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Abstract
We introduce an estimator for an unknown population size in a capture–recapture
framework where the count of identifications follows a geometric distribution. This
can be thought of as a Poisson count adjusted for exponentially distributed hetero-
geneity. As a result, a new Turing-type estimator under the geometric distribution is
obtained. This estimator can be used in many real life situations of capture–recapture,
in which the geometric distribution is more appropriate than the Poisson. The pro-
posed estimator shows a behavior comparable to the maximum likelihood one, on
both simulated and real data. Its asymptotic variance is obtained by applying a con-
ditional technique and its empirical behavior is investigated through a large-scale
simulation study. Comparisons with other well-established estimators are provided.
Empirical applications, in which the population size is known, are also included to
further corroborate the simulation results.
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1 Introduction

Capture–recapture (CR)methods have become increasingly popular in the last decades
and were adopted in a wide range of applications, focusing on the estimation of the
size of hidden populations. To remark the importance of CR methods in data analysis,
two books have been recently published by McRea and Morgan (2014) and Böhning
et al. (2018), in which the CR methods are introduced and extensively discussed. CR
analyses are based on the repeated sampling from a population and, consequently, on
the use of recapture information to infer the number of uncaptured units. Throughout
the paper, we consider the following CR setting. The target population is sampled
over a certain number of capture occasions, and for each occasion, captured units are
counted only once. Moreover, we consider a closed population, i.e. the unknown pop-
ulation size, is assumed to be constant (with no births/deaths during sampling stages),
misclassification is not allowed and all units act independently. In capture–recapture
analysis, the assumption of homogeneous catchability or identifiability across mem-
bers of the target population is frequently in question. In these cases we speak of
heterogeneity. The heterogeneity may influence capture probabilities, and failure to
acknowledge this may lead to biased estimates of the unknown population size (Anan
et al. 2017a; Farcomeni and Scacciatelli 2013; Hwang and Huggins 2005).

CR data are usually collected as follows. For each unit i(i = 1, . . . , N ) at occasion
t(t = 1, . . . , T ), we record a binary indicator variable, say yit , where yit = 1 means
that the i-th unit has been identified at the t-th occasion. It is further assumed that
yi =∑T

t=1 yit is observed only if yi > 0, that is if at least one yit > 0 for t = 1, . . . , T .
When yi1 = yi2 = · · · = yiT = 0, the i-th unit remains unobserved. The number of
sampling occasions T may or may not be known a priori. In the following, we focus
on the random variable X representing the distribution of the number of captures, i.e.
X is a count variable.

To introduce heterogeneity, let us consider the pair (x, λ), where x is a realization
of X , and λ ≥ 0 is an unobserved realization of a non-negative random variable Λ,
the parameter of the count data distribution, i.e. X depends on the parameter λ. It
follows that the joint density f (x, λ) can be written as f (x | λ)g(λ), where g(λ) is
the marginal distribution of λ with respect to f (x, λ). As we have not observed the
value of λ, we consider the margin of f (x | λ)g(λ) over λ leading to the mixture

Pr(X = x) = κx =
∫ ∞

0
f (x | λ)g(λ)dλ, (1)

for x ∈ {0, 1, 2, . . .}, the non-negative integers. In mixture model (1) we call g(λ) the
mixing distribution and f (x | λ) the mixture kernel. In the following, we consider
f (x | λ) = exp(−λ)λx

x ! , λ ≥ 0, and g(λ) = 1
θ
exp
(−λ

θ

)
, θ > 0, accounting for

departures from assumptions implied by f (x | λ), such that κx = (1 − p)x p, with
p = 1

1+θ
∈ (0, 1), i.e. κx follows a geometric distribution. Note that this result—

mixing thePoissonwith an exponential distribution leads to the geometric—is a special
case ofmixing a Poissonwith aGamma distributionwhich leads to a negative binomial
(Fisher et al. 1943).
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Of course, the binomial distribution can be also considered as the reference distribu-
tion to estimate population sizes. A justification of considering the Poisson distribution
instead is as follows. Suppose the observational window consists of a large number
of trapping occasions, each with the same positive capture probability θ . Then, let T
be the largest number of possible identifications, using that T θ = λ remains constant
when T becomes large, the binomial distribution converges to the Poisson distribution
with parameter T θ = λ. X is again the count of identifications per member of the
target population. The only difference is that we do not knowwhat could have been the
largest possible count. The underlying assumption remains that identification occurs
independently across occasions and with the same probability θ .

We are interested in using the geometric distribution in the capture–recapture set-
ting. Let X1, . . . , XN be a sample from the geometric distribution. Here N is the size
of the target population of interest and Xi is the count of identifications of the i-th
member during the sampling period. The way identification occurs is determined by
the application: it could be a live-trap, a hospital register, a police database, etc. In a
recent paper, Coumans et al. (2017) considered estimating the numbers of homeless
people in the Netherlands. In this case, Xi represents the number of nights stayed in
a homeless shelter for homeless person i . However, not all members are identified,
i.e. have a value of Xi > 0. Hence, we observe a zero-truncated sample X1, . . . , Xn ,
where we have, without loss of generality, Xn+1 = · · · = XN = 0. We know the size
n of the zero-truncated sample, but we do not know N , which needs to be estimated,
and this is what this work is about. In the following we will use fx = #{xi |xi = x},
the frequency of counts exactly equal to x for x = 0, 1, 2, . . ..

Whereas the Poisson distribution has been used frequently, we think that the geo-
metric is more flexible in comparison with the former as it incorporates already some
form of heterogeneity. Niwitpong et al. (2013) discuss various estimators for model
(1) including a form of Mantel–Haenszel estimation.

In this work, we introduce a Turing-type estimator coping with heterogeneity, in the
sense that thePoisson parameter of the conditional count-of-identifications distribution
is mixed with an exponential density, leading to a geometric distribution. We argue
that the geometric distribution is better suited for count distributions in the capture–
recapture context as it can cope with simple forms of heterogeneity. We also derive its
asymptotic variance, to have a measure of precision available. The Turing estimator
has been used under several distributional assumptions on count data (Böhning et al.
2013; Hwang et al. 2015), in particular under the Poisson assumption where it is
given by N̂Turing = n

1− f1/
∑m

x=1 x fx
= n

1− p̂0
, where m is the maximum number of

observed counts. The benefits of Turing’s estimator are that it is easy to calculate, its
value can be obtained in a straightforward way, and there is no need for an iterative
procedure. Nevertheless, under the Poisson assumption, it often underestimates less
than the maximum likelihood estimate and has a comparable precision (Böhning et al.
2018; p. 13–14). We show in several case studies with known population size that the
behavior of the geometric-based Turing estimator outperforms other well-established
estimators.

We investigate the empirical behavior of the introduced estimator by a large-scale
simulation studywith respect to several factors, such as the population size and the cap-
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ture probabilities. To show the practical usefulness of this new estimator, we compare
its performance to a few alternative estimators, widely used in the capture–recapture
framework (see the simulation study in Sect. 3). Finally, we apply the proposal to
several real datasets, often used as benchmarks in the capture–recapture framework
and check the appropriateness of considering a geometric distribution to estimate the
population size.

2 A Turing-type estimator under the geometric distribution

To generalise the Turing estimator under the geometric distribution, let us note that
κ0 = p, κ1 = (1 − p)p and E(X) = 1−p

p and, accordingly,

κ0 = p =
√

p2 =
√

(1 − p)p2

(1 − p)
=
√

(1 − p)p

(1 − p)/p
=
√

κ1

E(X)
. (2)

In practice, the κx s can be estimated by the relative frequencies so that

κ̂0 =
√

f1/N

S/N
=
√

f1
S

, (3)

where S = ∑m
x=0 x fx = ∑m

x=1 x fx . Hence, the resulting Turing estimator under the
geometric distribution (TG) is given as

N̂TG = n

1 −
√

f1
S

. (4)

The form of the resulting TG estimator resembles its specification under the Poisson
assumption. It uses the frequency f1 of units observed only once, which is usually a
large quantity. It also uses all information in the sample, by including S. This is in
contrast with other well-established estimators which use only frequencies of ones
and twos to estimate f0.

Theorem 1 The TG estimator is asymptotically unbiased under the geometric distri-
bution

lim
N→∞

E(N̂TG)

N
→ 1,

with N̂TG > N̂Turing.
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Proof We have that E(X) = E(S/N ) = (1 − p)/p, E( f1) = Np(1 − p) so that√
E( f1/N )
E(S/N )

=
√

p(1−p)
(1−p)/p = p = κ0 and E(n/N ) = (1 − κ0) = (1 − p). Therefore,

E

(
N̂TG

N

)

= E

( n
1−√

f1/S

N

)

= E

(
n

N

1

1 − √
f1/S

)

−−−−→
N→∞ (1 − p)

1

1 − p
= 1.

This proves that the TG estimator is asymptotically unbiased under the geometric
distribution. To show that N̂TG > N̂Turing, let us assume that fx > 0 for some x > 1.
The estimated probability of zero counts according to the (original) Turing estimator
under the Poisson distribution is p̂0,Turing = f1

S , whereas the probability of zero

counts according to the TG estimator is p̂0,TG =
√

f1
S . It is obvious that f1 < S where

S =∑m
x=1 x fx , therefore

f1
S <

√
f1
S . Then, we have that

N̂TG = n

1 −
√

f1
S

>
n

1 − f1
S

= N̂Turing.

��
This property provides evidence of the importance of defining an estimator able to
handle heterogeneity, as it is widely acknowledged that the Poisson-based Turing
estimator is biased downward (Böhning et al. 2013) and a lower bound estimator in
presence of heterogeneity (Puig and Kokonendji 2018).

Following Böhning (2008), we derive the variance of the estimator by using a
conditional technique mixed with the delta method.

Proposition 1 The variance of the TG estimator is given as

̂Var(N̂TG) =
n
√

f1
S

(

1 −
√

f1
S

)2 + n2

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

S + f1

4S2
(

1 −
√

f1
S

)4

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭

. (5)

Proof The proof is given in the “Appendix” ��

3 Simulation study

A simulation study is undertaken to investigate the performance of the proposed
estimator and its competitors. The count data sets were generated following the
geometric distribution with a variety of parameters. That is X ∼ Geo(p) where
p = 0.1, 0.15, 0.2, 0.25, 0.3, 0.5. The population size N is set to N = 100, 250
for small sizes , N = 500, 1000 for medium sizes, and N = 5000, 10,000 for large
sizes. Each data set is rearranged in the form of frequencies f0, f1, f2, f3, . . . fm ,
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corresponding to the counts 0, 1, 2, 3, . . . ,m. The frequency of zero counts f0 was
omitted before estimating population sizes N̂ . The aim is to investigate the finite sam-
ple behavior of the proposed estimator and to show how this may differ from other
well-established estimators, known to work well under the geometric distribution.
Moreover, we also look at how well we can approximate the uncertainty surrounding
the estimates.

To further underline the usefulness of the proposed estimator, we generate counts
fromanegative binomialmodelΓ (x+ν)/(Γ (ν)+x !)pν(1−p)x for x = 0, 1, . . .,with
ν = 2, 5 and p = 0.1, 0.5, 0.7 and estimate the population size using the proposed
estimator.

3.1 Simulation results to investigate the performance of the estimator

To study the performance of the proposed estimator, 5000 samples were drawn from
the geometric distribution for each combination of parameters. For each scenario the
relative bias, relative variance and relative root mean squared error are computed. In
the following, we show simulation study results, summarized in Figs. 1, 2 and 3 and,
with a focus on the proposed estimator, in Table 1. The linear regression Conway–
Maxwell–Poisson-based estimator (LCMP; N̂LCMP = n + f1 exp(−λ̂); Anan et al.
2017a, b) , the maximum likelihood estimator under the geometric distribution (MLE-
Geo; N̂MLE Geo = n

1−n/
∑

x=1mx fx
) and a non-parametric estimator based on Chao’s

lower bound under the geometric distribution (CG; N̂CG = n + f 21
f2

) are compared
with our Turing-based proposal (TG) and the extended Zelterman’s estimator based
on the zero-truncated geometric distribution (ZG; N̂ZG = n f1

f2
). Among these estima-

tors, likely, the less-known one is the one based on the Conway–Maxwell–Poisson
distribution (Shmueli et al. 2005). It has probability distribution CMP(λ, ν) is given
by

κx = λx

(x !)ν
1

z(λ, ν)
, x = 0, 1, 2, . . . ; λ > 0; ν ≥ 0

where the normalizing constant

z(λ, ν) =
∞∑

j=0

λ j

( j !)ν

is a generalization of well-known infinite sums. Anan et al. (2017a) introduced a
population size estimator based on this distribution.

The relative bias (RBias), variance (RVar) and relative root mean squared error
(RRMSE) are calculated as

RBias(N̂ ) = 1

N

[
E(N̂ ) − N

]
,

RVar(N̂ ) = 1

N 2

(
̂Var(N̂ )

)
,
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Fig. 1 Relative bias of six estimators with different parameters following the geometric distribution

123



156 O. Anan et al.

100 250 500 1,000 5,000 10,000

0.00
0.05
0.10
0.15
0.20
0.25
0.30
0.35
0.40
0.45
0.50
0.55
0.60

p=0.10

N

R
V

ar

100 250 500 1,000 5,000 10,000

0.00
0.05
0.10
0.15
0.20
0.25
0.30
0.35
0.40
0.45
0.50
0.55
0.60

p=0.15

N
R

V
ar

100 250 500 1,000 5,000 10,000

0.00
0.05
0.10
0.15
0.20
0.25
0.30
0.35
0.40
0.45
0.50
0.55
0.60

p=0.20

N

R
V

ar

100 250 500 1,000 5,000 10,000

0.00
0.05
0.10
0.15
0.20
0.25
0.30
0.35
0.40
0.45
0.50
0.55
0.60

p=0.25

N

R
V

ar

100 250 500 1,000 5,000 10,000

0.00
0.05
0.10
0.15
0.20
0.25
0.30
0.35
0.40
0.45
0.50
0.55
0.60

p=0.30

N

R
V

ar

100 250 500 1,000 5,000 10,000

0.00
0.05
0.10
0.15
0.20
0.25
0.30
0.35
0.40
0.45
0.50
0.55
0.60

p=0.50

N

R
V

ar

Fig. 2 Relative variance of six estimators with different parameters following the geometric distribution
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Fig. 3 Relative root mean square error of six estimators with different parameters following the geometric
distribution
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Table 1 Simulation results: population size estimates E(N̂ ), approximated standard errors E[ŜE(N̂ )] and
true standard errors SE(N̂ )

N TG estimator

E(N̂ ) SE(N̂ ) E[ŜE(N̂ )] E(N̂ ) SE(N̂ ) E[ŜE(N̂ )]
Geo (0.10) Geo (0.15)

100 100.6 4.01 3.96 100.5 5.13 5.02

250 250.6 6.12 6.13 250.6 8.11 7.82

500 500.5 8.78 8.60 500.5 11.42 10.99

1000 1,000.4 12.37 12.11 1000.9 15.87 15.51

5000 5,001.1 27.15 27.02 5001.4 36.13 34.59

10,000 10,001.5 39.51 38.19 10,001.3 49.22 48.89

Geo (0.20) Geo (0.25)

100 100.6 6.17 6.08 100.8 7.43 7.20

250 250.6 9.74 9.49 250.9 11.49 11.21

500 500.7 13.82 13.33 500.9 16.44 15.74

1000 1,001.3 19.34 18.82 1001.4 23.04 22.23

5000 5,002.9 41.13 41.97 5000.2 51.07 49.55

10,000 10,000.9 62.37 59.30 10,000.8 71.79 70.07

Geo (0.30) Geo (0.50)

100 101.2 8.81 8.44 102.7 16.21 16.16

250 251.0 13.76 13.07 252.4 24.52 24.35

500 500.9 19.47 18.37 502.1 34.01 33.97

1000 1,001.2 26.72 25.90 1001.1 46.83 47.67

5000 4,999.5 60.13 57.76 5005.9 103.73 106.35

10,000 10,000.9 83.75 81.68 10,000.8 150.10 150.08

and

RRMSE{N̂ } = 1

N

√

Var{N̂ } + {bias(N̂ )}2,

where bias(N̂ ) = E(N̂ ) − N .
Results are displayed and summarized in Figs. 1, 2 and 3. All the considered estima-

tors are asymptotically unbiased. They show a slight overestimation of population size
for small population sizes and show a reduced bias as the population sizes increase.
The TG estimator shows the most accurate behavior with the least bias on average.
The relative bias of LCMP and TG estimators are very similar as p is small (i.e
p = 0.1, 0.15). The MLEGeo provides the smallest variance under all settings as we
expect, in line with the literature. Another interesting point is that the TG estimator has
not only a small bias but also provides an estimated variance close to the MLEGeo.

To summarize the performance of the different estimators, we use the relative root
mean square error (see Fig. 3). The simulation results show that TG andMLEGeo esti-
mators are likely to be the best choices to estimate population size. The LCMP also
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shows a reasonable behavior, slightly worse, but comparable, than the TG and MLE-
Geo estimators. This happens because the Conway–Maxwell–Poisson distribution
contains the geometric distribution as a special boundary case. It remains a reasonable
estimator for a small value of p and performs better than the CG estimator.

3.2 Variance approximation and confidence intervals

The aim of this section is to investigate the performance of the variance approxima-
tion introduced in Eq. (5). The full set of results of the simulation study, with the
averaged estimates and standard errors of the new estimator, is provided in Table 1.
Additionally, we consider the validity of the approximating variance estimator, used
to derive confidence intervals, by investigating the ratio between approximated and
sampled standard errors. Such an investigation shows that the performance of the
approximated standard error of the TG estimator is more than reasonable, though it
slightly underestimates the sample variability on average, but provides a satisfactory
approximation for the true standard error, i.e. the ratio between the approximated and
the sample standard errors is fairly close to one.

We further look at 95% confidence intervals for the proposed estimator of the pop-
ulation size N . We compare our proposal with other estimators often used to deal with
population size estimation, derived under the Poisson and the geometric distributions.
A 95% approximate confidence interval of population size N is constructed under the
symmetric normal approximation as:

95%CI = (N̂L , N̂U ) = (N̂ ± Z .975S.E(N̂ )), (6)

where, for the proposedTuring-based estimator, S.E(N̂ ) is approximated by the square
root of (5). Their performances are quantified using the coverage probability (Cov)
and the average length (AL) defined as follows:

Cov =
∑R

r=1 A(r)

R
× 100, (7)

where A(r) equal to 1 if the true value N is in the target confidence interval, and 0
otherwise; and R is the number of replicates. The confidence intervals are produced
based upon the assumption of asymptotic normality that might affect the coverage
probability for the small population sizes. It can be seen from Table 2 and Fig. 4 that
the coverage probabilities fromalmost all estimators show lower level than the nominal
confidence interval level when the population sizes are N = 100 and the converge to
the nominal level increases with increasing N . Overall, the simulation results suggest
that the MLEGeo estimator provides the best performance with respect to coverage
probability of confidence intervals. As can be seen, the coverage probability of the
MLEGeo is close to the nominal level on average and provides the shortest length.
The proposed TG estimator has a satisfying and comparable behavior, even for small
population sizes. The CG estimator requires large population sizes to provide a good
performance of confidence interval at 95%. Finally, the LCMP estimator shows strong
anti-conservative behavior with lower coverage than the nominal confidence levels
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Table 2 Comparing the performance of confidence intervals of five estimators when data are generated
from the geometric distribution

N Coverage probability (%) Average length

LCMP MLEGeo TG ZG CG LCMP MLEGeo TG ZG CG

Geo (0.1)

100 91.6 94.4 92.9 91.4 88.5 21.2 14.8 15.5 241.3 40.9

250 94.6 94.7 94.2 93.6 92.9 34.8 22.4 24.0 327.8 55.7

500 94.8 94.5 93.6 94.8 93.8 49.8 31.2 33.7 446.1 75.3

1000 95.3 94.5 94.1 94.8 94.3 71.0 43.9 47.5 613.5 103.4

5000 96.8 94.8 94.9 95.3 95.3 161.9 97.6 105.9 1349.9 227.4

10,000 96.3 94.4 94.0 94.5 95.0 230.1 137.8 149.7 1907.9 321.2

Geo (0.15)

100 91.8 94.2 93.0 91.2 89.5 28.9 18.9 19.7 189.9 47.3

250 93.7 94.2 93.5 94.0 92.8 47.2 28.9 30.6 274.0 68.2

500 94.1 94.7 93.8 94.5 93.4 67.6 40.4 43.1 373.8 92.8

1000 95.5 94.2 93.9 94.8 94.4 96.9 56.8 60.8 522.4 130.0

5000 96.2 94.3 93.8 94.7 94.4 221.1 126.5 135.6 1154.9 287.0

10,000 96.9 95.1 94.8 94.7 95.1 314.2 178.7 191.7 1630.1 404.9

Geo (0.20)

100 92.0 94.5 93.6 91.6 90.8 37.5 23.0 23.8 169.5 55.1

250 94.2 94.9 93.4 94.5 93.4 61.0 35.4 37.2 245.5 80.2

500 94.7 94.6 93.5 94.2 93.8 87.4 49.5 52.3 339.6 110.6

1000 95.6 95.0 93.9 94.7 94.4 124.9 69.7 73.7 474.1 154.4

5000 97.6 96.0 96.2 94.0 96.0 283.8 155.1 164.5 1053.7 342.9

10,000 96.4 94.6 93.5 95.0 94.5 404.0 219.2 232.5 1483.1 482.1

Geo (0.25)

100 91.6 94.8 93.3 92.8 91.4 47.2 27.4 28.2 158.2 63.2

250 94.0 95.0 94.0 94.4 94.0 76.4 42.2 43.9 231.0 92.3

500 94.1 94.9 93.7 94.4 94.0 108.8 59.0 61.7 319.3 127.2

1000 95.6 94.7 93.8 94.0 94.5 156.6 83.1 87.2 448.3 178.8

5000 96.3 95.2 94.0 94.9 94.9 355.0 184.9 194.2 993.3 395.6

10,000 96.9 95.5 94.7 94.9 95.2 504.6 261.4 274.7 1402.6 558.9

Geo (0.3)

100 91.3 95.0 93.2 91.9 91.2 61.4 32.3 33.1 152.7 71.8

250 93.4 94.6 93.5 93.7 93.3 94.4 49.4 51.2 224.4 105.3

500 94.2 94.5 92.6 94.7 94.1 134.8 69.2 72.0 309.1 144.9

1000 95.5 95.2 93.6 94.4 94.5 192.8 97.5 101.5 433.6 203.1

5000 96.3 95.0 94.0 95.2 95.2 437.7 217.0 226.4 961.6 450.0

10,000 96.7 95.4 94.5 95.2 95.3 620.6 306.9 320.2 1357.7 635.4

Geo (0.50)

100 89.5 95.5 94.6 92.8 92.3 148.8 59.8 63.4 165.9 117.9

250 92.5 94.8 94.5 94.3 94.2 219.5 90.1 95.4 235.9 167.1
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Table 2 continued

N Coverage probability (%) Average length

LCMP MLEGeo TG ZG CG LCMP MLEGeo TG ZG CG

500 94.2 94.5 94.6 94.9 94.7 308.9 125.7 133.1 324.1 229.4

1000 94.0 95.3 95.0 94.9 94.7 433.4 176.5 186.9 450.7 318.8

5000 97.2 97.4 96.6 95.0 95.4 969.0 393.1 416.8 1004.7 710.5

10,000 96.7 94.7 94.9 95.3 95.2 1380.2 554.8 588.3 1414.1 1000.0
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Fig. 4 Coverage probabilities of 95% confidence interval when data is generated from the geometric dis-
tribution
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Table 3 Simulation results: population size estimates E(N̂ ), approximated standard errors E[ŜE(N̂ )] and
true standard errors SE(N̂ )

N TG estimator

E(N̂ ) SE(N̂ ) E[ŜE(N̂ )] Average % zeros E(N̂ ) SE(N̂ ) E[ŜE(N̂ )] Average % zeros

NB (0.1, 2) NB (0.1, 5)

100 101.6 1.6 2.3 1.8 100.5 0.7 1.5 1.0

500 510.9 3.7 4.9 1.0 502.7 1.3 2.6 <1.0

5000 5111.6 47.6 51.7 1.0 5014.1 4.6 6.6 <1.0

NB (0.5, 2) NB (0.5, 5)

100 116.6 10.0 10.6 25.0 110.3 3.6 4.9 3.0

500 580.1 21.5 23.4 25.0 553.5 7.9 10.9 3.0

5000 5800.2 67.7 73.7 25.0 5536.0 24.9 34.6 3.0

NB (0.7, 2) NB (0.7, 5)

100 126.8 23.2 24.9 48.9 126.9 9.2 10.8 16.8

500 618.2 47.6 51.7 49.0 553.5 7.9 10.9 16.8

5000 6159.1 148.1 161.4 49.5 6331.6 63.5 75.7 16.8

Data are generated under the negative binomial model

for the small population sizes. Additionally, it tends to show higher coverage than
the nominal levels when the population sizes increases, as a consequence of the large
standard errors.

To draw further conclusions on the usefulness of the proposed Turing-type estima-
tor, we discuss results based on simulated data from a misspecified model, i.e. data are
drawn from the negative binomial distribution (see Table 3). A crucial role is played by
the probability of success in each trial, which drives the percentage of zeros generated
in the data. For a lower value of p, i.e. for lower percentage of zeros, we have a better
performance of the estimator, which overestimates the true population sizes, though
still reasonably, for higher values of p and proportions of zeros. This is also somehow
expected. As shown in Böhning (2015), even sampling under the negative binomial
distribution may lead to severe bias in the population size estimate, due to a boundary
problem.

4 Applications

In this section, we firstly consider two widely analysed datasets to show the appropri-
ateness and importance of our proposal in empirical data analyses and then provide
further examples to better understand the behavior of the proposed estimator. We
compare our estimator with other well established ones, based on homogeneous and
heterogeneous Poissonmodels and on the geometric model. Turing’s estimator and the
maximum likelihood estimator under a Poisson model, with parameter λ, are consid-
ered as estimators in the homogeneous case. Estimators for heterogeneous populations
as Zelterman’s estimator (Zelterman 1988) and Chao’s lower bound estimator (Chao
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1987, 1989; Chao and Colwell 2017) are considered as well. Themaximum likelihood
estimator under a geometric distribution and the LCMP estimator, with parameters λ

andν, are included as potential competitors to our estimator, aswell asChao’s estimator
under the geometric distribution. We also report an estimate of the variance associated
with the population size estimate based on the so-called imputed bootstrap (SEboot;
Norris and Pollock 1996). In our setting, the imputed bootstrap is based on N̂ and the
corresponding estimate f̂0 of f0. We draw 1000 samples containing N̂ observations
from a multinomial distribution with parameters N̂ and { f̂0/N̂ , f̂1/N̂ , . . . , f̂m/N̂ }.
For each bootstrapped sample we estimate N̂ and then compute the variance over all
1000 samples. We would like to remark that the imputed bootstrap performs well only
if the model is valid (Anan et al. 2017b).

4.1 Golf tees data

In a field experiment, N = 250 groups of golf tees were placed in a survey region,
either exposed above the surrounding grass or hidden by it. They were surveyed by the
1999 statistics honor class at the University of St Andrews (Scotland), see Borchers
et al. (2004). A total of n = 162 groups of tees were observed, but a (potentially
unknown) number is missed and needs to be estimated. The corresponding frequency
distribution is given by ( f0, . . . , f8) = (88, 46, 28, 21, 13, 23, 14, 6, 11). This toy
example is very useful for comparing the performance of several estimators as the
true value of the population size is known. In the following, we compare several
estimators based on the Poisson or other distributions, accounting for heterogeneity.
The population size estimators under the geometric distribution (i.e., TG, MLEGeo,
LCMP and CG) provide the population size estimates close to the true number N =
250, confirming that the homogeneity assumption of the capture probabilities, as in
the Poisson distribution, is unreliable. In detail, the proposed TG estimator and the
MLEGeo estimator show a negligible difference in terms of both the estimate of
the population size and variability. Comparing these results with those from other
estimators, the TG andMLEGeo are the best for estimating the number of golf tees. In
detail, with respect to the other estimators, it is no surprise for the original Turing and
MLEPoi to underestimate the population size, and their confidence intervals do not
even cover the true value. N̂Turing, N̂MLEPoisson and N̂Chao are lower bound estimates
for mixed (heterogeneous) Poisson distributions, where the geometric distribution is a
special case (Puig and Kokonendji 2018). Although the Zelterman estimator provides
an estimated population size closer to the true value, the standard errors are very large,
leading to the a wide confidence interval at 95%. The LCMP estimator might be the
alternative choice for estimating the number of golf tees giving a slight bias (Table 4).

4.2 Bowel cancer data

Over several years, from 1984 onwards, about 50,000 subjects were screened for
bowel cancer at St Vincent’s Hospital in Sydney (Australia), see Lloyd and Frommer
(2004). The screening procedure was based on a sequence of binary diagnostic tests,
self-administered on T = 6 successive days. Since no screening test is 100% accurate,
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Table 4 Golf tees data: estimated population size, standard errors, confidence intervals and lengths of
confidence interval from eight different estimators

Model N̂ ŜE(N̂ ) 95% CI Length SEboot

Homogeneous Poisson

Turing 177 4.58 (168–186) 18 4.85

MLE Poisson (̂λ = 3.23) 169 2.83 (163 – 175) 12 3.07

Heterogeneous Poisson

Chao 200 13.09 (174–226) 52 15.33

Zelterman 231 29.90 (171–289) 118 33.61

Geometric

MLEGeo ( p̂ = 0.3) 230 11.75 (207–253) 46 11.12

TG 228 12.03 (204–252) 48 12.24

LCMP 223 33.09 (159–288) 129 14.50

(̂λ = 0.77 and ν̂ = 0)

Contaminated geometric

CG 238 27.86 (183–293) 110 30.33

replications of the diagnostic test over a number of days may help identify most cases.
On each of the six occasions, the presence of blood in feces has been recorded. People
with six negative tests were not further assessed and it remains unknownwhich disease
status they have, while people with at least one positive test had their true disease
status determined by physical examination, sigmoidoscopy, and colonoscopy. The
aim is to estimate how many (say f0) cancer patients have been missed by adopting
this screening procedure. Lloyd and Frommer (2004) mention that 122 patients with
confirmed cancer status were screened again using the identical screening procedure.
We will focus on this secondary distribution as f0 is known there, with ( f0, . . . , f6) =
(22; 8; 12; 16; 21; 12; 31).

From Table 5, it is clear that ignoring any heterogeneity source leads to an underes-
timation of the population size. The Turing and MLEPoi estimators fail to recover the
unknown f0. The situation does not improve even if we consider estimators that relax
the Poisson assumption. Zelterman’s and Chao’s estimators do not show a satisfying
behavior. The true value is not covered by confidence intervals of any of these estima-
tors. The proposed TG estimator clearly outperforms its competitors with f̂0 = 17 and
N̂ = 117, and both theMLEGeo and the LCMP estimators have reasonable behaviors.

4.3 Other examples where the number of zeros is known

The geometric distribution works well for the two illustrative datasets considered
above. A more extended range of examples is provided in the following to support
the view that the geometric is useful generally, though it may lead to non-optimal
estimates when the Poisson assumption is tenable.

We are going to check the performance of our estimators with four real data sets
where the numbers of zeros are known. The first two were analysed in Böhning and
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Table 5 Bowel cancer data: estimated population size, standard errors, confidence intervals and lengths of
confidence interval from eight different estimators

Model N̂ ŜE(N̂ ) 95% CI Length SEboot

Homogeneous Poisson

Turing 102 1.59 (99–105) 6 1.62

MLE Poisson (̂λ = 4.02) 102 1.42 (99–105) 6 1.48

Heterogeneous Poisson

Chao 103 2.47 (98–108) 10 3.17

Zelterman 105 7.91 (90–120) 30 13.89

Geometric

MLEGeo ( p̂ = 0.24) 132 7.51 (117–147) 30 6.73

TG 117 5.64 (106–128) 22 5.59

LCMP 107 7.75 (92–123) 31 3.83

(̂λ = 1.32 and ν̂ = 0)

Contaminated geometric

CG 105 4.68 (96–114) 18 5.40

Schön (2005) in order to check the performance of the estimators introduced there.
The last two (number of dicentrics) were analysed in Puig and Barquinero (2011)
using r th-order Hermite distributions. The data sets are as follows:

1. Daily numbers of deaths in 1989 of women with brain vessel disease in West
Berlin: ( f0, . . . , f14) = (1, 4, 15, 31, 39, 55, 54, 49, 47, 31, 16, 9, 8, 4, 3).

2. Weekly number of packs of a product that were purchased within the previous 7
days in 456 stores. Each frequency is the number of stores that sold exactly x pack-
ages: ( f0, . . . , f20) = (102, 54, 49, 62, 44, 25, 26, 15, 15, 10, 10, 10, 10, 3, 3, 5,
5, 4, 1, 2, 1).

3. Number of dicentric chromosomes after the exposure of a radiation dose of 0.405
Gy. Each frequency is the number of cells having exactly x dicentric chromosomes:
( f0, . . . , f4) = (437, 66, 15, 1, 1).

4. Number of dicentric chromosomes after the exposure of a radiation dose of 0.600
Gy. The frequencies are as follows: ( f0, . . . , f4) = (473, 119, 34, 3, 2).

All the results given by our estimators are shown in Table 6.
There is clear evidence that all the Poisson-based estimators provide a general good

performance for the first data set (Brain vessel). The similarity of all the estimates could
be a sign of an underlying Poisson distribution, as already noticed by Böhning and
Schön (2005). The proposed estimator overestimates the true population size, driven by
some heterogeneity that is not present in the data. As a further remark, we notice that,
for the Zelterman estimator, the estimated standard error by the conditioning method
is very different from that obtained through bootstrap. This is because the estimated
standard error by the conditioning method is based on f1 and f2, which often show
the highest frequencies in the data, but not in this specific example, leading to an
underestimation of the uncertainty. The number of packs data is included here to show
that our estimator outperforms its Poisson-based counterpart, which does not provide
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Table 6 Other examples where the number of zeros is known: estimated population size and standard errors

Model Brain vessel # packs

(N = 366) (N = 456)

N̂ ŜE(N̂ ) SEboot N̂ ŜE(N̂ ) SEboot

Homogeneous Poisson

Turing 366 0.85 1.11 365 3.63 3.87

MLE Poisson 366 0.80 0.97 357 1.51 1.96

Heterogeneous Poisson

Chao 366 0.91 1.22 384 9.33 11.11

Zelterman 367 0.96 9.55 423 30.82 32.72

Geometric

MLEGeo 433 9.77 9.04 439 11.48 11.69

TG 381 4.12 5.71 428 11.25 11.67

LCMP 366 0.96 1.13 408 13.20 15.40

Contaminated geometric

CG 368 4.79 1.87 414 19.85 20.76

Model Dic 0.405 Gy Dic. 0.600 Gy

(N = 520) (N = 631)

N̂ ŜE(N̂ ) SEboot N̂ ŜE(N̂ ) SEboot

Homogeneous Poisson

Turing 231 62.45 42.68 379 59.47 47.57

MLE Poisson 229 44.02 38.04 381 46.96 45.75

Heterogeneous Poisson

Chao 229 49.34 64.03 367 49.63 59.07

Zelterman 227 55.05 69.06 363 56.65 61.85

Geometric

MLEGeo 427 95.58 79.42 701 103.31 95.01

TG 416 137.78 86.32 669 133.10 96.48

LCMP 383 106.38 111.38 462 152.38 165.05

Contaminated geometric

CG 373 104.99 123.99 574 106.53 116.06

a value close to the true number of zeros, and performs similarly compared to the
MLEGeo estimator. Poor results were obtained by Böhning and Schön (2005) and
Puig and Kokonendji (2018). Both works highlighted the presence of heterogeneity
(mainly due to zero-inflation) which is difficult to capture and to model properly. It
seems that our proposal is, instead, able to capture this data feature. The last two data
sets come fromanexperimentwhere the counts of chromosomeaberrations (dicentrics)
can be modelled by a physical mechanism leading to compound-Poisson distributions
(Puig andBarquinero 2011). In both examples, the geometric-based estimators provide
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Fig. 5 Poisson and geometric ratio plots. Left panel: golf tees data. Right panel: bowel cancer data

much better results than the Poisson-based ones, capturing the heterogeneity in the
data.

4.4 The ratio-plot under the geometric distribution

As we extensively discussed throughout the main text, the geometric distribution is
potentially a suitable candidate for count of cases distribution as it catches naturally
some heterogeneity present in the population. Hence, in some sense the geometric
distribution should be preferred to thePoissondistribution.Nevertheless, the geometric
distribution needs to be investigated to see if it is appropriate for our real data example.

In Böhning et al. (2013) a diagnostic tool was suggested to investigate a count
dataset for a specific distribution. This diagnostic tool, called the ratio plot, is built on
the observation that the ratios of neighboring probabilities are constant. The ratio plot
is then given by rx = κx+1

κx
= 1 − p, for x = 0, 1, . . . ,m, and p being the geometric

event parameter. Note that these ratios are not dependent on whether untruncated or
truncated distributions are considered. A natural estimate of rx occurs when replacing
the unknown probabilities by the estimate fx/N

r̂x = fx+1

fx

as the unknown N cancels out.
An obvious question relates to the fact that we could have used another popular

distribution for modelling count data, as e.g. the Poisson model. The Poisson distribu-
tion is given as κx = exp(−λ)λx/x ! so that rx = (x + 1)κx+1/κx = λ and we expect
r̂x = (x + 1) fx+1/ fx to show a horizontal line pattern.

Figure 5 shows both ratio plots in comparison for both datasets considered in
Sects. 4.1 and 4.2 and there is clear evidence that there is a positive trend in the
Poisson ratio plots. Consequently, we argue here that the geometric distribution, whose
ratio-plot is an almost constant line, is more appropriate in this case study.
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Fig. 6 Ratio plots for a geometric distribution under the null hypothesis with the 95% point-wise error bars
(see Böhning and Punyapornwithaya 2018 for further details): data in Sects. 4.1 and 4.2
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Fig. 7 Ratio plots for a geometric distribution under the null hypothesis with the 95% point-wise error bars
(see Böhning and Punyapornwithaya 2018 for further details): data in Sect. 4.3

Whereas the ratio plot focuses on the idea whether an empirical, nonparametric
estimate of the ratio would follow a straight line, a major difficulty with interpreting
the ratio plots is the qualitative judgment on constancy across the count range. Böhning
and Punyapornwithaya (2018) developed the idea to construct a diagnostic device,
namely the ratio-plot under the null hypothesis, that shows the observed ratio within
limits expected if the data would follow a geometric distribution, so that we are able
to examine more easily if the observed ratios lie in the specified geometric-defined
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region. This can be achieved by considering the 95% point-wise error bars. Figure 6
shows the error bars for the (log)-ratio-plots for the golf tees and bowel cancer data
and supports the use of the geometric distribution in these case studies.

To provide further evidence of the results discussed in Sect. 4.3, we show the ratio-
plots under the null hypothesis for those data as well (see Fig. 7). The geometric
distribution looks appropriate for three out of four datasets, while it does not seem
appropriate for the brain vessel one, confirming the results previously discussed. To
conclude, this graphical device could preliminary used to asses the adequacy of the
geometric distribution, avoiding the use of geometric-based estimators if not appro-
priate.
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Appendix: Proof of Proposition 1

According to the conditional technique, we have

Var(N̂TG) = Varn
{
E(N̂TG|n)

}+ En
{
Var(N̂TG|n)

}
. (8)

Starting from the first term on the right hand side of (8), the delta method we have
E(N̂TG|n) ≈ n

1−κ0
and, accordingly,

Varn
{
E(N̂TG|n)

} ≈ Varn

{
n

1 − κ0

}

= 1

(1 − κ0)2
Var(n) = N (1 − κ0)κ0

(1 − κ0)2
. (9)

Since E(n) = N (1 − κ0) and κ̂0(TG) =
√

f1
S , the variance in (9) can be estimated as:

V̂arn
{
E(N̂TG|n)

} =
n
√

f1
S

(

1 −
√

f1
S

)2 .

Additionally,

Var(N̂TG|n) = Var

⎛

⎝ n

1 −
√

f1
S

|n
⎞

⎠ = n2Var

⎛

⎝ 1

1 −
√

f1
S

⎞

⎠ .
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We know that Var
(

1

1−
√

f1
S

)
can be approximated by the delta-method. Hence, let

y = f1
S and we take h(y) = 1

1−√
y . Then,

h′(y) = −(1 − y1/2)−2
(

−1

2
y−1/2

)

= 1

2
√
y(1 − √

y)2
.

Furthermore,

Var

⎛

⎝ 1

1 −
√

f1
S

|n
⎞

⎠ ≈
(

1

2
√
y(1 − √

y)2

)2

Var

(
f1
S

)

=

⎛

⎜
⎜
⎜
⎝

1

4 f1
S

(

1 −
√

f1
S

)4

⎞

⎟
⎟
⎟
⎠
Var

(
f1
S

)

.

As next step, using the conditional variance technique to estimate Var
(

f1
S

)
, we have

that

Var

(
f1
S

)

= Var f1

{

E

(
f1
S

)

| f1
}

+ E f1

{

Var

(
f1
S

| f1
)}

. (10)

With the approximation E
(

f1
S | f1

)
= f1E( 1S ) ≈ f1

S , we have that

Var f1

{

E

(
f1
S

| f1
)}

≈ Var f1

(
f1
S

)

= 1

S2
Var( f1) = 1

S2
Np1(1 − p1)

= 1

S2

(

N
f1
N

(

1 − f1
N

))

= f1
S2

(

1 − f1
N

)

. (11)

Again, estimating E f1

{
Var
(

f1
S | f1

)}
by Var

(
f1
S | f1

)
we have that

E f1

{

Var

(
f1
S

| f1
)}

≈ Var

(
f1
S

| f1
)

= f 21 Var

(
1

S

)

Using the delta method, we achieve that

Var

(
1

S

)

≈ 1

S4
Var(N X̄) = 1

S4
N 2Var(X̄) = 1

S4
N 2Var(X)

N
.
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Since X ∼ Geo(p) we have that E(X) = 1−p
p and Var(X) = 1−p

p2
.

Var

(
1

S

)

≈ 1

S4
N 2

(
1−p
p2

)

N
= 1

S4
N 2

(
E(X)
p

)

N
= 1

S4
N 2

(
E(S/N )

p

)

N
≈ 1

pS3
.

Let us note that

E

(
S

N

)

= 1 − p

p
; S

N
≈ 1 − p

p
or p(S + N ) ≈ N or

1

p
≈ S + N

N
. (12)

Hence,

V̂ar

(
f1
S

| f1
)

= f 21
S3

(
S + N

N

)

.

Substituting (11) and (12) into (10), this leads to

V̂ar

(
f1
S

)

= 1

S2

{

f1

(

1 − f1
N

)}

+ f 21
S3

(
S + N

N

)

= f1
S2

{
N + f1

N
+ f1

S

(
S + N

N

)}

= f1
S2

{
NS − S f1 + f1S + f1N

NS

}

= f1
S2

{
N (S + f1)

NS

}

= f1S + f 21
S3

.

We have that

V̂ar

⎛

⎝ 1

1 −
√

f1
S

⎞

⎠ =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

1

4 f1
S

(

1 −
√

f1
S

)4

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭

{
f1S + f 21

S3

}

= V̂ar

⎛

⎝ 1

1 −
√

f1
S

⎞

⎠

=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

S

4 f1

(

1 −
√

f1
S

)4

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭

{
f1S + f 21

S3

}

= S f1 + f 21

4 f1S2
(

1 −
√

f1
S

)4

= S + f1

4S2
(

1 −
√

f1
S

)4 .
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