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Abstract
In this paper the authors study the problem of testing the hypothesis of a doubly
exchangeable covariance matrix for three-level multivariate observations, taken on m
variables over u sites and over v time/space points. Through the decomposition of the
main hypothesis into a set of three sub-hypotheses, the likelihood ratio test statistic
is defined, its exact moments are determined, and its exact distribution is studied.
Because this distribution is very much intricate, a very precise near-exact distribution
is developed. Numerical studies conducted to evaluate the closeness between this near-
exact distribution and the exact distribution show the very good performance of this
approximation even for very small sample sizes. A simulation study is also conducted
and two real-data examples are presented.
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1 Introduction

Advances in computing power in the past few decades greatly encouraged the col-
lection of multi-level multivariate data in all fields of science: biomedical, medical,
environmental, social sciences and engineering. And, with these data sets complex
multivariate testing problems occur frequently. It is common in clinical trial studies to
collect measurements on more than one response variable at several locations taken
repeatedly over time on one experimental unit to test the effectiveness of some medi-
cation, diet or treatment. These are called three-level multivariate data and the doubly
exchangeable covariance structure (defined below) is a suitable variance-covariance
matrix for this kind of data.

Good examples of such data may be found in osteopenia and osteoporosis studies,
being estimated that one of every four post-menopausal women may suffer from
osteoporosis. Although it is more common in white or Asian women older than 50
years, osteoporosis can occur in almost any person at any age, being estimated that
in fact, more than 2 million American men have osteoporosis, the national cost for
osteoporosis and related injuries being assessed at $14 billion each year in the United
States.

Let y be the muv-variate real-valued random vector of all measurements. We par-
tition this vector y as follows:

y =
⎛
⎜⎝

y1
...

yv

⎞
⎟⎠ , where yt =

⎛
⎜⎝

yt1
...

ytu

⎞
⎟⎠ , with yts =

⎛
⎜⎝

yts1
...

ytsm

⎞
⎟⎠ ,

for t = 1, . . . , v, s = 1, . . . , u. The m-dimensional vector of measurements yts
represents the replicate on the sth location and at the t th time point.

LetΘ = Cov
[
y
]
be the (muv×muv)−dimensional partitioned covariancematrix.

We say that the covariance matrix Θ has a doubly exchangeable covariance structure
(Roy and Leiva 2007) if it can be written as

Θ = Iuv ⊗ U0 + [Iv ⊗ (Ju − Iu))] ⊗ U1 + [Juv − (Iv ⊗ Ju)] ⊗ W

= Iuv ⊗ (U0 − U1) +Iv ⊗Ju ⊗ (U1 − W) +Juv ⊗W ,

= Iv ⊗ U + (Jv − Iv) ⊗ W∗ (1)

where

U = Iu ⊗ U0 + (Ju − Iu) ⊗ U1

and

W∗ = Ju ⊗ W,

with U0 a positive definite symmetric m × m matrix, and U1 and W symmetric
m ×m matrices. The matrices U0,U1 and W are all unstructured. That is, the doubly
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Testing the hypothesis of a doubly exchangeable… 47

exchangeable covariance structure can bewritten as amatrix having diagonal blocks of
the same matrixU with component matricesU0 andU1 and otherwise being filled-up
with matrices W .

Thus, the vectors y11, . . . , y1u, . . . , yv1, . . . , yvu are doubly exchangeable if

Cov
[
yts; yt∗s∗

] =
⎧⎨
⎩
U0 if t = t∗ and s = s∗,
U1 if t = t∗ and s �= s∗,
W if t �= t∗,

with Cov
[
yts; yt∗s∗

] = Cov
[
yt∗s∗; yts

]
.

The m × m diagonal blocks U0 in (1) represent the variance-covariance matrix of
the m response variables at any given location and at any given time point, whereas
the m × m off-diagonal blocks U1 in (1) represent the covariance matrix of the m
response variables between any two different locations, at any given time point. We
assume U0 is the same for all locations and time points, and U1 is the same for all
time points. The m ×m off-diagonal blocks W represent the covariance matrix of the
m response variables between any two different time points. It is assumed to be the
same for any pair of different time points, irrespective of location.

A good and simple example of a three-level multivariate dataset on osteoporosis
may be obtained from Johnson and Wichern (2007) who report data on a study where
an investigator measures the mineral content of three bones, radius, humerus and ulna
(m = 3) by photon absorptiometry to examinewhether a particular dietary supplement
increases bone mineral content and mass in older women. All three measurements are
recorded on the dominant and non-dominant sides (u = 2) for each woman. These
two-level multivariate measurements are then taken again one year after their first
participation in the experimental program. Thus, this whole dataset has a three-level
multivariate structure, with m = 3 variables, for u = 2 locations, over v = 2 time
points and given what the variables involved represent, testing for a doubly exchange-
able covariance structure may be an adequate goal. Another simple example is from
a bone densitometry study where the interest may be to test the doubly exchangeable
covariance structure for an osteopenia study on twelve patients. Bone mineral density
were obtained from the femoral neck and trochanter (m = 2), for the right and left
femur (u = 2), taken at two different times (v = 2), separated by about two years.
This latter example is addressed in Sect. 6, while the example of the osteoporosis data
from Johnson and Wichern (2007) is placed in the supplementary material.

Roy and Fonseca (2012) fitted a general linear model to three-level multivari-
ate data, with a doubly exchangeable covariance structure for the error vector, and
Leiva and Roy (2011, 2012) used this doubly exchangeable covariance structure for
classification of three-level multivariate data, while hypothesis testing on three-level
multivariate data was first studied by Roy and Leiva (2008), where these two authors
introduced parametrically parsimonious models for hypotheses testing of Kronecker
product covariance structures.

However, none of these authors addressed directly the problem of testing the doubly
exchangeable covariance structure.

The doubly exchangeable covariance structure is actually a very general and rich
covariance structure which generalizes at the same time both the compound symmetry
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48 C. A. Coelho, A. Roy

Fig. 1 Web of relations of covariance structures which are particular cases of the doubly exchangeable struc-
ture. Covariance structures depicted and their acronyms: D.E.—Double exchangeable, D.C.Sym—Double
compound symmetry, B.C.Sym—Block Compound Symmetry (or block exchangeability), D-B.C.Sym—
Diagonal-block compound symmetry, M.B-M.Sph—Multi-Block-Matrix Sphericity, C.Sym—Compound
symmetry, B-M.Sph.—Block-matrix sphericity, Sph—Sphericity

and the sphericity structures. As such it has many interesting covariance structures as
particular cases. Some of these are depicted in Fig. 1. While some of these structures
are rather well-known, as the above mentioned compound symmetry and sphericity
structures, and also the block compound symmetry (Votaw 1948; Szatrowski 1976,
1982; Coelho and Roy 2017) and the block-matrix sphericity structure (Moschopoulos
1992; Cardeño and Nagar 2001; Marques and Coelho 2012), others are not even
known in the literature as it is the case of the structure derived from the doubly
exchangeable covariance structure when U1 = 0 but W �= 0, which we call multi-
block-matrix sphericity (see Fig. 1). We may note how for either u = 1 or v = 1 we
have the block compound symmetric structure for which a likelihood ratio test (l.r.t.)
was developed in Coelho and Roy (2017), being thus the test in the present paper a
generalization of the test in this reference.

Therefore, once the test for double exchangeability is developed, it may be used to
test for (see Fig. 1)

(i) block compound symmetry or block exchangeability, for u = 1 or v = 1,
(ii) double compound symmetry, for m = 1, or
(iii) compound symmetry, for m = 1 and either u = 1 or v = 1.

And, as such, in casewe reject the doubly exchangeable structure for a given covariance
matrix, we may then take our testing procedure one step further by testing for example
for block compound symmetry or block exchangeability of submatrices, in trying to
evaluate whichmay be the reasonwhy the doubly exchangeable structurewas rejected,
and this can be done just by using one of the particular cases of this same test.

The use of the doubly exchangeable structure will also enable the use of a much
smaller number of parameters to model the covariance structure, since for an unstruc-
tured covariancematrix of dimensionsmuv×muv there aremuv(muv+1)/2 unknown
parameters,whereas the doubly exchangeable covariancematrix has only 3m(m+1)/2
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Testing the hypothesis of a doubly exchangeable… 49

unknown parameters, which does not depend on either u or v. Perlman (1987) stresses
the importance of carrying out tests for symmetry structures by saying that “if sym-
metries are known to be present, then sharper statistical inferences can be obtained”.

These facts motivated the authors to develop a l.r.t. for the doubly exchangeable
covariance structure for three-level multivariate data. The method used allows for an
easy way to obtain the l.r.t. statistic as well as the characterization of its exact distri-
bution, which is done in Sects. 2 and 3 of the paper. Given the extremely complicated
structure of the exact distribution of the l.r.t. statistic, the development of sharp but
manageable approximations stands up as a most desirable goal, in order to enable the
practical application of the test. It happens that the approach undertaken also enables to
obtain an extremely useful factorization of the characteristic function of the logarithm
of the l.r.t. statistic, which in turn opens the way for the development of extremely
sharp and manageable near-exact approximations for the distribution of the likelihood
ratio statistic. This work is done in Sect. 4 of the paper. In Sect. 5 the authors carry
out a number of numerical studies which show the extremely good performance of
the near-exact distributions developed, even for very small samples and/or very large
numbers of variables involved. In Sect. 6 two real-data examples are used to exemplify
the practical application of the l.r.t. and of the near-exact approximations developed.
Conclusions are drawn in Sect. 7.

2 Formulation of the hypothesis and the likelihood ratio test

Let y ∼ Nmuv(μ,Σ). We are interested in testing the hypothesis

H0 : Σ = Θ , (2)

where Θ is defined in (1).
In Lemma 3.1 in Roy and Fonseca (2012), it is shown that for Γ ∗ = C ′

v×v
⊗ Imu

and Γ • = Iv ⊗ (C∗′
u×u

⊗ Im), where C and C∗ are orthogonal Helmert matrices whose

first columns are proportional to 1’s,

Γ •Γ ∗ΘΓ ∗′Γ •′ =diag(�3, Iu−1 ⊗ �1,�2, Iu−1 ⊗ �1,�2, . . . , Iu−1 ⊗ �1)

where

�1 =U0 − U1,

�2 =U0 + (u−1)U1 − u W = (U0 − U1) + u (U1 − W) ,

and �3 =U0 + (u−1)U1 + u (v−1)W = (U0 − U1) + u (U1 − W) + uvW .

Since Γ • and Γ ∗ are not function of either U0, or U1 or W , to test H0 in (2) is
equivalent to test

H0 : Σ∗ = Ω (3)
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50 C. A. Coelho, A. Roy

where

Σ∗ = Γ •Γ ∗ΣΓ ∗′Γ •′ and Ω = Γ •Γ ∗ΘΓ ∗′Γ •′ .

We may split the null hypothesis in (3) as

H0 ≡ (
H0c|a || H0b|a

)
o H0a , (4)

where ‘o’ means ‘after’ and ‘||’ means ‘parallel’, meaning ‘either after or before’.
In (4),

H0a : Σ∗ = block-diag(Σ∗
i , i = 1, . . . , uv) , (5)

is the hypothesis of independence of the uv diagonal blocks Σ∗
i (i = 1, . . . , uv) of

size m×m of Σ∗;

H0b|a : Σ∗
2 = · · · = Σ∗

u︸ ︷︷ ︸
u−1

= Σ∗
u+2 = · · · = Σ∗

2u︸ ︷︷ ︸
u−1

= · · · = Σ∗
(v−1)u+2 = · · · = Σ∗

vu︸ ︷︷ ︸
u−1

,

assuming H0a,

(6)

is the hypothesis of equality of v(u − 1) covariance matrices of dimension m×m,
assuming H0a , and

H0c|a : Σ∗
u+1 = Σ∗

2u+1 = · · · = Σ∗
(v−1)u+1

assuming H0a,
(7)

is the hypothesis of equality of the covariancematricesΣ∗
u+1,Σ

∗
2u+1, . . . , Σ∗

(v−1)u+1,
assuming H0a .

The l.r.t. statistic to test H0a in (5) is (Anderson 2003, Sect. 9.2)

Λa =
(

|A|∏uv
j=1 |A j |

)n/2

where A = Γ •Γ ∗A+Γ ∗′Γ •′ is the maximum likelihood estimator (m.l.e.) of Σ∗, and
A j its j-th diagonal m×m block, being A+ the m.l.e. of Σ .

The l.r.t. statistic to test H0b|a in (6) is (Anderson 2003, Sect. 10.2)

Λb =
(

(v(u − 1))mv(u−1)

∏v
�=1

∏u−1
k=1

∣∣A(�−1)u+1+k
∣∣

|A∗|v(u−1)

)n/2

, (8)

where

A∗ =
v∑

�=1

u−1∑
k=1

A(�−1)u+1+k .
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The l.r.t. statistic to test H0c|a in (7) is (Anderson 2003, Sect. 10.2)

Λc =
(

(v − 1)m(v−1)
∏v−1

k=1 |Aku+1|
|A∗∗|v−1

)n/2

(9)

where

A∗∗ =
v−1∑
k=1

Aku+1 .

Then, through an extension of Lemma 10.3.1 in (Anderson 2003, Sect. 10.3), the
l.r.t. statistic to test H0 in (3) will be

Λ = ΛaΛbΛc

=
(

(v(u − 1))mv(u−1) (v − 1)m(v−1) |A|
|A1||A∗|v(u−1) |A∗∗|v−1

)n/2

, (10)

with

E
(
Λh

)
= E

(
Λh

a

)
E
(
Λh

b

)
E
(
Λh

c

)
, (11)

since on one hand, under H0a Λa is independent of
∏uv

j=1 |A j | (Marques and Coelho
2012; Coelho and Marques 2012b), which makes Λa independent of Λb and Λc,
while on the other hand, the A j ( j = 1, . . . , uv), under H0a , are independent among
themselves, which makes Λb and Λc independent because they are built on different
A j ’s.

In the following section we obtain the expressions for the moments of all three l.r.t.
statistics Λa , Λb and Λc, as well as their distributions.

3 On the exact distribution of the l.r.t. statistic

Using the results in Coelho (2004), Coelho et al. (2010) and Marques et al. (2011) we
may write the h-th moment of Λa as

E
(
Λh

a

)
=

uv−1∏
k=1

m∏
j=1

Γ
(
n− j
2

)
Γ
(
n−(uv−k)m− j

2 + n
2h
)

Γ
(
n−(uv−k)m− j

2

)
Γ
(
n− j
2 + n

2h
)

=
⎧⎨
⎩

muv∏
j=3

(
n − j

n

)r j (n − j

n
+ h

)−r j
⎫⎬
⎭

︸ ︷︷ ︸
Φa,1(h)

(
Γ
( n−1

2

)
Γ
( n−2

2 + n
2h
)

Γ
( n−1

2 + n
2h
)
Γ
( n−2

2

)
)k∗

︸ ︷︷ ︸
Φa,2(h)

(12)
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52 C. A. Coelho, A. Roy

with

k∗ =
⎧⎨
⎩

⌊uv

2

⌋
, m odd

0, m even,
(13)

where � · 	 represents the integer function, that is, the largest integer that does not
exceed its argument, and

r j =
{
h j−2 + (−1) j k∗, j = 3, 4
r j−2 + h j−2, j = 5, . . . ,muv,

with

h j =
{
uv − 1, j = 1, . . . ,m
−1, j = m + 1, . . . ,muv − 2.

Now, using the results in (Coelho andMarques 2012a; Coelho et al. 2010; Marques
et al. 2011) we obtain the expression for the h-th moment of Λb as

E
(
Λh

b

)
=

m∏
j=1

v(u−1)∏
k=1

Γ
(
n−1
2 − j−1

2v(u−1) + k−1
v(u−1)

)
Γ
(
n− j
2 + n

2h
)

Γ
(
n−1
2 − j−1

2v(u−1) + k−1
v(u−1) + n

2h
)

Γ
(
n− j
2

)

=
⎧⎨
⎩

m∏
j=2

(
n − j

n

)s j (n − j

n
+ h

)−s j
⎫⎬
⎭

︸ ︷︷ ︸
Φb,1(h)

×
⎧⎨
⎩

�m/2	∏
j=1

v(u−1)∏
k=1

Γ
(
n − 1 + k−2 j

v(u−1)

)
Γ
(
n − 1 +

⌊
k−2 j

v(u−1)

⌋
+ nh

)

Γ
(
n − 1 + k−2 j

v(u−1) + nh
)

Γ
(
n − 1 +

⌊
k−2 j

v(u−1)

⌋)
⎫⎬
⎭

×
⎧⎨
⎩

v(u−1)∏
k=1

Γ
(
n−m
2 + m−1

2 + 2k−m−1
2v(u−1)

)
Γ
(
n−m
2 +

⌊
m−1
2 + 2k−m−1

2v(u−1)

⌋
+ n

2h
)

Γ
(
n−m
2 + m−1

2 + 2k−m−1
2v(u−1) + n

2h
)

Γ
(
n−m
2 +

⌊
m−1
2 + 2k−m−1

2v(u−1)

⌋)
⎫⎬
⎭

m̃

︸ ︷︷ ︸
Φb,2(h)

(14)

where m̃ = m − 2�m/2	 and s j ( j = 2, . . . ,m) are given in Appendix A in the
supplementary material.

By looking at (8) and (9) we may see that the h-th moment of Λc may be obtained,
as follows, from the h-th moment of Λb by first replacing v by 1 and then replacing
u by v,
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E
(
Λh

c

)
=

m∏
j=1

v−1∏
k=1

Γ
(
n−1
2 − j−1

2(v−1) + k−1
v−1

)
Γ
(
n− j
2 + n

2h
)

Γ
(
n−1
2 − j−1

2(v−1) + k−1
v−1 + n

2h
)

Γ
(
n− j
2

)

=
⎧⎨
⎩

m∏
j=2

(
n − j

n

)δ j
(
n − j

n
+ h

)−δ j

⎫⎬
⎭

︸ ︷︷ ︸
Φc,1(h)

×
⎧⎨
⎩

�m/2	∏
j=1

v−1∏
k=1

Γ
(
n − 1 + k−2 j

v−1

)
Γ
(
n − 1 +

⌊
k−2 j
v−1

⌋
+ nh

)

Γ
(
n − 1 + k−2 j

v−1 + nh
)

Γ
(
n − 1 +

⌊
k−2 j
v−1

⌋)
⎫⎬
⎭

×
⎧⎨
⎩

v−1∏
k=1

Γ
(
n−m
2 + m−1

2 + 2k−m−1
2(v−1)

)
Γ
(
n−m
2 +

⌊
m−1
2 + 2k−m−1

2(v−1)
⌋
+ n

2h
)

Γ
(
n−m
2 + m−1

2 + 2k−m−1
2(v−1) + n

2h
)

Γ
(
n−m
2 +

⌊
m−1
2 + 2k−m−1

2(v−1)
⌋)
⎫⎬
⎭

m̃

︸ ︷︷ ︸
Φc,2(h)

(15)

where m̃ = m − 2�m/2	 and the shape parameters δ j ( j = 2, . . . ,m) are given in
Appendix A in the supplementary material.

Since the supports of Λa , Λb and Λc are delimited, their distributions are defined
by their moments, and as such, from the first expression in (12) we may write

Λa
st∼

m∏
j=1

uv−1∏
k=1

(
X jk

)n/2
, where X jk ∼ Beta

(
n−(uv−k)m− j

2
,
(uv−k)m

2

)
,

(16)

where ‘
st∼’ means ‘stochastically equivalent to’ and X jk ( j = 1, . . . ,m;

k = 1, . . . , uv − 1) are independent random variables, while from the first expres-
sion in (14) we may write

Λb
st∼

m∏
j=1

v(u−1)∏
k=1

(
X∗

jk

)n/2
, where X∗

jk ∼ Beta

(
n− j

2
,
j−1

2
+ 2k− j−1

2v(u−1)

)
,

(17)

where X∗
jk ( j = 1, . . . ,m; k = 1, . . . , v(u − 1)) are independent, and from the first

expression in (15) we may write

Λc
st∼

m∏
j=1

v−1∏
k=1

(
X∗∗

jk

)n/2
, where X∗∗

jk ∼ Beta

(
n− j

2
,
j−1

2
+ 2k− j−1

2(v−1)

)
,

(18)
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54 C. A. Coelho, A. Roy

where X∗∗
jk ( j = 1, . . . ,m; k = 1, . . . , v − 1) are independent, so that we may write

for the overall l.r.t. statistic for H0 in (4)

Λ
st∼

m∏
j=1

⎧⎪⎨
⎪⎩

(
uv−1∏
k=1

X jk

)n/2

×

⎛
⎝

v(u−1)∏
k=1

X∗
jk

⎞
⎠

n/2

×
(

v−1∏
k=1

X∗∗
jk

)n/2
⎫⎪⎬
⎪⎭

, (19)

where all random variables are independent.
On the other hand, based on the results inAppendix B in the supplementarymaterial

and from the second expressions in (12), (14) and (15) we may respectively write,

Λa
st∼
⎛
⎝

muv∏
j=3

e−Z j

⎞
⎠×

⎛
⎝

k∗∏
j=1

(
Y j
)n/2

⎞
⎠ (20)

where

Z j ∼ Γ

(
r j ,

n − j

n

)
and Y j ∼ Beta

(
n − 2

2
,
1

2

)
(21)

are all independent random variables, while for Λb we may write

Λb
st∼
⎛
⎝

m∏
j=2

e−Z∗
j

⎞
⎠×

⎛
⎝

�m/2	∏
j=1

v(u−1)∏
k=1

(
Y ∗
1 jk

)n
⎞
⎠×

⎛
⎝

v(u−1)∏
k=1

(
Y ∗
2k

)n/2

⎞
⎠

m⊥⊥2

(22)

where m⊥⊥2 = mod(m, 2),

Z∗
j ∼Γ

(
s j ,

n− j

n

)
, Y ∗

1 jk ∼ Beta

(
n−1+

⌊
k−2 j

v(u−1)

⌋
,

k−2 j

v(u−1)
−
⌊

k−2 j

v(u−1)

⌋)
,

(23)

and

Y ∗
2k ∼ Beta

(
n−m

2
+
⌊
m−1

2
+ 2k−m−1

2v(u−1)

⌋
,

m−1

2
+ 2k−m−1

2v(u−1)
−
⌊
m−1

2
+ 2k−m−1

2v(u−1)

⌋)
(24)

are all independent random variables, while for Λc we may write

Λc
st∼
⎛
⎝

m∏
j=2

e−Z∗∗
j

⎞
⎠×

⎛
⎝

�m/2	∏
j=1

v−1∏
k=1

(
Y ∗∗
1 jk

)n
⎞
⎠×

(
v−1∏
k=1

(
Y ∗∗
2k

)n/2

)m⊥⊥2

(25)
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where

Z∗∗
j ∼ Γ

(
δ j ,

n− j

n

)
, Y ∗∗

1 jk ∼ Beta

(
n−1+

⌊
k−2 j

v−1

⌋
,
k−2 j

v−1
−
⌊
k−2 j

v−1

⌋)
,

(26)

and

Y ∗∗
2k ∼ Beta

(
n−m

2
+
⌊
m−1

2
+ 2k−m−1

2(v−1)

⌋
,

m−1

2
+ 2k−m−1

2(v−1)
−
⌊
m−1

2
+ 2k−m−1

2(v−1)

⌋)
(27)

are all independent random variables.
Thus, we have the following Theorem.

Theorem 1 The exact distribution of the overall l.r.t. statistic Λ in (10), to test H0 in
(3) or (4) is, for general u, v and m, the same as that of

⎛
⎝

muv∏
j=2

e−Tj

⎞
⎠×

⎛
⎝

k∗∏
j=1

Y j

⎞
⎠
n/2

×

⎛
⎝

�m/2	∏
j=1

v(u−1)∏
k=1

Y ∗
1 jk

⎞
⎠
n

×

⎛
⎝

�m/2	∏
j=1

v−1∏
k=1

Y ∗∗
1 jk

⎞
⎠
n

×

⎧⎪⎨
⎪⎩

⎛
⎝

v(u−1)∏
k=1

Y ∗
2k

⎞
⎠
n/2

×
(

v−1∏
k=1

Y ∗∗
2k

)n/2
⎫⎪⎬
⎪⎭

m̃

(28)

where m̃ = m − 2�m/2	 and, for j = 2, . . . ,muv,

Tj ∼ Γ

(
μ j ,

n − j

n

)
,

with

μ j =
muv∑
j=2

(
r+
j + s+

j + δ+
j

)
(29)

where

r+
j =

{
0, j = 2
r j , j = 3, . . . ,muv

and

s+
j =

{
s j , j = 2, . . . ,m
0, j = m + 1, . . . ,muv ,

δ+
j =

{
δ j , j = 2, . . . ,m
0, j = m + 1, . . . ,muv ,
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where the shape parameters s j and δ j are defined in Appendix A in the supplementary
material. The distributions of Y j , Y ∗

1 jk , Y
∗
2k , Y

∗∗
1 jk and Y ∗∗

2k are defined in (21), (23),
(24), (26) and (27).

Proof The proof of the above theorem is rather trivial, from the previously established
results. We may only remark that the random variables Tj are the sum of the random
variables Z j , Z∗

j and Z
∗∗
j ,which are independentGammadistributed randomvariables,

all with the same rate parameters n− j
n , for a given j . As such, for a given j , their sum

is a Gamma distributed random variable with that same rate parameter and a shape
parameter which is the sum of the original shape parameters. ��

The following Corollary refers to the particular cases for v = 1 and v = 2, which
are particular cases of interest.

Corollary 1 For both v = 1 and v = 2, the hypothesis H0c|a vanishes and as such the
distribution of Λ is in this case the same as that of

⎛
⎝

muv∏
j=2

e−Tj

⎞
⎠×

⎛
⎝

k∗∏
j=1

Y j

⎞
⎠
n/2

×

⎛
⎝

�m/2	∏
j=1

v(u−1)∏
k=1

Y ∗
1 jk

⎞
⎠
n

×

⎧⎪⎨
⎪⎩

⎛
⎝

v(u−1)∏
k=1

Y ∗
2k

⎞
⎠
n/2

⎫⎪⎬
⎪⎭

m⊥⊥2

(30)

where, for j = 2, . . . ,muv,

Tj ∼ Γ

(
μ∗

j ,
n − j

n

)
,

with

μ∗
j =

muv∑
j=2

(
r+
j + s+

j

)
(31)

where

r+
j =

{
0, j = 2
r j , j = 3, . . . ,muv ,

and s+
j =

{
s j , j = 2, . . . ,m
0, j = m + 1, . . . ,muv ,

where the shape parameters s j are defined in Appendix A in the supplementary mate-
rial. The distributions of Y j , Y ∗

1 jk and Y ∗
2k , are defined in (21), (23) and (24).

The case for v = 1 is equivalent to the test for block compound symmetric covari-
ance structure, addressed in Coelho and Roy (2017).
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4 The characteristic function ofW = − log Λ and the development of
near-exact distributions

4.1 The characteristic function ofW = − log Λ

In the previous section, the reason we obtain two equivalent representations for the
exact distribution of Λ, one from (19) and the other one in Theorem 1, is because the
first one of these representations neither yields a manageable cumulative distribution
function nor it adequately leads to a sharp approximation to the exact distribution of
Λ.

In order to obtain a very sharp and manageable approximation to the exact distribu-
tion of Λ, we will base our developments on the representations given by Theorem 1
and Corollary 1.

FromTheorem1 and expressions (12)–(15)wemaywrite the characteristic function
(c.f.) of W = − log Λ as

ΦW (t) = E
(
eitW

)
= E

(
Λ−it

)

=
⎧⎨
⎩

muv∏
j = 2

(
n − j

n

)μ j
(
n − j

n
− it

)−μ j

⎫⎬
⎭

︸ ︷︷ ︸
ΦW ,1(t)

×Φa,2(−it) Φb,2(−it) Φc,2(−it)︸ ︷︷ ︸
ΦW ,2(t)

(32)

where μ j is given by (29), Φa,2( · ), Φb,2( · ) and Φc,2( · ) are defined in (12)–(15),
and ΦW ,1(t) is actually equal to Φa,1(−it)Φb,1(−it)Φc,1(−it).

Forv = 1 andv = 2, according toCorollary 1 in the previous sectionΦW (t) reduces
to

ΦW (t) =
⎧⎨
⎩

muv∏
j=2

(
n − j

n

)μ∗
j
(
n − j

n
− it

)−μ∗
j

⎫⎬
⎭

︸ ︷︷ ︸
ΦW ,1(t)

× Φa,2(−it) Φb,2(−it)︸ ︷︷ ︸
ΦW ,2(t)

(33)

for μ∗
j given by (31) and where now ΦW ,1(t) is equal to Φa,1(−it)Φb,1(−it).

Expressions (32) and (33), together with expressions (28) and (30), show that
the exact distribution of W = − log Λ is the same as that of the sum of muv − 1
independent Gamma random variables with an independent random variable which
itself is distributed as a sum of independent Logbeta random variables.

Then, in building the near-exact distributions in the next subsection we will keep
ΦW ,1(t) untouched and will approximateΦW ,2(t) asymptotically by the c.f. of a finite
mixture of Gamma distributions.
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4.2 Development of near-exact distributions

Based on the result in Section 5 of Tricomi and Erdélyi (1951), we know that
we may, for increasing values of a, asymptotically replace the distribution of any
Logbeta(a, b) distributed random variable by an infinite mixture of Γ (b + �, a) dis-
tributions (� = 0, 1, . . . ). As such, we could replace ΦW ,2(t) in either (32) or (33) by
the c.f. of the sum of infinite mixtures of Gamma distributions, which would be the
same as the c.f. of an infinite mixture of sums of Gamma distributions. Although it
happens that these Gamma distributions would have different rate parameters, these
parameters would anyway be of comparable magnitude. As such, in building our near-
exact distributions for W = − log Λ and Λ, while we will leave ΦW ,1(t) unchanged,
we will replace ΦW ,2(t) in either (32) or (33), by

Φ∗(t) =
m∗∑
�=0

π� νr+�(ν − it)−(r+�) (34)

which is the c.f. of a finite mixture of Γ (r + �, ν) distributions, where for the general
case in (32) and for k∗ in (13) and v > 1, we will take

r = k∗

2
+

�m/2	∑
j=1

v(u−1)∑
k=1

k − 2 j

v(u − 1)
−
⌊

k − 2 j

v(u − 1)

⌋
+

�m/2	∑
j=1

v−1∑
k=1

k − 2 j

v(u − 1)
−
⌊
k − 2 j

v − 1

⌋

+ (m ⊥⊥ 2)

⎛
⎝

v(u−1)∑
k=1

m − 1

2
+ 2k − m − 1

2v(u − 1)
−
⌊
m − 1

2
+ 2k − m − 1

2v(u − 1)

⌋

+
v−1∑
k=1

m − 1

2
+ 2k − m − 1

2(v − 1)
−
⌊
m − 1

2
+ 2k − m − 1

2(v − 1)

⌋)

=

⎧⎪⎪⎨
⎪⎪⎩

m

4
(uv − 3), even m

1

2

⌊uv

2

⌋
+ m + 1

4
(uv − 3), odd m ,

(35)

which is the sum of all the second parameters of the Logbeta distributions in ΦW ,2(t)
in (32), while for the particular case in (33) we will take

r = k∗

2
+

�m/2	∑
j=1

v(u−1)∑
k=1

k − 2 j

v(u − 1)
−
⌊

k − 2 j

v(u − 1)

⌋

+(m ⊥⊥ 2)
v(u−1)∑
k=1

m − 1

2
+ 2k − m − 1

2v(u − 1)
−
⌊
m − 1

2
+ 2k − m − 1

2v(u − 1)

⌋

=

⎧⎪⎨
⎪⎩

m

4

(
v(u − 1) − 1

)
, even m

1

2

⌊uv

2

⌋
+ m + 1

4

(
v(u − 1) − 1

)
, odd m ,

(36)
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which is the sum of all the second parameters of the Logbeta distributions in ΦW ,2(t)
in (33).

The parameter ν in (34) is then taken as the rate parameter in

Φ∗∗(t) = θ νs1(ν − it)−s1 + (1 − θ)νs2(ν − it)−s2

where θ , ν, s1 and s2 are determined in such a way that

dΦW ,2(t)

dth

∣∣∣∣
t=0

= dΦ∗∗(t)
dth

∣∣∣∣
t=0

for h = 1, . . . , 4 ,

while the weights π� (� = 0, . . . ,m∗ − 1) in (34) will then be determined in such a
way that

dΦW ,2(t)

dth

∣∣∣∣
t=0

= dΦ∗(t)
dth

∣∣∣∣
t=0

for h = 1, . . . ,m∗ ,

with πm∗ = 1 −∑m∗−1
�=0 π�.

This procedure yields near-exact distributions for W which will match the first m∗
exact moments of W and which have c.f.

ΦW ,1(t)Φ
∗(t) ,

with ΦW ,1(t) given by (32) or (33) and Φ∗(t) by (34), where r , given by (35) or (36)
is always either an integer or a half-integer.

As such, the near-exact distributions developed yield, for W , distributions which,
for non-integer r , are mixtures, with weights π� (� = 0, . . . ,m∗), of m∗ + 1 Gener-
alized Near-Integer Gamma (GNIG) distributions of depth muv with integer shape
parameters μ j ( j = 2, . . . ,muv) and real shape parameter r , in the general case, or
shape parameters μ∗

j ( j = 2, . . . ,muv) for the case of v = 1 or v = 2, and corre-
sponding rate parameters (n − j)/n ( j = 2, . . . ,muv) and ν, and which, for integer
r , are similar mixtures but of Generalized Integer Gamma (GIG) distributions, with
the same shape and rate parameters. See Coelho (1998, 2004) and Appendix C in the
supplementary material for further details on the GIG and GNIG distributions and
their probability density and cumulative distribution functions.

Using the notation in Appendix C in the supplementary material for the prob-
ability density and cumulative distribution functions of the GNIG distribution, the
near-exact distributions obtained forW , for the general case of v > 2 and for the case
of non-integer r , will have, for w > 0, probability density and cumulative distribution
functions respectively of the form

f ∗
W (w) =

m∗∑
�=0

π� f GNIG
(
w

∣∣∣s; λ; g
)
, and F∗

W (w) =
m∗∑
�=0

π� F
GNIG

(
w

∣∣∣s; λ; g
)
,
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where

s = {μ2, . . . , μmuv, r + �} and λ =
{
n − 2

n
, . . . ,

n − muv

n
, ν

}

are respectively the sets of shape and rate parameters and g = muv is the depth of the
GNIG distributions, while, for 0<λ<1 and z = − log λ, the near-exact probability
density and cumulative distribution functions of Λ are respectively given by

f ∗
Λ(λ)=

m∗∑
�=0

π� f
GNIG

(
z
∣∣∣s; λ; g

)1
λ

, and F∗
Λ(λ)=

m∗∑
�=0

π�

(
1 − FGNIG

(
z
∣∣∣s; λ; g

))
.

(37)

For the case v = 1 or v = 2 all we have to do is to replace the shape parameters μ j

given by (29) with the shape parameters μ∗
j given by (31) and use r given by (36),

instead of r given by (35).
For integer r , all we have to do is to replace the GNIG probability density and

cumulative distribution functions with their GIG counterparts (see Appendix C in the
supplementary material).

5 Numerical studies

In order to assess the performance of the near-exact distributions developed in the
previous section we will use

Δ = 1

2π

∫ +∞

−∞

∣∣∣∣
ΦW (t) − ΦW ,1(t)Φ

∗(t)
t

∣∣∣∣ dt (38)

with

Δ ≥ max
w>0

∣∣FW (w) − F∗
W (w)

∣∣ = max
0<λ<1

∣∣FΛ(λ) − F∗
Λ(λ)

∣∣ ,

as a measure of proximity between the exact and the near-exact distributions, where
ΦW (t) is the exact c.f. of W in (32) or (33) and FW ( · ) and F∗

W ( · ) represent respec-
tively the exact and near-exact cumulative distribution functions ofW , corresponding
respectively to ΦW (t) and ΦW ,1(t)Φ

∗(t), being FΛ( · ) and F∗
Λ( · ) the corresponding

exact and near-exact cumulative distribution functions of Λ.
In Tables 1, 2, and 3 we may analyze values of Δ for different combinations of

values of m, u and v and different sample sizes. For each combination of values of m,
u and v, at least three different sample sizes n exceeding the total number of variables
muv by 2, 30 and 100 are used. For larger combinations of values of m, u and v,
some larger values of n are also used to illustrate the asymptotic behavior of the near-
exact distributions in what concerns the sample size. For all near-exact distributions,
values of m∗ equal to 4, 6 and 10 are used, that is, we use for each case near-exact
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Table 1 Values of the measure Δ for the near-exact distributions for m = 2

n m∗ n m∗

4 6 10 4 6 10

u = 2, v = 2 u = 2, v = 5

10 4.23× 10−12 9.00× 10−15 2.64× 10−19 22 7.80× 10−17 8.63× 10−22 8.26× 10−30

38 1.68× 10−14 3.06× 10−18 9.23× 10−25 50 2.39× 10−17 2.04× 10−22 1.42× 10−31

108 9.17× 10−17 1.97× 10−21 8.66× 10−30 120 4.65× 10−19 9.74× 10−25 5.38× 10−35

u = 5, v = 2 u = 2, v = 10

22 1.80× 10−16 4.11× 10−21 1.39× 10−29 42 1.73× 10−19 1.88× 10−25 1.07× 10−36

50 6.28× 10−17 6.99× 10−22 6.21× 10−31 70 4.23× 10−19 4.80× 10−25 2.73× 10−36

120 1.30× 10−18 2.97× 10−24 1.10× 10−34 140 3.16× 10−20 1.19× 10−26 7.31× 10−39

u = 5, v = 5 u = 5, v = 10

52 1.78× 10−20 8.05× 10−27 5.49× 10−39 102 6.18× 10−24 1.72× 10−31 2.71× 10−46

80 6.71× 10−20 3.77× 10−26 3.56× 10−38 130 5.38× 10−23 2.67× 10−30 1.23× 10−44

150 7.77× 10−21 1.71× 10−27 2.37× 10−40 200 2.24× 10−23 7.15× 10−31 1.29× 10−45

250 8.33× 10−22 7.33× 10−29 1.58× 10−42 300 4.93× 10−24 8.25× 10−32 3.96× 10−47

u = 10, v = 2 u = 10, v = 5

42 1.10× 10−19 1.32× 10−25 8.00× 10−37 102 6.53× 10−24 1.80× 10−31 2.77× 10−46

70 2.73× 10−19 3.35× 10−25 1.79× 10−36 130 5.69× 10−23 2.80× 10−30 1.26× 10−44

140 2.06× 10−20 8.25× 10−27 4.20× 10−39 200 2.37× 10−23 7.50× 10−31 1.32× 10−45

240 1.83× 10−21 2.69× 10−28 1.74× 10−41 300 5.22× 10−24 8.66× 10−32 4.06× 10−47

u = 10, v = 10

202 3.92× 10−28 2.22× 10−36 1.02× 10−53

230 4.39× 10−27 5.35× 10−35 9.94× 10−52

300 4.53× 10−27 5.48× 10−35 8.66× 10−52

400 2.04× 10−27 1.82× 10−35 1.39× 10−52

500 8.98× 10−28 5.88× 10−36 2.23× 10−53

1000 4.50× 10−29 9.29× 10−38 2.99× 10−56

distributions matching 4, 6 and 10 exact moments of W . Smaller values of Δ indicate
a closer agreement with the exact distribution and as such, a better performance of the
corresponding near-exact distribution.

We may see how the near-exact distributions developed provide very sharp approx-
imations to the exact distribution even for very small samples, that is, for sample sizes
hardly exceeding the total number of variables involved. Moreover, they also exhibit
clear asymptotic behaviors not only for increasing sample sizes, but also for increas-
ing values of m, u and v. The asymptotic behavior in terms of sample size becoming
apparent for larger sample sizes as the values of m, u and v get larger.

A Box asymptotic distribution (Box 1949) is developed for W = − log Λ in
Appendix D in the supplementary material. This distribution yields a mixture of two
Gamma distributions as the asymptotic distribution for W = − log Λ. As such, it
should be compared with the near-exact distribution that matches only the first exact
moment, that is, the near-exact distribution with m∗ = 1, since it is for this near-exact
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Table 2 Values of the measure Δ for the near-exact distributions for m = 5

n m∗ n m∗

4 6 10 4 6 10

u = 2, v = 2 u = 2, v = 5

22 8.71× 10−16 1.35× 10−19 5.78× 10−27 52 7.45× 10−21 7.79× 10−27 5.53× 10−38

50 2.88× 10−16 2.22× 10−20 1.28× 10−27 80 3.98× 10−20 1.16× 10−25 7.02× 10−37

120 5.50× 10−18 8.15× 10−23 1.98× 10−31 150 1.12× 10−20 8.20× 10−27 1.09× 10−38

250 1.52× 10−21 4.06× 10−28 9.06× 10−41

350 3.47× 10−22 4.79× 10−29 3.05× 10−42

u = 5, v = 2 u = 2, v = 10

52 2.14× 10−19 2.56× 10−25 9.77× 10−38 102 3.31× 10−22 3.53× 10−29 4.93× 10−43

80 7.41× 10−19 1.11× 10−24 9.36× 10−37 130 2.76× 10−21 5.32× 10−28 2.25× 10−41

150 7.86× 10−20 4.64× 10−26 1.32× 10−38 200 1.09× 10−21 1.36× 10−28 2.38× 10−42

250 8.06× 10−21 1.91× 10−27 1.04× 10−40 300 2.31× 10−22 1.53× 10−29 7.36× 10−44

350 1.66× 10−21 2.09× 10−28 3.40× 10−42 500 2.43× 10−23 6.50× 10−31 5.05× 10−46

u = 5, v = 5 u = 5, v = 10

127 5.22× 10−23 2.70× 10−30 8.95× 10−45 252 4.03× 10−26 1.58× 10−34 2.67× 10−51

155 5.10× 10−22 5.07× 10−29 5.83× 10−43 280 4.72× 10−25 3.93× 10−33 2.85× 10−49

225 2.91× 10−22 2.16× 10−29 1.35× 10−43 350 6.35× 10−25 5.45× 10−33 4.19× 10−49

450 2.07× 10−23 5.13× 10−31 3.55× 10−46 450 3.70× 10−25 2.46× 10−33 1.13× 10−49

650 3.99× 10−24 5.10× 10−32 9.27× 10−48 1000 1.70× 10−26 3.15× 10−35 1.11× 10−52

u = 10 , v = 2 u = 10 , v = 5

102 3.18× 10−22 3.16× 10−29 4.45× 10−43 252 4.41× 10−26 1.76× 10−34 3.14× 10−51

130 2.70× 10−21 4.83× 10−28 2.05× 10−41 280 5.16× 10−25 4.38× 10−33 3.34× 10−49

200 1.09× 10−21 1.26× 10−28 2.21× 10−42 350 6.94× 10−25 6.09× 10−33 4.92× 10−49

500 2.49× 10−23 6.13× 10−31 4.78× 10−46 450 4.05× 10−25 2.75× 10−33 1.32× 10−49

1000 1.86× 10−26 3.52× 10−35 1.30× 10−52

u = 10, v = 10

502 3.22× 10−29 1.01× 10−38 9.76× 10−58

530 3.52× 10−28 2.35× 10−37 9.82× 10−56

600 7.50× 10−28 6.22× 10−37 3.97× 10−55

1000 3.27× 10−28 1.76× 10−37 4.67× 10−56

5000 3.02× 10−31 9.42× 10−42 8.31× 10−63

distribution that the part of the distribution that is approximated is asymptotically
approximated with a mixture of two Gamma distributions.

In Tables D.1–D.3 in Appendix D in the supplementary material are displayed the
values of the measure Δ in (38) for the Box asymptotic approximation and for the
near-exact distributions that match the first m∗ = 1 and m∗ = 2 exact moments
and we may see how the Box asymptotic distribution cannot match the quality of the
approximation provided even by the near-exact distribution that matches the single
first exact moment.
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Table 3 Values of the measure Δ for the near-exact distributions for m = 10

n m∗ n m∗

4 6 10 4 6 10

u = 2 , v = 2 u = 2, v = 5

42 1.43× 10−17 1.45× 10−22 3.20× 10−32 102 1.30× 10−23 2.68× 10−31 1.27× 10−46

70 2.03× 10−17 2.06× 10−22 4.03× 10−32 130 8.59× 10−22 1.96× 10−28 1.48× 10−41

140 7.01× 10−19 2.26× 10−24 4.43× 10−35 200 2.98× 10−22 4.60× 10−29 1.49× 10−42

300 5.74× 10−23 4.83× 10−30 4.44× 10−44

500 5.53× 10−24 1.94× 10−31 2.95× 10−46

750 7.93× 10−25 1.33× 10−32 4.45× 10−48

1000 1.95× 10−25 1.90× 10−33 2.13× 10−49

u = 5 , v = 2 u = 2, v = 10

102 2.49× 10−24 3.43× 10−31 2.19× 10−45 202 2.19× 10−26 5.75× 10−35 3.99× 10−52

130 1.57× 10−23 5.03× 10−30 1.02× 10−43 230 2.57× 10−25 1.40× 10−33 4.03× 10−50

200 3.21× 10−24 1.21× 10−30 1.09× 10−44 300 2.86× 10−25 1.46× 10−33 3.73× 10−50

300 2.45× 10−25 1.30× 10−31 3.41× 10−46 500 6.25× 10−26 1.61× 10−34 1.04× 10−51

500 1.37× 10−26 5.31× 10−33 2.34× 10−48 1000 3.37× 10−27 2.58× 10−36 1.49× 10−54

u = 5 , v = 5 u = 5, v = 10

252 6.13× 10−26 2.94× 10−34 9.95× 10−51 502 5.33× 10−30 7.80× 10−40 1.50× 10−59

280 7.19× 10−25 7.31× 10−33 1.06× 10−48 530 5.84× 10−29 1.81× 10−38 1.51× 10−57

350 9.71× 10−25 1.02× 10−32 1.56× 10−48 600 1.25× 10−28 4.80× 10−38 6.12× 10−57

750 8.94× 10−26 3.32× 10−34 6.30× 10−51 1000 5.49× 10−29 1.37× 10−38 7.25× 10−58

1500 4.19× 10−27 4.47× 10−36 6.99× 10−54 2000 3.55× 10−30 2.85× 10−40 1.55× 10−60

u = 10 , v = 2 u = 10, v = 5

202 1.20× 10−26 3.09× 10−35 1.91× 10−52 502 4.91× 10−29 1.64× 10−38 2.66× 10−57

230 1.37× 10−25 7.41× 10−34 1.90× 10−50 530 5.38× 10−28 3.81× 10−37 2.67× 10−55

300 1.47× 10−25 7.51× 10−34 1.72× 10−50 600 1.15× 10−27 1.01× 10−36 1.08× 10−54

500 3.03× 10−26 7.93× 10−35 4.68× 10−52 1000 5.08× 10−28 2.87× 10−37 1.27× 10−55

1000 1.57× 10−27 1.24× 10−36 6.54× 10−55 2000 3.30× 10−29 5.97× 10−39 2.70× 10−58

5000 4.77× 10−31 1.55× 10−41 2.26× 10−62

u = 10 , v = 10

1002 4.36× 10−33 4.29× 10−44 4.19× 10−66

1030 4.03× 10−32 8.04× 10−43 3.14× 10−64

1100 1.03× 10−31 2.74× 10−42 1.92× 10−63

2000 6.59× 10−32 1.25× 10−42 4.37× 10−64

5000 1.60× 10−33 6.46× 10−45 1.03× 10−67

The values used for n, m, u and v in these Tables were the same that were used in
Tables 1, 2, and 3.Wemay notice that some of the values for themeasureΔ for the Box
asymptotic approximation even go above 1, particularly for cases where the number of
variables involved is quite large, and simultaneously the sample size is rather small or
not that large. Although this may seem to be something out of the norm, this happens
because in these cases the distribution yielded by the Box approximation is not a
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legitimate distribution, with its ‘p.d.f.’ and ‘c.d.f.’ going below zero, so that the values
reported for the measure Δ which keep being an upper bound between the exact and
the asymptotic c.d.f.’s and are indeed correct.

We may also note how the asymptotic Box distribution quickly degrades its quality
of approximation as the overall number of variables involved increases, in contrast to
what happens with the near-exact distributions.

6 Two real data examples

Example 1: Osteopenia data
To illustrate our proposed testing method, we test the hypothesis (2) on a real data set.
The original data consist of bonemineral density values obtained by a technique known
as dual X-ray absorptiometry using a GE Lunar Prodigymachine.Measurements were
obtained for the femoral neck and the trochanter (m = 2), for both the right and left
femur (u = 2). These fourmeasurements were observed a second time, approximately
two years later (v = 2). The sample covariance matrix obtained from Roy and Leiva
(2011) is matrix A+ in Appendix E.1 in the supplementary material, which we take
as the m.l.e. of Σ .

We see that the variance-covariance matrices (U0) of the two mineral contents for
the femoral neck and trochanter appear very similar for the first as well as for the
second year. Also, the covariance matrices (U1) of the left and right femurs seem
to be fairly similar for both years. Finally, the covariance matrices (W) of the two
parts of the femur between the two years seem to be similar too. Thus, we will not be
much surprised if the hypothesis that the population covariance matrix has a doubly
exchangeable covariance structure is not rejected. In fact, as stated in Sect. 2, to test
this hypothesis is equivalent to testing the hypothesis in (3). We thus compute the
m.l.e. of Σ∗, which is the matrix A in Appendix E.1 in the supplementary material
where the orthogonal matrices Γ • and Γ ∗ are

Γ • = Iv ⊗ (C∗′
u×u

⊗ Im) and Γ ∗ = C ′
v×v

⊗ Imu = [γi j ]

where, for u = 2,

C∗ =
⎛
⎝

1√
2

1√
2

1√
2

− 1√
2

⎞
⎠ , (39)

and C = C∗, given that v = u = 2. In particular for u = 2 and m = 2 the elements
γi j of the symmetric matrix Γ ∗ are given by

γi i = (−1)I (i>mu)1/
√
2 and γi j = I ( j − i = mu)1/

√
2 i < j ,

for all i, j = 1, . . . ,muv, where I ( · ) represents the indicator function.
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Now, from (10) we have

Λ =
(
24

|A|
|A1| |A2 + A4| |A3|

)n/2

,

where A1, . . . , A4 denote the four diagonal blocks of dimension 2×2 of A and where
n = 12. The computed value of Λ is λ = 4.46637×10−12.

Using then the near-exact distribution forΛwhichmatchesm∗ = 4 exact moments,
with probability density and cumulative distribution functions given by (37), with
r = 2, as given by (36), and the other shape parameters μ∗

j ( j = 2, . . . ,muv = 8)
given by (31), with

r+
j ={0, 3, 3, 2, 2, 1, 1}
s+
j ={1, 0, 0, 0, 0, 0, 0}

μ∗
j={1, 3, 3, 2, 2, 1, 1} = r+

j + s+
j ,

we obtain a near-exact p-value of 0.29468. Thus, we should not reject the null hypoth-
esis that the covariance structure is of the doubly exchangeable type.

In case we had used the common chi-square approximation for the distribution of

l.r.t. statistics, we would have−2 log Λ
a∼ χ2

{muv(muv+1)/2}−{3m(m+1)/2} ≡ χ2
27, which

would give a p-value of 0.00246. These results showhow the chi-square approximation
may be completely inadequate for small samples. Indeed, even for quite large samples
the chi-square approximation may lead to completely inadequate p-values.

We should note that while the near-exact distribution that we used to compute the
near-exact p-value yields a value of 7.73×10−12 for the measure Δ in (38), the chi-
square approximation yields for this same measure the value of 0.70. These results
clearly show that the common chi-square approximation, opposite to the near-exact
approach, leads to too many rejections of the null hypothesis, or, equivalently, in
general, to too low p-values, clearly inadequate for any practical purposes.

In Fig. 2 we may analyze the plots of the cumulative distribution function for
the near-exact distribution for − log Λ and for the Γ (27/2, 1) distribution which
corresponds to the χ2

27 approximation for −2 log Λ, to see how much they differ.

Example 2: Osteoporosis data
See the supplementary material.

7 Discussion and conclusions

We may see how the techniques used to handle the null hypothesis in (2), by first
bringing it to the form in (3) and then using the decomposition in (4) enabled the
development of very accurate near-exact distributions for the l.r.t. statistic.

From the results of the numerical studies carried out we see that the near-exact
distributions developed show an interesting set of nice features. They not only have a
good asymptotic behavior for increasing sample sizes, but also an extraordinary per-
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Fig. 2 Plots of the cumulative distribution function for the near-exact distribution for − log Λ and for the
Γ (27/2, 1) distribution which corresponds to the χ2

27 approximation for −2 log Λ

formance for very small sample sizes, as for example for sample sizes exceeding only
by two the overall number of variables. Furthermore, opposite to common asymptotic
distributions, these near-exact distributions also display a marked asymptotic behavior
for increasing values of m, u and v. All these features add up to make the developed
near-exact approximations the best choice for practical applications of the test studied.

Moreover, given the discussion in Sections 9.11 and 10.11 of Anderson (2003), the
results presented concerning the exact distribution of the l.r.t. statistic as well as the
near-exact distributions developed may be made extensive to cases where the vector
y has an elliptically contoured distribution.

As future research of interest, stemming out of the work developed in the present
paper the authors point out the tests to the hypotheses

H0 : W = 0, assuming Σ = Θ (that is, Σ is doubly-exchangeable)
vs

H1 : Σ = Θ ,

which is the test between the doubly exchangeable covariance structure, in H1, and
the diagonal-block compound symmetry or diagonal-block exchangeable covariance
structure, in H0, as well as the test to the hypotheses

H0 : U1 = 0, assuming Σ = Θ

vs
H1 : Σ = Θ ,

which is the test between the doubly exchangeable covariance structure, in H1, and
the multi-block-matrix sphericity covariance structure, in H0.
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Also the tests to the hypotheses

H0 : W = 0,U1 = 0, assuming Σ = Θ

vs
H1 : Σ = Θ, with U1 = 0

which is the test between the multi-block-matrix sphericity covariance structure, in
H1, and the block-matrix sphericity covariance structure, in H0, and yet the test to the
hypotheses

H0 : W = 0,U1 = 0, assuming Σ = Θ

vs
H1 : Σ = Θ, with W = 0

which is the test between the multi-block compound symmetry covariance structure,
in H1, and the block-matrix sphericity covariance structure, in H0, are tests whose
development is of interest.

Since all these tests lay upon the assumption of a doubly exchangeable structure,
these are a few more reasons why developing a test for the doubly exchangeable
structure was an imperative goal. And once these four tests are developed we will be
able to test between any two of the covariance structures in Fig. 1.
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