In + bP, where P is a PPO and a and b are real
numbers, is

|aIn + bP| = an−r(P)(a + b)r(P). (22)

Proof of Lemma 2 Any nonzero vector inC(P)⊥ is an eigenvector for the eigenvalue a,
so a has multiplicity n−r(P). Similarly, any nonzero vector inC(P) is an eigenvector
for the eigenvalue a+b, so a+b has multiplicity r(P). The determinant is the product
of the eigenvalues and hence |aIn + bP| = an−r(P)(a + b)r(P). Appendix 2 contains
an illustration. ��
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Lemma 3 For q1, q2 > 0, maximizing the function

g(x1, x2) = −
[
constant + q1 log(x1) + q2 log(x2) + q1

(
Q1

x1

)
+ q2

(
Q2

x2

)]

(23)

subject to the constraint x2 ≥ x1 > 0 gives a maximum at (x1, x2) = (Q1, Q2) when
x2 > x1 > 0 (i.e. when (x1, x2) is in the interior of the constraint) or a maximum

at (x1, x2) =
(
q1Q1+q2Q2

q1+q2
,
q1Q1+q2Q2

q1+q2

)
when x2 = x1 (i.e. when (x1, x2) is on the

boundary of the constraint).

The proof is in Appendix 3.
Applying Lemmas 1 and 2 to V in (20) gives the following determinant and inverse

covariance matrix:

|V | =
∣∣∣σ 2

s + mσ 2
w

∣∣∣
N ∣∣∣σ 2

s

∣∣∣
n−N

, (24)

and

V−1 = 1

σ 2
s
In −

(
σ 2

w

σ 2
s

)
m

σ 2
s + mσ 2

w

M1. (25)

Substituting (24) in (19) and taking −2 times the natural logarithm leads to

�(β∗, σ 2
w, σ 2

s |Y ) = n log(2π) + N log
(
σ 2
s + mσ 2

w

)
+ N (m − 1) log(σ 2

s )

+ (Y − X̃β∗)′V−1(Y − X̃β∗). (26)

Proposition 1 The Maximum Likelihood estimators for β∗, σ 2
w and σ 2

s of model (7)
are

β̂∗ =
(
X̃ ′V−1 X̃

)−
X̃ ′V−1Y =

(
X̃ ′ X̃

)−
X̃ ′Y , (27)

σ̂ 2
w = 1

m
max

{
0,

SSE(w)

N
− SSE(s)

n − N

}
, and (28)

σ̂ 2
s = min

{
SSE(s)

n − N
,
SSE(s) + SSE(w)

n

}
, (29)

such that the pair σ̂ 2
w = 0 and σ̂ 2

s = SSE(s)+SSE(w)
n occurs when SSE(w)

N ≤ SSE(s)
n−N

and the other pair σ̂ 2
w = 1

m

[
SSE(w)

N − SSE(s)
n−N

]
and σ̂ 2

s = SSE(s)
n−N occurs otherwise.

Proof of Proposition 1 Differentiating (26) with respect to β∗ and setting the partial
derivative to zero, leads to

β̂∗ =
(
X̃ ′V−1 X̃

)−
X̃ ′V−1Y . (30)
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320 F. Qeadan, R. Christensen

It is well known, for the fixed effects in mixed models, that the maximum likelihood
estimates (MLEs) are also the best linear unbiased estimates (BLUEs) and Christensen
(2011, Chapter 11) has shown, since C(V X̃) ⊂ C(X̃), that the ordinary least squares
estimates (OLSEs) are the BLUEs for β∗ so they are also the maximum likelihood

estimates. Therefore, β̂∗ =
(
X̃ ′V−1 X̃

)−1
X̃ ′V−Y =

(
X̃ ′ X̃

)−
X̃ ′Y and subsequently

X̃ β̂∗ could be computed, using the OLSEs, as

X̃ β̂∗ = M̃Y . (31)

Note that the least squares estimates do not depend on the variance parameters so to
find σ̂ 2

w and σ̂ 2
s , we need to maximize

�∗(β̂∗, σ 2
w, σ 2

s |Y ) ≡ −�(β̂∗, σ 2
w, σ 2

s |Y ) = −[n log(2π) + N (m − 1) log(σ 2
s )

+ N log
(
σ 2
s + mσ 2

w

)
+ Ψ (σ 2

w, σ 2
s )],
(32)

Not re-expressing Ψ in terms of the sum of square errors would make it impossible
to find closed form solutions that maximize �∗(β̂∗, σ 2

w, σ 2
s |Y ). Hence, since Ψ =

(Y − M̃Y )′V−1(Y − M̃Y ), we get

�∗(β̂∗, σ 2
w, σ 2

s |Y ) = −
[
n log(2π) + N (m − 1) log(σ 2

s ) + N log
(
σ 2
s + mσ 2

w

)

+ SSE(s)

σ 2
s

+ SSE(w)

σ 2
s + mσ 2

w

]
. (33)

To apply Lemma 3 to �∗, let q1 = N (m − 1) = n − N , q2 = N , x1 = σ 2
s ,

x2 = σ 2
s + mσ 2

w, Q1 = SSE(s)
q1

and Q2 = SSE(w)
q2

. A key point is x2 ≥ x1 so our
maximization has to be done subject to that constraint. Lemma 3 gives themaximizers

(
σ̂ 2
s , σ̂ 2

s + mσ̂ 2
w

)
=

(
SSE(s)

n − N
,
SSE(w)

N

)

⇐⇒
(
σ̂ 2
s , σ̂ 2

w

)
=

(
SSE(s)

n − N
,
1

m

[
SSE(w)

N
− SSE(s)

n − N

])
(34)

when SSE(w)
N >

SSE(s)
n−N and

(
σ̂ 2
s , σ̂ 2

s + mσ̂ 2
w

)
=

(
SSE(s) + SSE(w)

n
,
SSE(s) + SSE(w)

n

)

⇐⇒
(
σ̂ 2
s , σ̂ 2

w

)
=

(
SSE(s) + SSE(w)

n
, 0

)
(35)

when SSE(w)
N ≤ SSE(s)

n−N .
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Now, suppose that the MLE of σ 2
w is σ̂ 2

w = 1
m

(
SSE(w)

N − SSE(s)
n−N

)
then SSE(s)

n−N ≤
SSE(w)

N so that

SSE(s)

n − N
≤

(
n − N

n

)
SSE(s)

n − N
+

(
N

n

)
SSE(w)

N
= SSE(s) + SSE(w)

n
(36)

with the first inequality true because the term in the middle is a weighted average so
has to be larger than the smaller of the two things being averaged, therefore the MLE
of σ 2

s is the smaller of the terms SSE(s)
n−N and SSE(s)+SSE(w)

n . That is, the larger term

between 0 and 1
m

(
SSE(w)

N − SSE(s)
n−N

)
forces the answer to be the smaller term between

SSE(s)
n−N and SSE(s)+SSE(w)

n and vice versa. Hence (34) and (35) could be written via
max and min as

σ̂ 2
w = 1

m
max

{
0,

SSE(w)

N
− SSE(s)

n − N

}

and

σ̂ 2
s = min

{
SSE(s)

n − N
,
SSE(s) + SSE(w)

n

}

��
Note that the partial derivatives for (33) are

∂�

∂σ 2
w

= −
[

n

σ 2
s + mσ 2

w

− mSSE(w)

(σ 2
s + mσ 2

w)2

]
, (37)

and

∂�

∂σ 2
s

= −
[

N

σ 2
s + mσ 2

w

+ N (m − 1)

σ 2
s

− SSE(s)

(σ 2
s )2

− SSE(w)

(σ 2
s + mσ 2

w)2

]
. (38)

So, for varification purposes, pluging in the pair σ̂ 2
w = 0 and σ̂ 2

s = SSE(s)+SSE(w)
n

into (38) and the other pair σ̂ 2
w = 1

m

[
SSE(w)

N − SSE(s)
n−N

]
and σ̂ 2

s = SSE(s)
n−N into (37)

gives zero as desired.

3 Monotonic relationship between the LRT and F-test statistics

We show that the LRT statistic Λ is a monotone function of the F-test statistic F for
testing the null hypothesis in (12). When Λ is not 0, the monotone relationship is
strict, so whenever the size of the test α is smaller than the probability 1 − pm that
Λ 
= 0, the tests are equivalent. We also examine the behavior of the tests when they
are not equivalent (i.e. when α > 1− pm). To establish this monotone relationship we
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need to distinguish between the sum of squared errors and model parameters under the
reduced model in (11) versus the full model in (7). In particular, the sum of squares
for errors under the reduced model is

SSE(e) ≡ SSE(w) + SSE(s). (39)

Similarly, we use σ 2
e to denote the variance parameter corresponding to the reduced

model while σ 2
w and σ 2

s denote the variance parameters of the full model. Since the
reduced and full models are nested we present the equivalance between the LRT and
F-test under the full model. Since there are two cases for the MLEs of σ 2

w and σ 2
s ,

the relationship between the statistics Λ and F will be decomposed into two cases as
well.

Proposition 2 The LRT statistic Λ, for (12), is a monotone function of the F statistic.
In particular, (case-I) when σ̂ 2

w = 0 and σ̂ 2
s = SSE(s)+SSE(w)

n we have

Λ = 0, (40)

and (case-II) when σ̂ 2
w = 1

m

[
SSE(w)

N − SSE(s)
n−N

]
and σ̂ 2

s = SSE(s)
n−N we have

Λ = n log

(
m − 1

m

)
+ N log

(
N (n − r(X))

(n − N )(N − r(X∗))

)

+ n log

(
1 + N − r(X∗)

n − r(X)
F

)
+ N log

(
1

F

)
(41)

such that case-I occurs when F ≤ κ and case-II occurs when F > κ where

κ = n − r(X)

(m − 1)(N − r(X∗))
. (42)

In Case-II, the relationship is strictly monotone so the tests are equivalent as long as
the alpha level is smaller than P(F > κ). The plot ofΛ as a function of F is presented
in Fig. 1.

Proof of proposition (2) To examine the variation between plots, we test the whole
plot error as in (12). Note that, under H0 we get the reduced model (11) where ε ∼
N (0, σ 2

e I ) with

L(β∗, σ 2
e |Y ) = 1

(2πσ 2
e )n/2 e

− 1
2σ2e

(Y−X̃β∗)′(Y−X̃β∗)
, (43)

and

�(β̂∗, σ 2
e |Y ) = n log(2π) + n log(σ 2

e ) + SSE(e)

σ 2
e

, (44)
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Fig. 1 A plot of the LRT
statistic Λ versus the F statistic
according to (40) and (41).
When F ≤ κ , Λ is constant and
equal to 0

κ

Λ

F

0

so that the MLE of σ 2
e is

σ̂ 2
e = SSE(e)

n
. (45)

In our case, (7) is the full model and (11) is the reduced one so that

Λ = �R(β̂∗, σ̂ 2
e |Y ) − �F (β̂∗, σ̂ 2

w, σ̂ 2
s |Y ), (46)

where�R(β̂∗, σ̂ 2
e |Y ) ≡ sup �(β̂∗, σ 2

e |Y ) and�F (β̂∗, σ̂ 2
w, σ̂ 2

s |Y ) ≡ sup �(β̂∗, σ 2
w, σ 2

s |Y )

such that the R and F subscripts refer to the reduced and full models respectively.
Using (39), then plugging (45) into (44) gives

�R(β̂∗, σ̂ 2
e |Y ) = n log (2π) + n − n log (n) + n log (SSE(s) + SSE(w)) . (47)

Further, if we let σ̂ 2
s and σ̂ 2

w be the MLEs for σ 2
s and σ 2

w and plug them into (33) we
get

�F (β̂∗, σ̂ 2
w, σ̂ 2

s |Y ) = n log (2π) + N (m − 1) log(σ̂ 2
s ) + N log(σ̂ 2

s + mσ̂ 2
w)

+ SSE(s)

σ̂ 2
s

+ SSE(w)

σ̂ 2
s + mσ̂ 2

w

. (48)

Case-I: If σ̂ 2
w = 0 and σ̂ 2

s = SSE(s)+SSE(w)
n then

Λ = n − n log (n) + n log (SSE(s) + SSE(w))

−n log

(
SSE(s) + SSE(w)

n

)
− n = 0. (49)
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Case-II: If σ̂ 2
w = 1

m

[
SSE(w)

N − SSE(s)
n−N

]
and σ̂ 2

s = SSE(s)
n−N then, by (18), we get

Λ = n log

(
m − 1

m

)
+ N log

(
N (n − r(X))

(n − N )(N − r(X∗))

)

+ n log

(
1 + N − r(X∗)

n − r(X)
F

)
+ N log

(
1

F

)
. (50)

We note that this case holds only when σ̂ 2
w > 0 so F must be larger than κ since

1

m

[
SSE(w)

N
− SSE(s)

n − N

]
> 0 ⇐⇒ F >

n − r(X)

(m − 1)(N − r(X∗))
= κ. (51)

The function of Λ for Case II given in (50) is strictly increasing in F since

∂Λ

∂F
> 0 ⇐⇒ n N−r(X∗)

n−r(X)

1 + N−r(X∗)
n−r(X)

F
− N

F
> 0 ⇐⇒ F > κ. (52)

��

4 The distribution of the F-test and LRT statistics

The form of relation between theΛ and F helps us better understand the distribution of
Λ. In particular, this relation implies an important lemma (Lemma4) on the distribution
of Λ for (7).

Proposition 3 The distribution of the F−ratio in (18) for themodel in (7) is a constant
multiple of a central F distribution,

F = MSE(w)

MSE(s)
∼ σ 2

s + mσ 2
w

σ 2
s

F(N − r(X∗), n − r(X)). (53)

Proof of Proposition (3) It has been shown in Chapter 11.2 of Christensen (2011) that

W1 := SSE(w)

σ 2
s + mσ 2

w

= Y ′(M1 − M∗)Y
σ 2
s + mσ 2

w

∼ χ2
N−r(X∗), (54)

W2 := SSE(s)

σ 2
s

= Y ′(I − M)Y

σ 2
s

∼ χ2
n−r(X), (55)

and SSE(w) is independent of SSE(s). Thus, since the F-distribution arises from the
ratio of two independent chi-squared random variables, each divided by its respective
degrees of freedom, we have

F = SSE(w)/[N − r(X∗)]
SSE(s)/[n − r(X)]
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=
(

σ 2
s + mσ 2

w

σ 2
s

)
W1/[N − r(X∗)]
W2/[n − r(X)] ∼ σ 2

s + mσ 2
w

σ 2
s

F(N − r(X∗), n − r(X)).

(56)

��
Now, if we let W ∼ F (N − r(X∗), n − r(X)) then σ̂ 2

w = 0 ⇐⇒ F ≤ κ ⇐⇒
W ≤ κσ 2

s
σ 2
s +mσ 2

w
where the first if and only if is an exact relationship and the second one

is only a distributional relationship.

Lemma 4 The distribution of the LRT statistic Λ for the model in (7) is determined
by the relationship in (57) where W ∼ F (N − r(X∗), n − r(X)), pm, a, and τ are
as described.

Λ ∼
⎧
⎨

⎩

0 if W ≤ κσ 2
s

σ 2
s +mσ 2

w

τ + N log
(

(1+aW )m

W

)
if W >

κσ 2
s

σ 2
s +mσ 2

w

(57)

such that

pm = Pr

(
W ≤ κσ 2

s

σ 2
s + mσ 2

w

)
, (58)

where

a = N − r(X∗)
n − r(X)

σ 2
s + mσ 2

w

σ 2
s

, (59)

and

τ = N log

(
(m − 1)m−1

mm

1

a

)
. (60)

Proof of Lemma 4 From case-I of Proposition 2 we know that Λ = 0 iff F ≤ κ so

pm ≡ P(Λ = 0) = P (F ≤ κ)

= P

(
σ 2
s + mσ 2

w

σ 2
s

W ≤ κ

)
= P

(
W ≤ κσ 2

s

σ 2
s + mσ 2

w

)
. (61)

The equality in the second line of (61) holds due to Proposition 3.
Now, from case-II of Proposition 2 we also know that, if F > κ (i.e. when W >
κσ 2

s
σ 2
s +mσ 2

w
),

Λ = n log

(
m − 1

m

)
+ N log

(
N (n − r(X))

(n − N )(N − r(X∗))

)

+ n log

(
1 + N − r(X∗)

n − r(X)
F

)
+ N log

(
1

F

)
. (62)
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So, if we let W ∼ F (N − r(X∗), n − r(X)) then substituting F from (53) into (62)
gives

Λ = n log

(
m − 1

m

)
+ N log

(
N (n − r(X))

(n − N )(N − r(X∗))

)

+ n log

(
1 + N − r(X∗)

n − r(X)
F

)
+ N log

(
1

F

)

∼ τ + N log

[
(1 + aW )m

W

]
, (63)

where a = N−r(X∗)
n−r(X)

σ 2
s +mσ 2

w

σ 2
s

and τ = N log
(

(m−1)m−1

mm
1
a

)
. ��

We note that lim
W→ κσ2s

σ2s +mσ2w

Λ = 0. This result can be verified by plugging in

W = κσ 2
s

σ 2
s +mσ 2

w
in the third equality of (63). In practice, the probability mass at zero for

the likelihood ratio test in (58) should be numerically estimated by using the MLEs
as follows.

pm ≡ P(Λ = 0) = P (F ≤ κ)

= P

(
W ≤ κσ 2

s

σ 2
s + mσ 2

w

)
≈ P

(

W ≤ κσ̂s
2

σ̂s
2 + mσ̂ 2

w

)

. (64)

Providing an exact distribution of the test statistic for the LRT in these models will
help in calculating amore accurate p-value than the traditionally used p-value from the
large sample chi-square mixture approximations introduced by Self and Liang (1987).
The distribution of Λ under the null hypothesis is obtained by substituting zero for
σ 2

w in Lemma 4. This implies that, under H0, the probability that Λ is zero does not
depend on the parameter σ 2

s and equals

pm = P (W ≤ κ) . (65)

GSP models offer remarkable advantages in the ability to perform exact calculations.
For example, Crainiceanu and Ruppert (2004) derive the probability mass at zero for
the likelihood ratio test in linear mixed models (LMM) with one variance component
as

pc = P

(∑K
s=1 μs,nw

2
s

∑n− p̃
s=1 w2

s

≤ 1

n

K∑

i=1

ξs,n

)

, (66)

where μs,n and ξs,n are the K eigenvalues of the K × K matrices X
′
1P0X1 and

X
′
1X1 respectively, where wi ∼ N (0, 1), P0 = In − X̃

(
X̃

′
X̃
)−1

X̃
′
and p̃ is the

dimensionality of the vector β∗ in view of (7). We note that p̃ is the rank of the design
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matrix X̃ instead of the dimensionality of the vector β∗ when the generalized inverse
is used. We present the equivalence between the two formulas in (65) and (66) in the
discussion that follows.

Considering the model in (7), one can show that the eigenvalues ξs,n , of X
′
1X1,

are m of multiplicity N and the eigenvalues μs,n , of X
′
1P0X1, are m of multiplicity

N − r(X∗) and zero of multiplicity r(X∗). Further, from (15), it’s immediate that
M∗ ⊥ (M − M1) and M1 ⊂ M so

r(X̃) = r(M̃) = r(M∗ + M2) = r(M∗ + (M − M1))

= r(M∗) + r(M − M1) = r(M∗) + r(M) − r(M1) = r(X∗) + r(X) − N .

(67)

Thus, if we let ws ∼ N (0, 1) then according to (66), the probability mass at zero
for the likelihood ratio test in testing (12) is

pc = P

(∑K
s=1 μs,nw

2
s∑n−p

s=1 w2
s

≤ 1

n

K∑

i=1

ξs,n

)

= P

( ∑N−r(X∗)
s=1 mw2

s
∑n−(r(X∗)+r(X)−N )

s=1 w2
s

≤ 1

n

N∑

i=1

m

)

⇐⇒ pc = P

( ∑N−r(X∗)
s=1 w2

s
∑n−(r(X∗)+r(X)−N )

s=N−r(X∗)+1 w2
s

≤ 1

m − 1

)

= P

(
W1

W2
≤ 1

m − 1

)

⇐⇒ pc = P (W ≤ κ) , (68)

which is the same as (65).
The formula in (65) is an easier way of getting the probability mass at zero for the

likelihood ratio test under H0 than (66). In fact, our results stand out relative to the
derivation of Crainiceanu and Ruppert (2004) for being nice and compact and because
it’s not possible in general to give such a short and straightforward expression for
computing the probability mass at zero for the LRT statistic. Also, to the best of our
knowledge, it is the first time that an explicit mathematical form, Lemma 4, has been
presented for the LRT for any variance component in a linear mixed model under the
full model. This allows us compute the power of the test through a formula instead of
a Monte Carlo simulation.

5 Power comparison

This section includes four subsections. In the Sect. 1, we illustrate the steps for com-
puting the critical value and power of the F-test and give a concrete example. In the
Sect. 2, we illustrate the steps for computing the critical value and power of the LRT
when α ≤ 1− pm (i.e. when there is no randomized test) and give a concrete example;
we use the very same example that we use for the F-test to show the equivalence
in power through a numerical example. These illustrative steps and example, of the
Sect. 2, don’t use the relationship between the two test statistics Λ and F . Thus, the
Sect. 2 is concluded with a very short theorem on the equivalence between the two test
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for the case when α ≤ 1 − pm . The Sect. 4 gives a detailed proof, without numerical
examples, that the F-test has a larger power than the LRT when α > 1 − pm . The
Sect. 5 discusses the practicality of the second case when α > 1 − pm .

5.1 The power of the F-test

The F-test statistic, by Proposition 3, has a distribution that is a constant multiple of

an F distribution as F ∼ σ 2
s +mσ 2

w

σ 2
s

F(N − r(X∗), n− r(X)). Since the F-test statistic is

denoted by F and the F-distribution is traditionally known by the symbol F , to elimi-
nate ambiguities, we letW ∼ F (N − r(X∗), n − r(X)). Then, at a given significance
level α, the critical value C is computed under H0 as

α = P (F ≥ C |H0 is true ) ⇐⇒ α = P

(
σ 2
s + mσ 2

w

σ 2
s

W ≥ C |σ 2
w = 0

)

⇐⇒ α = P (W ≥ Wα)

⇐⇒ Wα = G−1(1 − α), (69)

G is the CDF for F(N−r(X∗),n−r(X)). For example, if we let N − r(X∗) = 3 and
n − r(X) = 9 then, for α = 0.05, C is found as C = G−1(1 − α) = G−1(0.95) =
3.86255.
If m = 4, σ 2

s = 3 and σ 2
w = 7, then the power of a size α F-test is

ΞF = P (F ≥ C |Ha is true ) ⇐⇒ ΞF = P

(
σ 2
s + mσ 2

w

σ 2
s

W ≥ Wα

)

⇐⇒ ΞF = 1 − G

(
σ 2
s

σ 2
s + mσ 2

w

Wα

)
. (70)

For example, if we let N − r(X∗) = 3, n − r(X) = 9, m = 4, σ 2
s = 3 and σ 2

w =
7 then, for α = 0.05, the critical value is 3.86255 and the power is ΞF = 1 −
G

( 3
31 × 3.86255

) = 0.7741.

5.2 The power of the LRT when˛ ≤ 1 − pm

The LRT statistic, by Lemma 4, has a mixture distribution as

Λ ∼
{
0 w.p pm
τ + N log

(
(1+aW )m

W

)
w.p 1 − pm

(71)

such that pm , τ and a are defined in Lemma 4. Thus, at a given significance level α,
the critical value C ′ is computed under H0 as

α = P

(
Λ ≥ C ′|H0 is true ,W >

κσ 2
s

σ 2
s + mσ 2

w

)
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⇐⇒ (1 − pm)P

(
τ + N log

(
(1 + aW )m

W

)
≥ C ′|σ 2

w = 0,W > κ

)
= α

⇐⇒ C ′ = G ′−1
(
1 − α

1 − pm

)
, (72)

where G ′ is the CDF of the transformed random variable τ + N log
(

(1+aW )m

W

)
for

W ∼ F (N − r(X∗), n − r(X)) when W > κ and σ 2
w = 0. For example, if we let

N −r(X∗) = 3 and n−r(X) = 9 then, for α = 0.05 under H0, κ = 1, pm = 0.56371
and

Λ =

⎧
⎪⎨

⎪⎩

0 w.p 0.56371

6 log

[
81
256

(
1+W

3

)4

W

]

w.p 0.43629
(73)

so thatC ′ is found, by numerical simulation or numerical integration after transforma-
tion, as C ′ = G ′−1(1 − α

1−pm
) = G−1(0.8853973) = 4.848. See Castellacci (2012)

for more details on computing the quantiles of mixture distributions.
If m = 4, σ 2

s = 3 and σ 2
w = 7 then the power of a size α LRT is

ΞLRT = P

(
Λ ≥ C ′|Ha is true ,W >

κσ 2
s

σ 2
s + mσ 2

w

)

⇐⇒ ΞLRT

= (1 − pm)P

(
τ + N log

(
(1 + aW )m

W

)
≥ C ′|σ 2

w > 0,W >
κσ 2

s

σ 2
s + mσ 2

w

)

⇐⇒ ΞLRT = (1 − pm)
[
1 − G

′′
(C ′)

]
(74)

where G
′′
is the CDF of the transformed random variable τ + N log

(
(1+aW )m

W

)
for

W ∼ F (N − r(X∗), n − r(X)) when W >
κσ 2

s
σ 2
s +mσ 2

w
and σ 2

w > 0. For example, if we

let N − r(X∗) = 3, n − r(X) = 9, m = 4, σ 2
s = 3 and σ 2

w = 7 then, for α = 0.05
under H1, κ = 3

4 , pm = 0.04014 and

Λ ∼

⎧
⎪⎨

⎪⎩

0 w.p 0.04014

6 log

[
243
7936

(
1+ 31W

9

)4

W

]

w.p 0.95986
(75)

so thatΞLRT is found, by numerical simulation or numerical integration after transfor-

mation, as ΞLRT = (1 − pm)
[
1 − G

′′
(C ′)

]
= 0.95986

[
1 − G

′′
(4.848)

]
= 0.7741.

Note that both test statistics Λ and F are nonnegative and whenever Λ 
= 0 there is
a strict monotonic relationship and thus when the LRT critical region does not include
0, the tests are the same. In fact, in the case when α ≤ 1− pm , the critical region will
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Fig. 2 A plot of the LRT
statistic versus the F-ratio
showing their equivalence
whenever α ≤ 1 − pm .
W1−pm = κ is the minimal
critical value at which the two
tests are equivalent

F

W1 pm

0
C
’Λ

Wα

LR
T>

C
’

F Wα

consist of positive values where Λ is a strictly increasing function of the F , thus we
have

Proposition 4 Let α be the size of the test. If α ≤ 1− pm where pm = P(Λ = 0|σ 2
w =

0) then the F-test and LRT are equivalent and hence have the same power.

Proof of Proposition (4) Since Λ can be written as

Λ ∼
{
0 w.p pm
g(F) w.p 1 − pm

(76)

where g(.) is a strictly increasing function, then the critical region of the LRT when
α ≤ 1 − pm doesn’t involve 0 and hence the power can be calculated as

ΞLRT = P
(
Λ ≥ C ′|Ha is true

) ⇐⇒ ΞLRT = P
(
g(F) ≥ C ′|σ 2

w > 0
)

⇐⇒ ΞLRT = P
(
F ≥ C ′′|σ 2

w > 0
)

= ΞF . (77)

��
Figure 2 illustrates the equivalence of the F-test and LRTwhenever α ≤ 1− pm where
pm = P(Λ = 0|σ 2

w = 0). Further, it clarifies why the two tests are equivalent as long
as the critical value Wα of the F-test is larger than W1−pm ; the minimal critical value
at which the two tests are equivalent. In fact, under the null hypothesis of σ 2

w = 0 we
have limW→κ Λ = 0.

5.3 Power comparison when˛ > 1 − pm

In the case when α > 1 − pm , the critical region of the LRT involves Λ = 0 hence it
involves randomization. We show mathematically, for this case, that the power of the
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F-test is larger than that of the LRT. Let k := σ 2
s +mσ 2

w

σ 2
s

. Firstly, we rewrite the power

of a size α F-test in terms of pm the probability that Λ = 0 under H1 as follows.

ΞF = P (F ≥ Wα) = P(F ≥ W1−pm ) + P(Wα ≤ F ≤ W1−pm )

= P
(
kW ≥ W1−pm

) + P
(
Wα ≤ kW ≤ W1−pm

)

= P

(
W ≥ 1

k
W1−pm

)
+ P

(
W ≤ 1

k
W1−pm

)
− P

(
W ≤ 1

k
Wα

)
. (78)

Note that the second equality in (78) is due to the probabilistic identity P(E) +
P(Ec) = 1. Secondly, we rewrite the randomized test for the LRT in terms of the
F-test according to the monotonic relationship between their test statistics and the
smallest critical value, W1−pm = κ , where the F and LRT tests are equivalent as
follows.

φ(Λ) =
⎧
⎨

⎩

1 if Λ > 0
γ if Λ = 0
0 if Λ < 0

⇐⇒ φ(F) =
{
1 if F > W1−pm
γ if F ≤ W1−pm

(79)

where γ is determined according to the size of the test as

α = EH0φ(Λ) ⇐⇒ α = P(Λ > 0|σ 2
w = 0) + γ P(Λ = 0|σ 2

w = 0)

⇐⇒ α = (1 − pm) + γ pm

⇐⇒ γ = α − (1 − pm)

pm
. (80)

Hence, the power of the LRT is

ΞLRT = P
(
F ≥ W1−pm

) + α − (1 − pm)

pm
P

(
F ≤ W1−pm

)

= P

(
W ≥ 1

k
W1−pm

)
+ α − (1 − pm)

pm
P

(
W ≤ 1

k
W1−pm

)
. (81)

Proposition 5 Let pm = P(Λ = 0|σ 2
w = 0). For GSP models with a finite whole plots

size m, if α > 1− pm then the power of the size α F-test is larger than that of the LRT
in testing σ 2

w = 0.

Proof of Proposition 5 It’s sufficient to show that

P

(
W ≤ 1

k
W1−pm

)
− P

(
W ≤ 1

k
Wα

)
>

α − (1 − pm)

pm
P

(
W ≤ 1

k
W1−pm

)

⇐⇒ 1

pm
P

(
W ≤ 1

k
W1−pm

)
>

1

1 − α
P

(
W ≤ 1

k
Wα

)
. (82)

Since k = σ 2
s +mσ 2

w

σ 2
s

> 1, this follows from Qeadan and Christensen (2014). ��
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5.4 Is˛ > 1 − pm practical?

The LRT and F-test are equivalent as long as the level of the test is smaller or equal
to P(W > κ) where κ = n−r(X)

(m−1)(N−r(X∗)) and W ∼ FN−r(X∗),n−r(X). That is, the two

tests are equivalent for all α’s satisfying the inequality α ≤ P
(
W >

n−r(X)
(m−1)(N−r(X∗))

)
.

Table 1 presents the maximal values of α satisfying this inequality for different combi-
nations of the degrees of freedom d f1 = N −r(X∗) and d f2 = n−r(X)whenm = 2.
Since the increase in m, for being in the denominator of n−r(X)

(m−1)(N−r(X∗)) , increases the

maximal values of α satisfying the inequality α ≤ P
(
W >

n−r(X)
(m−1)(N−r(X∗))

)
, it’s suf-

ficient to provide another Table (see Table 2) for the case when m = 4 to explain the
pattern in which those maximal values of α behave as a function ofm. The highlighted
cells of Table 1 in italic represent the combination of degrees of freedom for which the
F-test has a larger power than the LRT at the 5% significance level when m = 2. The
very same thing is true for Table 2 when m = 4. We observed from simulation, and
below give a mathematical proof, that asm increases the power of the LRT approaches
that of the F-test. Typically, the degrees of freedom for subplot error d f2 are much
larger than the degrees of freedom for whole plots error d f1; for GSP models. So, the
α > 1 − pm case is very practical.

Proposition 6 For GSP models, if α > 1 − pm then, for a size α test, ΞLRT ↑ ΞF in
testing σ 2

w = 0 as the whole plots size m approaches infinity.

Table 1 The maximal values of α satisfying the inequality α ≤ P
(
W >

n−r(X)
(m−1)(N−r(X∗))

)
for different

combinations of the degrees of freedom d f1 = N − r(X∗) and d f2 = n − r(X) when m = 2

d f2\d f1 1 2 3 4 5 10 15 20 30 40 60 120

1 0.50 0.71 0.82 0.88 0.92 0.99 1.00 1.00 1.00 1.00 1.00 1.00

2 0.29 0.50 0.65 0.75 0.82 0.97 0.99 1.00 1.00 1.00 1.00 1.00

3 0.18 0.35 0.50 0.62 0.71 0.94 0.99 1.00 1.00 1.00 1.00 1.00

4 0.12 0.25 0.38 0.50 0.60 0.89 0.97 0.99 1.00 1.00 1.00 1.00

5 0.08 0.18 0.29 0.40 0.50 0.84 0.95 0.99 1.00 1.00 1.00 1.00

6 0.05 0.12 0.22 0.31 0.41 0.77 0.93 0.98 1.00 1.00 1.00 1.00

7 0.03 0.09 0.16 0.24 0.33 0.71 0.90 0.97 1.00 1.00 1.00 1.00

8 0.02 0.06 0.12 0.19 0.26 0.64 0.86 0.95 1.00 1.00 1.00 1.00

9 0.01 0.04 0.09 0.14 0.21 0.57 0.82 0.93 0.99 1.00 1.00 1.00

10 0.01 0.03 0.06 0.11 0.16 0.50 0.77 0.91 0.99 1.00 1.00 1.00

15 0.00 0.01 0.01 0.03 0.05 0.23 0.50 0.73 0.95 0.99 1.00 1.00

20 0.00 0.00 0.00 0.01 0.01 0.09 0.27 0.50 0.85 0.97 1.00 1.00

30 0.00 0.00 0.00 0.00 0.00 0.01 0.05 0.15 0.50 0.80 0.99 1.00

40 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.03 0.20 0.50 0.92 1.00

60 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.08 0.50 1.00

120 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.50

Italic values represent the combination of degrees of freedom for which the F-test has a larger power than
the LRT at the 5% significance
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Table 2 The maximal values of α satisfying the inequality α ≤ P
(
W >

n−r(X)
(m−1)(N−r(X∗))

)
for different

combinations of the degrees of freedom d f1 = N − r(X∗) and d f2 = n − r(X) when m = 4

d f2\d f1 1 2 3 4 5 10 15 20 30 40 60 120

1 0.67 0.87 0.94 0.97 0.99 1.00 1.00 1.00 1.00 1.00 1.00 1.00

2 0.50 0.75 0.88 0.94 0.97 1.00 1.00 1.00 1.00 1.00 1.00 1.00

3 0.39 0.65 0.80 0.89 0.94 1.00 1.00 1.00 1.00 1.00 1.00 1.00

4 0.31 0.56 0.73 0.84 0.91 1.00 1.00 1.00 1.00 1.00 1.00 1.00

5 0.25 0.49 0.67 0.79 0.87 0.99 1.00 1.00 1.00 1.00 1.00 1.00

6 0.21 0.42 0.60 0.74 0.83 0.99 1.00 1.00 1.00 1.00 1.00 1.00

7 0.17 0.37 0.54 0.69 0.79 0.98 1.00 1.00 1.00 1.00 1.00 1.00

8 0.14 0.32 0.49 0.63 0.75 0.97 1.00 1.00 1.00 1.00 1.00 1.00

9 0.12 0.27 0.44 0.58 0.70 0.96 1.00 1.00 1.00 1.00 1.00 1.00

10 0.10 0.24 0.39 0.53 0.66 0.95 1.00 1.00 1.00 1.00 1.00 1.00

15 0.04 0.12 0.22 0.33 0.45 0.86 0.98 1.00 1.00 1.00 1.00 1.00

20 0.02 0.06 0.12 0.20 0.29 0.74 0.94 0.99 1.00 1.00 1.00 1.00

30 0.00 0.01 0.03 0.06 0.11 0.47 0.80 0.95 1.00 1.00 1.00 1.00

40 0.00 0.00 0.01 0.02 0.04 0.25 0.58 0.83 0.99 1.00 1.00 1.00

60 0.00 0.00 0.00 0.00 0.00 0.05 0.21 0.48 0.89 0.99 1.00 1.00

120 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.14 0.48 0.96 1.00

Italic values represent the combination of degrees of freedom for which the F-test has a larger power than
the LRT at the 5% significance

Proof of Proposition 6 Recall that

ΞF = P

(
W ≥ 1

k
W1−pm

)
+ P

(
W ≤ 1

k
W1−pm

)
− P

(
W ≤ 1

k
Wα

)
,

and

ΞLRT = P

(
W ≥ 1

k
W1−pm

)
+ α − (1 − pm)

pm
P

(
W ≤ 1

k
W1−pm

)
.

From Proposition 5, we have established for a finite whole plot size m

P

(
W ≤ 1

k
W1−pm

)
− P

(
W ≤ 1

k
Wα

)
>

α − (1 − pm)

pm
P

(
W ≤ 1

k
W1−pm

)
.

If we let m ↑ ∞ then k ↑ ∞ so that

P

(
W ≤ 1

k
W1−pm

)
= P

(
W ≤ 1

k
Wα

)
= P

(
W ≤ 1

k
W1−pm

)
= 0,

and thus the inequality becomes equality and as a result ΞLRT ↑ ΞF . In fact for
m = ∞ we have ΞLRT = ΞF = 1 since limk→+∞ P

(
W ≥ 1

k W1−pm

) = 1. ��
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6 Conclusion

For a class of linear mixed models with CS covariance structure, we show the equiva-
lence between the F-test and LRT when the level of the test, α, is less or equal to one
minus the probability, p, that the LRT statistic is zero. However, when α > 1− p, we
show that the F-test has a larger power than the LRT and thus proving that the LRT test
is inadmissible. Further, we derive the statistical distribution of the LRT under both the
null and alternative hypotheses H0 and H1 where H0 is the hypothesis that the between
component variance is zero. This work proves important property on the relationship
between the F-test and LRT for a large class of Mixed effect models. Further, provid-
ing an exact distribution of the test statistic for the LRT in these models will help in
calculating a more accurate p-value than the traditionally used p-value from the large
sample chi-square mixture approximations introduced by Self and Liang (1987).

Acknowledgements We acknowledge the reviewers greatly for their valuable time in reviewing the paper.

Appendix 1

Supplementary material includes (i) Proof for the PPOs Properties in (15), (ii) Illus-
tration for the proof of Lemma 2, and (iii) Proof of Lemma 3.

Proof for the PPOs Properties in (15)

Firstly, M̃ = M∗ +M2: This result is an immediate consequence of conditions (b) and
(c) of Sect. 1.3. In particular, since C(X̃) = C(X∗, (I − M1)X2) then by defintion of
PPO

M̃ = [X∗, (I − M1)X2]

([
X

′
∗

[(I − M1)X2]
′

]

[X∗, (I − M1)X2]

)−1

×
[

X
′
∗

[(I − M1)X2]′
]

= X∗
(
X

′
∗X∗

)−1
X

′
∗ + (I − M1)X2

(
X

′
2(I − M1)X2

)−1
X

′
2(I − M1)

= M∗ + M2. (83)

The equality in the third line of (83) is due to condition (b) which implies that (I −
M1)X∗ = X

′
∗(I − M1) = 0.

Secondly, M∗M1 = M∗: This result is an immediate consequence of condition (b).
In particular, sinceC(X∗) ⊂ C(X1) then X∗ = X1B for somematrix B and therefore,
by definition of PPO,

M∗ = X∗
(
X

′
∗X∗

)−1
X

′
∗ = X1B

(
B

′
X

′
1X1B

)−1
B

′
X

′
1. (84)
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Thus, using M∗ from (84) and M1 from (13) gives

M∗M1 = X1B
(
B

′
X

′
1X1B

)−1
B

′
X

′
1X1

(
X

′
1X1

)−1
X

′
1

= X1B
(
B

′
X

′
1X1B

)−1
B

′
X

′
1 = M∗. (85)

Thirdly, M1M2 = 0: This results is trivially obtained by simply multiplying M1 from
(13) and M2 from (14).

Fourthly, M = M1 + M2: Let X = [X1, X2] such that M is the PPO onto C(X).
Since M1M2 = 0, then C(M1) ⊥ C(M2) and hence M = M1 + M2 is a PPO onto
C(M1, M2) by Theorem B.45 of Christensen (2011). But C(M1, M2) = C(X1, (I −
M1)X2) since C(M1) = C(X1) and C(M2) = C((I − M1)X2). So, it remains to
prove that C(X1, X2) = C(X1, (I − M1)X2) to complete the proof. To do so, we
use the fact that C(A1) = C(A2) iff there exist B1 and B2 such that A1 = A2B2 and
A2 = A1B1 as follows.

[X1, (I − M1)X2] = [X1, X2 − M1X2]

=
[
X1, X2 − X1(X

′
1X1)

−1X
′
1X2

]

= [X1, X2]

[
I −(X

′
1X1)

−1X
′
1X2

0 I

]
(86)

and

[X1, X2] = [X1, (I − M1)X2]

[
I (X

′
1X1)

−1X
′
1X2

0 I

]
. (87)

That is, C(X1, (I − M1)X2) ⊂ C(X1, X2) and C(X1, X2) ⊂ C(X1, (I − M1)X2) so
that C(X1, X2) = C(X1, (I − M1)X2) as desired. ��

Appendix 2

Illustration for the proof of Lemma 2

Let λ = − a
b . Then

|aIn + bP| = |b (P − λIn) | = bn|P − λIn|. (88)

However, the determinant |P − λIn| in (88) is the characteristic polynomial of P
which equals to (89) since 1 and 0 are the eigenvalues for P with multiplicity r(P)

and n − r(P) respectively.

|P − λIn| ≡ pP (λ) = (−λ)n−r(P)(1 − λ)r(P). (89)
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Hence, substituting (89) in (88) gives the desired result

|aIn + bP| = bn|P − λIn| = bn(−λ)n−r(P)(1 − λ)r(P)

= bnan−r(P)

bn−r(P)

(a + b)r(P)

br(P)
= an−r(P)(a + b)r(P). (90)

��

Appendix 3

Proof of Lemma 3

When x2 > x1 > 0, we have a standard maximization problem for a function of two
variables. Setting the partial derivatives to zero gives

∂g

∂x1
= 0 ⇐⇒ q1(Q1 − x1)

x21
= 0 ⇐⇒ x1 = Q1, (91)

and

∂g

∂x2
= 0 ⇐⇒ q2(Q2 − x2)

x22
= 0 ⇐⇒ x2 = Q2. (92)

Let gxi x j = ∂
∂x j

(
∂

∂xi
g(xi , x j )

)
for i, j ∈ {1, 2}. Then, according to the second

derivative test, we have

D(x1, x2) = gx1x1(x1, x2)gx2x2(x1, x2) − [gx1x2(x1, x2)]2

=
(
q1
x21

− 2q1Q1

x31

)(
q2
x22

− 2q2Q2

x32

)

(93)

with D(Q1, Q2) = q1q2
Q2
1Q

2
2

> 0 and gx1x1(Q1, Q2) = −q1
Q2
1

< 0 so that (x1, x2) =
(Q1, Q2) is a maximum point. Thus, if Q2 > Q1 > 0 then the point (Q1, Q2) is in
the interior and maximizes the function within the interior; i.e. a local maximum.

When x1 = x2 := x , using direct substitution, the problem reduces to maximizing
the function of one variable

g(x) = −
[
constant + (q1 + q2) log(x) + q1Q1 + q2Q2

x

]
(94)

over R+. So, setting the partial derivative of g(x) to zero gives

∂g

∂x
= 0 ⇐⇒ −q1 + q2

x
+ q1Q1 + q2Q2

x2
= 0 ⇐⇒ x = q1Q1 + q2Q2

q1 + q2
.

(95)
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Now, using the second derivative test, we have

∂g(x)

∂x2
= q1 + q2

x2
− 2(q1Q1 + q2Q2)

x3
(96)

with

∂g(x)

∂x2
|
x= q1Q1+q2Q2

q1+q2

= −(q1 + q2)3

(q1Q1 + q2Q2)2
< 0 (97)

so that (x1, x2) =
(
q1Q1+q2Q2

q1+q2
,
q1Q1+q2Q2

q1+q2

)
is a maximum point on the boundary of

the domain.
Now, we show that if Q2 > Q1 > 0 then the maximum in the interior is a global

maximum. Note that when the maximum is in the interior at (Q1, Q2) it attains the
value

g(Q1, Q2) = − [
constant + (q1 + q2) + log

(
Qq1

1 Qq2
2

)]
.

Further, when the maximum is on the boundary at
(
q1Q1+q2Q2

q1+q2
,
q1Q1+q2Q2

q1+q2

)
it attains

the value

g

(
q1Q1 + q2Q2

q1 + q2

)
= −

[
constant + (q1 + q2) + (q1 + q2) log

(
q1Q1 + q2Q2

q1 + q2

)]
.

Showing that g(Q1, Q2) > g
(
q1Q1+q2Q2

q1+q2

)
is the same as showing

log

(
q1Q1 + q2Q2

q1 + q2

)
>

q1 log(Q1)

q1 + q2
+ q2 log(Q2)

q1 + q2
,

which is true due to Jensen’s Inequality:
Let Q be a r.v. such that P(Q = Q1) = q1

q1+q2
and P(Q = Q2) = q2

q1+q2
then by

Jensen’s Inequality we have

log [E(Q)] > E
[
log(Q)

]

⇐⇒ log

(
q1Q1 + q2Q2

q1 + q2

)
>

q1 log(Q1)

q1 + q2
+ q2 log(Q2)

q1 + q2
.

Now, we show that if Q1 > Q2 > 0 then the maximum in the boundary is a global
maximum.Note that if Q1 > Q2 > 0, there are no critical points of the functionwithin
the interior. Further, we know that g(x1, x2) goes to−∞ in both x1 and x2 which forces

the maximum on the boundary at
(
q1Q1+q2Q2

q1+q2
,
q1Q1+q2Q2

q1+q2

)
to be a global maximum.

��
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