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Abstract
Fractional factorial designs are widely used because of their various merits. Foldover
or level permutation are usually used to construct optimal fractional factorial designs.
In this paper, a novel method via foldover and level permutation, called quadru-
pling, is proposed to construct uniform four-level designs with large run sizes. The
relationship of uniformity between the initial design and the design obtained by qua-
drupling is investigated, and new lower bounds of wrap-around L2-discrepancy for
such designs are obtained. These results provide a theoretical basis for constructing
uniform four-level designs with large run sizes by quadrupling successively. Further-
more, the analytic connection between the initial design and the design obtained by
quadrupling is presented under generalized minimum aberration criterion.

Keywords Level permutation · Foldover · Uniform design · Quadruple design ·
Generalized minimum aberration · Wrap-around L2-discrepancy · Lower bound

Mathematics Subject Classification 62K15 · 62K10 · 62K99

1 Introduction

Fractional factorial designs are widely used in areas such as science, engineering and
industry. Hence the construction of fractional factorial designs is an important issue.
Designs obtained from foldover have excellent geometrical symmetric structure and
good statistical properties, so the technique of foldover has been widely applied in
the construction of optimal designs. Based on two specific types of foldover, Chen
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and Cheng (2006) proposed the method of doubling to construct two-level double
designs with high resolution. A general complementary two-level design theory for
doubling was discussed in Xu and Cheng (2008), and the analytical connection of the
wordlength patterns of each pair of complementary projection designs by repeated
doubling was built. Lei and Qin (2014) studied two-level designs by doubling from
viewpoint of uniformity, and obtained some lower bounds of centered L2-discrepancy
for these kinds of designs. For further results on doubling we refer to Ou and Qin
(2010, 2017). The foldover of two-level designs is simplest, which only changes the
symbols of two levels ± 1. However, the method is out of place in high-level designs.
Note that the foldover of two-level designs is a level permutation of factors in essence.

There is a lot of research on level permutations of factors. Cheng and Ye (2004)
indicated level permutations of factors could alter their geometrical structures and sta-
tistical properties. Tang et al. (2012) constructed uniformminimum aberration designs
by level permutations of factors and showed that the uniformity of this kindof designs is
better than of those constructed by existing methods. Tang and Xu (2013) provided the
construction method of multi-level uniform designs under centered L2-discrepancies
by level permutations of factors of a generalized minimum aberration design. Tang
and Xu (2014) provided a justification of the minimum aberration criterion for quan-
titative factors and studied level permutations of factors for regular fractional factorial
designs in order to improve their efficiency for screening quantitative factors. Based
on level permutations of factors, Xu et al. (2014) built the relationship between aver-
age wrap-around L2-discrepancy and generalized wordlength pattern and proposed a
general method for identifying designs with smaller wrap-around L2-discrepancy.

According to all level permutations of a three-level design A and the technique of
foldover, Ou et al. (2019) extended the method of doubling to the method of tripling
and proposed the Triple design T (A), which has been used to construct three-level
fractional factorial designs. In Ou et al. (2019), the connection between the wrap-
around L2-discrepancy of the Triple design and the wordlength pattern of its initial
design is built. A tight lower bound of thewrap-around L2-discrepancy ofTriple design
is obtained, and an efficient method for constructing uniform minimum aberration
designs is proposed based on the projection of Triple design.

The discussions on the construction of two-level or three-level uniform designs are
rich. However, in the construction of high-level designs various difficulties exist due to
their complex structure. The present paper aims to extend the results in Ou et al. (2019)
further. The method of quadrupling via level permutations of a four-level design and
foldover is proposed, which constructs uniform four-level designs with large sizes.

The paper is organized as follows. In Sect. 2, some notations, the definition of
quadrupling and the Quadruple design are provided. Section 3 presents an important
lemma, which is a basis to study latter problems. In Sect. 4, the relationship of unifor-
mity between the Quadruple design and the initial design is considered, and new lower
bounds of wrap-around L2-discrepancy for such designs are also obtained, which can
be used as a benchmark to construct and measure the uniformity of a four-level design
and the Quadruple design. In Sect. 5, the analytic connection between the Quadruple
design and the initial design under generalized minimum aberration criterion is built.
Some illustrative examples are shown to support our theoretical results in Sect. 6.
Concluding remarks are given in the final Sect. 7.
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2 Preliminaries

Let U(n; 4s) denote a class of U -type designs with n runs and s factors each at four
levels. A designF inU(n; 4s) can be presented as an n×smatrixwith entries 0, 1, 2, 3,
each entry appears equally often in each column, where each row corresponds to a
run, and each column corresponds to a factor. An orthogonal array of strength t and
size n with s constrains, denoted by OA(n, 4s, t), is a factorial design of n runs and s
four-level factors such that all the level-combinations for any t factors appear equally
often. The design F in U(n; 4s), of course, is an orthogonal array of strength 1.

Consider a four-level design F ∈ U(n; 4s), the four kinds of level permutation of
F and the corresponding designs obtained from these level permutations are listed in
Table 1.

Inspired by the construction of two-level Double designs and three-level Triple
designs, and based on the level permutations of F given in Table 1, the method of
quadrupling for constructing uniform four-level designs is proposed in following def-
inition.

Definition 1 Suppose F ∈ U(n; 4s), the 4n × 4s matrix

Q(F) =

⎛
⎜⎜⎝
F F F F
F F(1) F(2) F(3)
F F(2) F(3) F(1)
F F(3) F(1) F(2)

⎞
⎟⎟⎠ ,

is called the quadrupling of F , where F(i) is shown in Table 1, i = 1, 2, 3. Q(F) is
called the Quadruple design of F , F is called the initial design of Q(F).

For F ∈ U(n; 4s), it is obvious thatQ(F) is also a four-level design in U(4n; 44s)
which quadruples both the number of runs and factors of F . The following example
shows that the Quadruple designQ(F) is just the orthogonal combination of the four
kinds of level permutations ofF given in Table 1. From this viewpoint, the Quadruple
design Q(F) is expected to have nice properties.

Example 1 Consider the simplest initial four-level design with four runs and one fac-
tor, i.e., F ∈ U(4; 41) given as F = (0 1 2 3)′. According to Definition 1, the

Table 1 Four kinds of level permutation of F and the corresponding images

Permutation no. Initial design Permutation method Image

1 F (0, 1, 2, 3) �→ (0, 1, 2, 3) F
2 F (0, 1, 2, 3) �→ (1, 0, 3, 2) F(1)

3 F (0, 1, 2, 3) �→ (2, 3, 0, 1) F(2)

4 F (0, 1, 2, 3) �→ (3, 2, 1, 0) F(3)
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Quadruple design Q(F) ∈ U(16; 44) of F is easily obtained as follows

Q(F) =

⎛
⎜⎜⎝
0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3
0 1 2 3 1 0 3 2 2 3 0 1 3 2 1 0
0 1 2 3 2 3 0 1 3 2 1 0 1 0 3 2
0 1 2 3 3 2 1 0 1 0 3 2 2 3 0 1

⎞
⎟⎟⎠

′

.

One can find that Q(F) is an orthogonal array of strength two.

For any design F ∈ U(n; 4s), the distance distribution (E0(F), . . . , Es(F)) of F
is defined as

Ei (F) = 1

n
|{(a, b) : dH (a, b) = i, a and b are two runs of F}|, 0 ≤ i ≤ s, (1)

where dH (a, b) is the Hamming distance between two rows a and b, that is, the
number of places where they differ, |�| is the cardinality of �. Based on the distance
distribution (E0(F), . . . , Es(F)) of design F , the generalized wordlength pattern
(A1(F), . . . , As(F)) of F is defined as

A j (F) = 1

n

s∑
i=0

Pj (i; s, 4)Ei (F), j = 1, . . . , s, (2)

where Pj (i; s, 4) = ∑ j
r=0(−1)r3 j−r

(i
r

)(s−i
j−r

)
is Krawtchouk polynomial,

(x
y

) =
x(x − 1) · · · (x − y + 1)/y!, (x

0

) = 1, for x < y,
(x
y

) = 0. The generalized min-
imum aberration (for simplicity, GMA) criterion is to sequentially minimize A j (F)

for j = 1, . . . , s. About GMA criterion, one can refer to Xu and Wu (2001) for more
details.

In this paper, thewrap-around L2-discrepancy (for simplicity,WD) is considered as
the measurement of uniformity of a design. For any design F = (xi j )n×s ∈ U(n; 4s),
its WD value, denoted as WD(F), can be expressed as

[WD(F)]2 = −
(
4

3

)s

+ 1

n2

n∑
i=1

n∑
j=1

s∏
l=1

[
3

2
− |uil − u jl |(1 − |uil − u jl |)

]
, (3)

where uil = 2xil+1
8 , i = 1, . . . , n, l = 1, . . . , s. The uniformity criterion favors

designs with the smallest WD(F).
For anyF ∈ U(n; 4s), denote δF(i)F( j)(a, b) as the number of position where rows

i and j of F take pair (a, b), where a, b = 0, 1, 2, 3, i, j = 1, . . . , n. Define �1 =
{(0, 0), (1, 1), (2, 2), (3, 3)}, �2 = {(0, 1), (1, 2), (2, 3), (0, 3), (1, 0), (2, 1), (3, 2),
(3, 0)},�3 = {(0, 2), (1, 3), (2, 0), (3, 1)}. Thus, the expression ofWD(F) in (3) can
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be rewritten as follows

[WD(F)]2 = −
(
4

3

)s

+ 1

n

(
3

2

)s

+ 1

n2

n∑
i=1

n∑
j( �=i)=1

(
3

2

)λi j (F ,F) (
21

16

)τi j (F ,F) (
5

4

)σi j (F ,F)

, (4)

whereλi j (F ,F) = ∑
(a,b)∈�1

δF(i)F( j)(a, b), τi j (F ,F) = ∑
(a,b)∈�2

δF(i)F( j)(a, b),
σi j (F ,F) = ∑

(a,b)∈�3
δF(i)F( j)(a, b).

3 An important lemma

Consider a four-level design F ∈ U(n; 4s), Q(F) is the Quadruple design of F ,
denote

λ∗
i j (Q(F),Q(F)) =

∑
(a,b)∈�1

δQ(F)(i)Q(F)( j)(a, b),

τ ∗
i j (Q(F),Q(F)) =

∑
(a,b)∈�2

δQ(F)(i)Q(F)( j)(a, b),

σ ∗
i j (Q(F),Q(F)) =

∑
(a,b)∈�3

δQ(F)(i)Q(F)( j)(a, b).

The following lemma respectively provides the analytic connections between
λi j (F ,F) and λ∗

i j (Q(F),Q(F)), τi j (F ,F) and τ ∗
i j (Q(F),Q(F)), σi j (F ,F) and

σ ∗
i j (Q(F),Q(F)) in F and Q(F), which is a basis for studying the rest problems in

this paper.

Lemma 1 Suppose F ∈ U(n; 4s), Q(F) ∈ U(4n; 44s) is the Quadruple design of F .
Then the analytic connections between λi j (F ,F) and λ∗

i j (Q(F),Q(F)), τi j (F ,F)

and τ ∗
i j (Q(F),Q(F)), σi j (F ,F) and σ ∗

i j (Q(F),Q(F)) in F and Q(F) are as fol-
lows,
(i)

λ∗
(i+kn)( j+ln)(Q(F),Q(F)) =

{
4λi j (F ,F), 1 ≤ i, j ≤ n, k = l; k, l = 0, 1, 2, 3,
s, 1 ≤ i, j ≤ n, k �= l; k, l = 0, 1, 2, 3.

(ii)

τ ∗
(i+kn)( j+ln)(Q(F),Q(F)) =

{
4τi j (F ,F), 1 ≤ i, j ≤ n, k = l; k, l = 0, 1, 2, 3,
2s, 1 ≤ i, j ≤ n, k �= l; k, l = 0, 1, 2, 3.

(iii)

σ ∗
(i+kn)( j+ln)(Q(F),Q(F)) =

{
4σi j (F ,F), 1 ≤ i, j ≤ n, k = l; k, l = 0, 1, 2, 3,
s, 1 ≤ i, j ≤ n, k �= l; k, l = 0, 1, 2, 3.
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Proof We firstly prove the (i). When k = l = 0,

λ∗
i j (Q(F),Q(F)) = λi j (F ,F) + λi j (F ,F) + λi j (F ,F)

+ λi j (F ,F) = 4λi j (F ,F).

When k = l = 1, 2, 3, the proofs of such cases are similar.
Next, we prove λ∗

(i+kn)( j+ln)(Q(F),Q(F)) = s, when k �= l, k, l = 0, 1, 2. Note
that F(1) is obtained by the level permutations (0, 1, 2, 3) → (1, 0, 3, 2) in the F , so

λi j (F ,F(1)) = δ
(0,0)
F(i),F(1)( j)

+ δ
(1,1)
F(i),F(1)( j)

+ δ
(2,2)
F(i),F(1)( j)

+ δ
(3,3)
F(i),F(1)( j)

= δ
(0,1)
F(i),F( j)

+ δ
(1,0)
F(i),F( j)

+ δ
(2,3)
F(i),F( j)

+ δ
(3,2)
F(i),F( j)

.

Similarly, F(2) is obtained by the level permutations (0, 1, 2, 3) → (2, 3, 0, 1) in the
F , F(3) is obtained by the level permutation (0, 1, 2, 3) → (3, 2, 1, 0) in the F , so

λi j (F ,F(2)) = δ
(0,0)
F(i),F(2)( j)

+ δ
(1,1)
F(i),F(2)( j)

+ δ
(2,2)
F(i),F(2)( j)

+ δ
(3,3)
F(i),F(2)( j)

= δ
(0,2)
F(i),F( j)

+ δ
(1,3)
F(i),F( j)

+ δ
(2,0)
F(i),F( j)

+ δ
(3,1)
F(i),F( j)

,

and

λi j (F ,F(3)) = δ
(0,0)
F(i),F(3)( j)

+ δ
(1,1)
F(i),F(3)( j)

+ δ
(2,2)
F(i),F(3)( j)

+ δ
(3,3)
F(i),F(3)( j)

= δ
(0,3)
F(i),F( j)

+ δ
(1,2)
F(i),F( j)

+ δ
(2,1)
F(i),F( j)

+ δ
(3,0)
F(i),F( j)

.

When k = 0 and l = 1,

λi, j+n(Q(F),Q(F)) = λi j (F ,F) + λi j (F ,F(1)) + λi j (F ,F(2)) + λi j (F ,F(3))

= λi j (F ,F) + δ
(0,1)
F(i),F( j)

+ δ
(1,0)
F(i),F( j)

+ δ
(2,3)
F(i),F( j)

+ δ
(3,2)
F(i),F( j)

+ δ
(0,2)
F(i),F( j)

+ δ
(1,3)
F(i),F( j)

+ δ
(2,0)
F(i),F( j)

+ δ
(3,1)
F(i),F( j)

+ δ
(0,3)
F(i),F( j)

+ δ
(1,2)
F(i),F( j)

+ δ
(2,1)
F(i),F( j)

+ δ
(3,0)
F(i),F( j)

= λi j (F ,F) + τi j (F ,F) + σi j (F ,F)

= s.

When k �= l, the proofs of the other cases are similar. The proofs of the (ii) and (iii)
are also similar to the (i). 	


4 Relationship of uniformity betweenQ(F) andF
The relationship betweenQ(F) and F is considered under uniformity criterion mea-
sured byWD, furthermore, new lower bounds ofWD for the Quadruple designQ(F)

and the initial design F are obtained in this section.
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The following lemma shows that the WD value ofQ(F) is completely decided by
{λi j (F ,F)}, {τi j (F ,F)} and {σi j (F ,F)} of F .

Lemma 2 Let F ∈ U(n; 4s),Q(F) ∈ U(4n; 44s) is the Quadruple design of F . Then

[WD(Q(F))]2 = −
(
4

3

)4s

+ 3

4

(
6615

2048

)s

+ 1

4n

(
81

16

)s

+ 1

4n2

n∑
i=1

n∑
j(�=i)=1

(
81

16

)λi j (F,F) (
194481

65536

)τi j (F,F) (
625

256

)σi j (F,F)

,(5)

where λi j (F ,F), τi j (F ,F), σi j (F ,F) are shown in (4).

Proof According to Eq. (3) and Lemma 1,

[WD(Q(F))]2

= −
(
4

3

)4s

+ 1

(4n)2

4n∑
i=1

4n∑
j=1

4s∏
k=1

[
3

2
− |uil − u jl |(1 − |uil − u jl |)

]

= −
(
4

3

)4s

+ 1

(4n)2

(
n∑

i=1

+
2n∑

i=n+1

+
3n∑

i=2n+1

+
4n∑

i=3n+1

)

⎛
⎝

n∑
j=1

+
2n∑

j=n+1

+
3n∑

j=2n+1

+
4n∑

j=3n+1

⎞
⎠

×
s∏

k=1

2s∏
k=s+1

3s∏
k=2s+1

4s∏
k=3s+1

[
3

2
− |uil − u jl |(1 − |uil − u jl |)

]

= −
(
4

3

)4s

+ 1

(4n)2

⎡
⎣4

n∑
i=1

n∑
j=1

(
3

2

)4λi j (F ,F) (
21

16

)4τi j (F ,F) (
5

4

)4σi j (F ,F)

+ 12
n∑

i=1

n∑
j=1

(
3

2

)s (
21

16

)2s (
5

4

)s
⎤
⎦

= −
(
4

3

)4s

+ 3

4

(
6615

2048

)s

+ 1

4n

(
81

16

)s

+ 1

4n2

n∑
i=1

n∑
j( �=i)=1

(
81

16

)λi j (F ,F) (
194481

65536

)τi j (F ,F) (
625

256

)σi j (F ,F)

,

which completes the proof of Lemma 2. 	

The lower bounds of discrepancy can be used as a benchmark for searching and

constructing uniform designs. For F ∈ U(n; 4s), in order to obtain the lower bounds
of the WD value of F and its Quadruple design Q(F) ∈ U(4n; 44s), the following
two lemmas are required.
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Lemma 3 Let x1, x2, . . . , xn, y1, y2, . . . , yn be2n nonnegative integers and
∑n

i=1 xi =
c1,

∑n
i=1 yi = c2. Define zi = axi + byi , i = 1, . . . , n, c = ac1 + bc2, where a

and b are nonnegative number. Let z(1), z(2), . . . , z(l) be the ordered arrangements of
the distinct possible values of z1, z2, . . . , zn, and k be the largest integer such that
z(k) ≤ c/n < z(k+1). Then for any positive integer t ,

n∑
i=1

zti ≥ pzt(k) + qzt(k+1),

where p and q are integers such that p + q = n and pz(k) + qz(k+1) = c. The lower
bound can be attained if only if all zi are as equal as possible and equal to c/n.

Proof It is enough to prove that if we deviate slightly from the above choice, the
value of

∑n
i=1 z

t
i will not decrease. For ε1 > 0, ε2 > 0, let us consider the following

simplest choice of
∑n

i=1 z
t
i

ε1z
t
(k−1) + (p − ε1)z

t
(k) + (q − ε2)z

t
(k+1) + ε2z

t
(k+2),

where

ε1z(k−1) + (p − ε1)z(k) + (q − ε2)z(k+1) + ε2z(k+2) = c

⇒ ε1(z(k) − z(k−1)) = ε2(z(k+2) − z(k+1))

It is easy to note that

ε1 + (p − ε1) + (q − ε2) + ε2 = p + q = n.

Let�1 = pzt(k)+qzt(k+1) and�2 = ε1zt(k−1)+(p−ε1)zt(k)+(q−ε2)zt(k+1)+ε2zt(k+2).
Then

�2 − �1 = ε1z
t
(k−1) + (p − ε1)z

t
(k) + (q − ε2)z

t
(k+1) + ε2z

t
(k+2) − pzt(k) − qzt(k+1)

= − ε1(z
t
(k) − zt(k−1)) + ε2(z

t
(k+2) − zt(k+1))

= − ε1(z(k) − z(k−1))(z
t−1
(k) + zt−2

(k) z(k−1) + · · · + z(k)z
t−2
(k−1) + zt−1

(k−1))

+ ε2(z(k+2) − z(k+1))(z
t−1
(k+2) + zt−2

(k+2)z(k+1) + · · ·
+ z(k+2)z

t−2
(k+1) + zt−1

(k+1))

= − ε2(z(k+2) − z(k+1))(z
t−1
(k) + zt−2

(k) z(k−1) + · · · + z(k)z
t−2
(k−1) + zt−1

(k−1))

+ ε2(z(k+2) − z(k+1))(z
t−1
(k+2) + zt−2

(k+2)z(k+1) + · · ·
+ z(k+2)z

t−2
(k+1) + zt−1

(k+1))

= ε2(z(k+2) − z(k+1))
[
(zt−1

(k+2) − zt−1
(k) ) + (zt−2

(k+2)z(k+1) − zt−2
(k) z(k−1))

+ · · · + (z(k+2)z
t−2
(k+1) − z(k)z

t−2
(k−1)) + (zt−1

(k+1) − zt−1
(k−1))

]

> 0.
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Lemma 4 Let F ∈ U(n; 4s) be a four-level design. Then

(i)
∑n

i=1
∑n

j( �=i)=1 λi j (F ,F) = ns
( n
4 − 1

)
,

(ii)
∑n

i=1
∑n

j( �=i)=1 τi j (F ,F) = 2
∑n

i=1
∑n

j( �=i)=1 σi j (F ,F) = sn2
2 .

The proof of Lemma 4 is obvious by the definitions of λi j (F ,F), τi j (F ,F) and
σi j (F ,F).

Consider designs belonging to the class F ∈ U(n; 4s), let 	 = {φi j |φi j =
ln

( 6
5

)
λi j (F ,F) + ln

( 21
20

)
τi j (F ,F), i, j = 1, . . . , n, i �= j}, denote z1, z2, . . . ,

zn(n−1) as n(n − 1) elements in the set 	, let z(1), z(2), . . . , z(l) be the ordered
arrangements of the distinct possible values of z1, z2, . . . , zn(n−1). By Lemma 4,

c = ∑n
i=1

∑n
j( �=i)=1 φi j = ln

( 6
5

)
ns

( n
4 − 1

)+ ln
( 21
20

) sn2
2 , let k be the largest integer

such that z(k) ≤ c
n(n−1) < z(k+1).

On other hand, according to the definition of λi j (F ,F) and τi j (F ,F), the possible
choices of λi j (F ,F) and τi j (F ,F) are both 0, 1, . . . , s. All possible φi j values corre-
sponds to the following (s + 1)2 combinations (λi j (F ,F), τi j (F ,F)):{(0, 0), (0, 1),
. . . , (0, s), (1, 0), . . . , (1, s), . . . , (s, s)}, denote z′1, z′2, . . . , z′(s+1)2

as all possible φi j

values, let z′(1), z
′
(2), . . . , z

′
((s+1)2)

be the ordered arrangements of z′1, z′2, . . . , z′(s+1)2
,

k be the largest integer such that z′(k) ≤ c
n(n−1) < z′(k+1).

From above, it is obvious that

z(k) ≤ z′(k) ≤ c

n(n − 1)
< z′(k+1) ≤ z(k+1). (6)

According to Lemma 3 and (6), we easily obtain the following relationship,

n∑
i=1

zti ≥ pz′t(k) + qz′t(k+1), (7)

where p and q are integers such that p + q = n(n − 1) and pz′(k) + qz′(k+1) = c.
A new lower bound of WD for a four-level design F ∈ U(n; 4s) is presented as

follows.

Theorem 1 Let F ∈ U(n; 4s) be a four-level design. Then

[WD(F)]2 ≥ LB[WD(F)],

where

LB[WD(F)] = � + pez
′
(k) + qez

′
(k+1)

n2

(
5

4

)s

, (8)

� = − ( 4
3

)s + 1
n

( 3
2

)s
, p, q, z′(k) and z′(k+1) are shown in (7). The lower bound can

be attained if and only if among the n(n − 1) number of φi j , p of them take z′(k), q of
them take z′(k+1).
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Proof According to (4),

[WD(F)]2 = � + 1

n2

n∑
i=1

n∑
j( �=i)=1

(
3

2

)λi j (F ,F) (
21

16

)τi j (F ,F)

(
5

4

)s−[λi j (F ,F)+τi j (F ,F)]

= � + 1

n2

(
5

4

)s n∑
i=1

n∑
j( �=i)=1

(
6

5

)λi j (F ,F) (
21

20

)τi j (F ,F)

= � + 1

n2

(
5

4

)s n∑
i=1

n∑
j( �=i)=1

eλi j (F ,F) ln ( 65 )+τi j (F ,F) ln ( 2120 ).

Denote φi j = λi j (F ,F) ln
( 6
5

) + τi j (F ,F) ln
( 21
20

)
, then

[WD(F)]2 = � + 1

n2

(
5

4

)s n∑
i=1

n∑
j( �=i)=1

∞∑
t=0

(φi j )
t

t !

= � + 1

n2

(
5

4

)s ∞∑
t=0

1

t !
n∑

i=1

n∑
j( �=i)=1

(φi j )
t .

By Lemma 4 and (7),

n∑
i=1

n∑
j( �=i)=1

(φi j )
t ≥ pz′t(k) + qz′t(k+1).

Thus

[WD(F)]2 ≥ � + pez
′
(k) + qez

′
(k+1)

n2

(
5

4

)s

,

which completes the proof of Theorem 1. 	

Similarly, a new lower bound of the Quadruple design Q(F) is obtained in the

following corollary.

Corollary 1 Let F ∈ U(n; 4s) andQ(F) ∈ U(4n; 44s) be the Quadruple design of F .
Then

[WD(Q(F))]2 ≥ LB[WD(Q(F))],

where

LB[WD(Q(F))] = �̂ + pe4z
′
(k) + qe4z

′
(k+1)

4n2

(
5

4

)4s

, (9)
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�̂ = − ( 4
3

)4s + 3
4

(
6615
2048

)s + 1
4n

( 3
2

)4s
. The necessary and sufficient conditions for

attaining the lower bound are same to that ones in Theorem 1.

From (9), the lower bound of WD value for the Quadruple design Q(F) is deter-
mined by the lower bound ofWD value for the initial designF , i.e., TheWD value of
Q(F) achieves the lower bound LB[WD(Q(F))] in (9) if and only if the WD value
of F achieves the lower bound LB[WD(F)] in (8), so the relationship of uniformity
measured by WD between F and Q(F) is built in the following theorem.

Theorem 2 Let F ∈ U(n; 4s) andQ(F) be its Quadruple design. Then uniformity of
Q(F) and F is almost equivalent.

Proof TheWD value ofQ(F) achieves the lower bound LB[WD(Q(F))] in (9), that
is, Q(F) is a uniform design, if and only if the equality in Theorem 1 holds. Then
[WD(F)]2 = LB[WD(F)], and F is also a uniform design. Vice versa. The proof
is finished. 	

Remark 1 According to Theorem 2, if F is a uniform four-level design, a series of
uniform four-level designs with large run sizes can be obtained by successively qua-
drupling.

5 Analytic connection betweenQ(F) andF under GMA criterion

In this section, the analytic connection between Q(F) and F is invesgated in terms
of GMA criterion. According to Lemma 1, we obtain another important lemma as
follows.

Lemma 5 Suppose F ∈ U(n; 4s), Q(F) ∈ U(4n; 44s) is the Quadruple design of
F , {Ei (F)}, {di j (F)} and {E∗

i (Q(F))}, {d∗
i j (Q(F))} denote the distance distribution

and Hamming distances ofF andQ(F) respectively. Then {di j (F)} and {d∗
i j (Q(F))},

{Ei (F)} and {E∗
i (Q(F))} have the following relationships:

(i)

d∗
(i+kn)( j+ln)(Q(F)) =

{
4di j (F), 1 ≤ i, j ≤ n, k = l; k, l = 0, 1, 2, 3,
3s, 1 ≤ i, j ≤ n, k �= l; k, l = 0, 1, 2, 3.

(ii) If s mod 4 = 0, then

E∗
4i (Q(F)) =

{
Ei (F), i = 0, 1, . . . , s, and i �= 3s

4 ,

Ei (F) + 3n, i = 3s
4 ,

and

E∗
4i+1(Q(F)) = E∗

4i+2(Q(F)) = E∗
4i+3(Q(F)) = 0, i = 0, 1, . . . , s − 1.
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If s mod 4 = 1, then

E∗
4i (Q(F)) = Ei (F), i = 0, 1, . . . , s,

E∗
4i+1(Q(F)) = E∗

4i+2(Q(F)) = 0, i = 1, . . . , s − 1,

and

E∗
4i+3(Q(F)) =

{
0, i = 0, 1, . . . , s − 1 and i �= 3s−3

4 ,

3n, i = 3s−3
4 .

If s mod 4 = 2, then

E∗
4i (Q(F)) = Ei (F), i = 0, 1, . . . , s,

E∗
4i+1(Q(F)) = E∗

4i+3(Q(F)) = 0, i = 1, . . . , s − 1,

and

E∗
4i+2(Q(A)) =

{
0, i = 0, 1, . . . , s − 1 and i �= 3s−2

4 ,

3n, i = 3s−2
4 .

If s mod 4 = 3, then

E∗
4i (Q(F)) = Ei (F), i = 0, 1, . . . , s,

E∗
4i+2(Q(F)) = E∗

4i+3(Q(F)) = 0, i = 1, . . . , s − 1,

and

E∗
4i+1(Q(F)) =

{
0, i = 0, 1, . . . , s − 1 and i �= 3s−1

4 ,

3n, i = 3s−1
4 .

Proof The result (i) is obvious by Lemma 1 and we only prove result (ii). If s mod
4=0, by Eq. (6) and (i), we have E∗

4i+1(Q(F)) = E∗
4i+2(Q(F)) = E∗

4i+3(Q(F)) = 0,

for i = 0, 1, . . . , s − 1. When i = 0, 1, . . . , s and i �= 3s
4 ,

E∗
4i (Q(F)) = 1

4n
|{(x∗

i , x∗
j ) : d∗

H (x∗
i , x∗

j ) = 4i}|

= 1

4n
× 4|{(xi , x j ) : dH (xi , x j ) = i}|

= 1

4n
× 4nEi (F) = Ei (F),
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and for i = 3s
4 ,

E∗
3s(Q(F)) = 1

4n
|{(x∗

i , x
∗
j ) : d∗

H (x∗
i , x∗

j ) = 3s}|

= 1

4n
(4nE3s/4(F) + 12n2) = 3n + E3s/4(F).

The proofs of other cases are similar to the case one, which completes the proof of
Lemma 5. 	


The following theorem provides the analytical connection between F and Q(F)

under GMA criterion.

Theorem 3 Let F ∈ U(n; 4s) and Q(F) be the Quadruple design of F . {A∗
j (Q(F))}

and {A j (F)} is the generalized wordlength pattern ofQ(F) and F , respectively. For
1 ≤ j ≤ 4s, we have

A∗
j (Q(F)) = 1

4s+1

s∑
i=0

s∑
v=0

Pj (4i; 4s, 4)Pi (v; s, 4)Av(F) + 3

4
Pj (3s; 4s, 4).(10)

Proof If s mod 4 = 0, from (8) and the (ii) of Lemma 5, for 1 ≤ j ≤ 4s we have

A∗
j (Q(F)) = 1

4n

4s∑
i=0

Pj (i; 4s, 4)E∗
i (Q(F))

= 1

4n

[
s∑

i=0

Pj (4i; 4s, 4)E∗
4i (Q(F))

+
s−1∑
i=0

Pj (4i + 1; 4s, 4)E∗
4i+1(Q(F))

+
s−1∑
i=0

Pj (4i + 2; 4s, 4)E∗
4i+2(Q(F))

+
s−1∑
i=0

Pj (4i + 3; 4s, 4)E∗
4i+3(Q(F))

]

= 1

4n

[
s∑

i=0

Pj (4i; 4s, 4)Ei (F) + 3nPj (3s; 4s, 4)
]

.
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Since Ei (F) = n
4s

∑s
v=0 Pi (v; s, 4)Av(F) (Ma and Fang 2001),

A∗
j (Q(F)) = 1

4n

[
s∑

i=0

Pj (4i; 4s, 4) n
4s

s∑
v=0

Pi (v; s, 4)Av(F) + 3nPj (3s; 4s, 4)
]

= 1

4s+1

s∑
i=0

s∑
v=0

Pj (4i; 4s, 4)Pi (v; s, 4)Av(F) + 3

4
Pj (3s; 4s, 4).

For the other three cases, (10) also holds, which completes the proof of Theorem 3. 	


6 Numerical examples

Next the nice properties of the Quadruple design and its projection designs are illus-
trated by some examples in this section.

Example 2 Consider the original four-level design F ∈ U(8; 47) given as follows.

F =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 1 2 3 1 2 3
3 2 0 0 1 1 2
3 3 1 2 2 3 3
2 2 2 2 0 0 1
2 3 3 0 3 2 0
1 0 3 1 2 0 2
0 1 0 1 0 3 0
0 0 1 3 3 1 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

Q(F) ∈ U(32; 428) is the Quadruple design of F . Successively quadrupling F twice
yields the designQ∗(F) ∈ U(128; 4112). FromEqs. (4) and (8),we have [WD(F)]2 =
LB[WD(F)] = 0.73, namely,A is a uniform designmeasured byWD. FromEqs. (5)
and (9), we have [WD(Q(F))]2 = LB[WD(Q(F))] = 2776.1, [WD(Q∗(F))]2 =
LB[WD(Q∗(F))] = 4.12×1017. Therefore, bothQ(F) andQ∗(F) fromquadrupling
are also uniform designs measured by WD.

The uniformity of projection designs of the Quadruple design Q(F) is presented
in Table 2, the WD values corresponding to the last column in Table 2 are from the
homepage of uniform designs (UD). From Table 2, we easily find that theWD values
of projection designs of theQuadruple design are not larger thanWD on the homepage
of uniform designs, some are even better.

Example 3 Consider the initial four-level designF given below,which is an orthogonal
array OA(16, 45, 2), Q(F) ∈ U(64; 420) is the Quadruple design of F .

F =

⎛
⎜⎜⎜⎜⎝

0 0 0 0 1 1 1 1 2 2 2 2 3 3 3 3
0 1 2 3 1 0 3 2 2 3 0 1 3 2 1 0
0 2 3 1 1 3 2 0 2 0 1 3 3 1 0 2
0 3 1 2 1 2 0 3 2 1 3 0 3 0 2 1
0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3

⎞
⎟⎟⎟⎟⎠

′

.
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Table 2 Comparison of uniformity between projection designs and existing uniform designs

Runs (n) Levels (q) Projection factors (s) WD of projection design WD on UD homepage

32 4 2 0.027886 0.027886

32 4 3 0.056021 0.056021

32 4 4 0.10045 0.10045

32 4 5 0.169469 0.169469

32 4 6 0.275788* 0.276559

32 4 7 0.438446* 0.443409

32 4 8 0.692559* 0.69806

s = 2 is Q(F) mapping to columns 1, 8
s = 3 is Q(F) mapping to columns 1, 10, 12
s = 4 is Q(F) mapping to columns 1, 8, 10, 23
s = 5 is Q(F) mapping to columns 1, 8, 10, 24, 25
s = 6 is Q(F) mapping to columns 3, 8, 10, 13, 21, 23
s = 7 is Q(F) mapping to columns 3, 8, 10, 13, 21, 23, 25
s = 8 is Q(F) mapping to columns 1, 4, 8, 10, 13, 21, 23, 25
*The WD of the projection designs is smaller than WD on UD homepage

The comparison of uniformity between the projection designs of the Quadruple design
Q(F) and existing uniform designs are presented in Table 3, the WD values corre-
sponding to the last but one column in Table 3 are from Xu et al. (2014), which is
the WD values of designs constructed by level permutations of factors of orthogonal
array. The WD values corresponding to the last column in Table 3 are WD values of
uniform designs by stochastic optimization method (SOM). From Table 3, we easily
find that the uniformity of the projection designs of the Quadruple design are better
than existing results, where the WD values are marked with symbols * and ◦.

According to the analytical connection betweenF andQ(F) under GMA criterion
in Theorem 3, theoretically, using the minimum aberration design as the initial design
is the best, but until now the available minimum aberration designs are two-level
or three-level designs. So in the implementation of the proposed method, we have
to go for second best, that is to say, the initial design has less aberration. As an
obvious alternative, orthogonal array (OA) with strength two is appropriate, because
it has relatively small wordlength pattern (A1 = 0, A2 = 0), which ensures that
there is no aberration among main effects of factors. We choose the OA(16, 45, 2)
in Example 3 as the initial design, the projection designs of the Quadruple design
of OA(16, 45, 2) and the corresponding generalized wordlength pattern are given in
Table 4, respectively. The numerical results in Table 4 show that if the initial design is
an orthogonal design of strength two, then both theQuadruple design and its projection
designs are also orthogonal designs of strength two, i.e., A1 = 0, A2 = 0. Therefore,
the first two components of the generalized wordlength pattern of each projection
design are omitted, and the other components except for A3 and A4 also are omitted
for simplicity in Table 4. From above, we choose an orthogonal design with small
number of factors and runs as initial design, lots of orthogonal designs with large
number of factors and runs can be constructed by successively quadrupling.
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Table 3 Comparison of uniformity between projection designs and existing uniform designs

Runs (n) Level (q) Projection
factors (s)

WD of projection
design

WD of permuted
orthogonal designs

WD of UD con-
structed by SOM

64 4 3 0.055991 0.055991 0.055991

64 4 4 0.099948 0.099948 0.099948

64 4 5 0.167346◦ 0.167346◦ 0.167945

64 4 6 0.269157◦ 0.269157◦ 0.271437

64 4 7 0.42436◦∗ 0.425343◦ 0.427147

64 4 8 0.654555◦ 0.654555◦ 0.662169

64 4 9 0.993731◦∗ 0.995336◦ 1.011113

64 4 10 1.497617◦∗ 1.502147◦ 1.526563

64 4 11 2.23429◦∗ 2.243185◦ 2.28761

64 4 12 3.31139◦∗ 3.339569◦ 3.412004

64 4 13 4.90255◦∗ 4.907737◦ 5.055312

64 4 14 7.217505◦∗ 7.303771◦ 7.478702

s = 3 is Q(A) mapping to columns 1, 2, 6
s = 4 is Q(A) mapping to columns 1, 2, 6, 15
s = 5 is Q(A) mapping to columns 1, 2, 6, 7, 15
s = 6 is Q(A) mapping to columns 1, 2, 6, 7, 15, 20
s = 7 is Q(A) mapping to columns 1, 2, 3, 6, 7, 11, 13
s = 8 is Q(A) mapping to columns 1, 2, 3, 6, 7, 8, 11, 12
s = 9 is Q(A) mapping to columns 1, 2, 3, 6, 7, 8, 11, 12, 13
s = 10 is Q(A) mapping to columns 1, 2, 3, 4, 6, 7, 8, 11, 12, 13
s = 11 is Q(A) mapping to columns 1, 2, 3, 4, 6, 7, 8, 9, 11, 12, 13
s = 12 is Q(A) mapping to columns 1, 2, 3, 4, 6, 7, 8, 9, 11, 12, 13, 14
s = 13 is Q(A) mapping to columns 1, 2, 3, 4, 6, 7, 8, 9, 11, 12, 13, 14, 17
s = 14 is Q(A) mapping to columns 1, 2, 3, 4, 7, 8, 9, 11, 12, 13, 14, 17, 18,19
*The WD of the projection designs is smaller than WD in Xu et al. (2014)
◦The WD of the projection designs is smaller than WD of UD constructed by SOM

7 Concluding remarks

In this paper, a novel method, called quadrupling, is proposed for constructing uniform
four-level designs with large run sizes. Quadrupling method is regarded as a general-
ization of tripling method proposed by Ou et al. (2019). There are some similarities
between the two methods, for example, both use level permutations to construct larger
designs from small designs. However, there are some differences between the two
methods. Firstly, the objects of study are different, one is a three-level design, the
other is a four-level design. Secondly, tripling method uses all level permutations of a
three-level design while quadrupling method only uses partial level permutations of a
four-level design.

123



Quadrupling: construction of uniform designs with large. . . 543

Table 4 Projection designs of Quadruple design of OA(16, 45, 2) and the wordlength patterns

Columns of projection Wordlength pattern (A3, A4, . . .)

1 2 6 (0)

1 2 6 7 (0, 3)

1 2 6 7 15 (0, 15, . . .)

1 2 6 7 15 20 (0, 45, . . .)

1 2 3 6 7 11 13 (9, 69, . . .)

1 2 3 6 7 8 10 15 (18, 120, . . .)

1 2 3 6 7 8 10 15 20 (27, 216, . . .)

1 2 3 4 6 7 8 10 15 20 (45, 327, . . .)

1 2 3 4 6 7 8 9 10 15 20 (63, 510, . . .)

1 2 3 4 6 7 8 9 11 12 13 14 (84, 765, . . .)

1 2 3 4 6 7 8 9 10 11 12 13 14 (120, 1029, . . .)

1 2 3 4 6 7 8 9 10 11 12 13 14 15 (156, 1419, . . .)

1 2 3 4 6 7 8 9 10 11 12 13 14 15 20 (195, 1935, . . .)

1 2 3 4 6 7 8 9 11 12 13 14 16 17 18 19 (240, 2580, . . .)

1 2 3 4 5 6 7 8 9 11 12 13 14 16 17 18 19 (312, 3204, . . .)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 16 17 18 19 (384, 4044, . . .)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 (459, 5100, . . .)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 (540, 6375, . . .)

On the other hand, the construction of Q(F) in Definition 1 is not unique, because
there are many kinds of level permutations of F . When a simplest four-level design
F = (0 1 2 3)′ is chosen as the initial design, one can obtain the Quadruple design
Q(F) by combining level permutations of F such that Q(F) is an OA(16, 44, 2).
This way other types of the Quadruple design possessed with excellent properties are
found.
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