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Abstract
The weighted k-out-of-n (briefly denoted as weighted k/n) systems are among the
most important kind of redundancy structures. We consider a weighted k/n system
with dependent componentswhere the system is built up from two classesCX andCY of
components that are categorized according to their weights and reliability functions.
It is assumed that a random number M , M = 0, 1, . . . ,m, of the components are
chosen from set CX whose components are distributed as FX and the remaining n−M
components selected from the setCY whose components have distribution function FY .
We further assume that the structure of dependency of the components can bemodeled
by a copula function. The reliability of the system, at any time t , is expressed as a
mixture of reliability of weighted k/n systems with fixed number of the components
of types CX and CY in terms of the probability mass function M . Some stochastic
orderings are made between two different weighted k/n systems. It is shown that
when the random mechanism of the chosen components for two systems are ordered
in usual stochastic (st) order then, under some conditions, the lifetimes of the two
systems are also ordered in st order. We also compare the lifetimes of two different
systems in the sense of stochastic precedence concept. The results are examined by
several illustrative examples under different conditions.
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1 Introduction

The k-out-of-n (briefly denoted as k/n) systems are important redundancy structures in
reliability engineering. A n-component system is said to be a k/n system if it operates
as long as at least k components out of the n components operate. In these kind of
systems all components have an equal portion to the performance of the entire system.
Hence the number of working components specifies the operation of the system. The
stochastic and agingproperties of k/n systemshavebeen extensively investigated in the
reliability literature (see, for example, Kuo and Zuo 2003; Li and Zhao 2008; Eryilmaz
2011). Recently k/n systems are extended to weighted k/n systems where the weight
associatedwith each component can be considered as load/capacity of that component.
If the performance of the k/n system is characterized by the total weights of operating
components, then the system is said to have a weighted k/n structure. In other words, a
weighted k/n system has an operational level of at least k if the total weight of working
components is k or more. For a specific example of a weighted k/n system in real life
applications, we refer to Samaniego and Shaked (2008). The reliability assessment and
stochastic properties of weighted k/n systems under the assumption of independence
between the components lifetimes, are studied by several authors (see, among others,
Ball et al. 1995; Chen and Yang 2005; Higashiyama 2001; Rushdi 1990;Wu and Chen
1994a, b). Eryilmaz (2015) studied the capacity loss and residual capacity in binary
weighted-k-out-of-n:G systems. The mean instantaneous performance of the systems
with weighted components was presented by Eryilmaz (2013). For an extensive survey
on applications of the systems with weighted components see Samaniego and Shaked
(2008). Recently, attempts have been made to study the properties of the weighted k/n
systems consisting of dependent components. Copula functions are one of the popular
applied methods for modeling dependence among lifetimes of the components. For a
comprehensive study on the theory of copulas, we refer the reader to Nelsen (2006).
Analysis of the systems reliability using copula functions can be found in Jia and Cui
(2012), Navarro et al. (2010, 2017), Tang et al. (2013a, b) andWang and Pham (2012).

According to the definition of a weighted k/n system, the system lies among the
structures that are made of leastwise two different kinds of components (for more
description and reliability properties of such systems, we refer the reader to Kochar
and Xu 2010; Cui and Xie 2005; Navarro et al. 2015). Recently Eryilmaz and Sarikaya
(2013) and Eryilmaz (2014), have considered a weighted k/n system including two
kinds of components. Such a system is assumed to be composed of n components
in which a fixed number m out of n is from a class CX of identically distributed
components and the rest of n − m components are from a class CY of identically
distributed components. The cited authors have obtained some results on the stochas-
tic and aging properties of the lifetimes of weighted k/n systems based on various
copulas. Li et al. (2016) have studied on weighted k/n systemwith statistically depen-
dent component lifetimes. Further resources on these subjects can also be found in
Coolen and Coolen-Maturi (2012), Eryilmaz et al. (2018) and Samaniego and Navarro
(2016).
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Crescenzo (2007) presented the random strategy in the field of reliability the-
ory. He showed that, in some situations, a random strategy might be a better option
when our choice must be between two kinds of units such that one is more reli-
able than the other. Some useful applications related to the random strategy are in
Navarro and Spizzichino (2010), Crescenzo and Pellerey (2011), Hazra and Nanda
(2014), Navarro et al. (2015) and Hazra et al. (2017). Some applications of the
above strategy may arise in reality. First, assume that a manufacturer uses a mix
of two types of units for the production of its products. The reliability of man-
ufactured units depends directly on the materials of the unit selected from each
type and human factors, conditions of production, etc. The second application of
the randomness is in physical systems e.g. stochastic resonance, Berdichevsky and
Gitterman (1998) and Gammaitoni et al. (1998), Brownian ratchets, Bier (1997).
The systems under the influence of the shock processes can be considered as the
third example. In justifying the application of random theory Navarro et al. (2015)
mentioned “Of course, the best systems are those which include only the best com-
ponents. However, we shall assume that this option is not possible, maybe simply
because we do not know which are the best components, and that we want to use
both kinds of components. In these situations, random strategies may lead to the best
systems.”

The goal of the present paper is to investigate the reliability and stochastic properties
of weighted k/n systems which consist of a random number of components when the
components are from two different types. In other words, we consider a weighted
k/n system and assume that among the n number of the components of the system, a
random number M , M = 0, 1, . . . ,m, of components are chosen from class CX and
the rest of n − M components are from class CY where the components in CX (and
CY ) are independent and identically distributed.

The paper is organized as follows: in Sect. 2, we recall some definitions and pre-
liminary results that are useful in other sections. These include the definitions of
some partial stochastic orders, the notion of “stochastic precedence” and the notion
of copula. In Sect. 3, we first give a precise description of our proposed weighted k/n
system. Then, we obtain the reliability of the system lifetime as a mixture represen-
tation. Several examples are also examined computationally and graphically in this
section. Section 4 is devoted to comparisons between the lifetimes of two weighted
k/n systems under different conditions.We first prove that ifMi , i = 1, 2, components
are chosen from CX such that M1 and M2 are stochastically ordered, then under some
conditions the lifetimes of the systems consisting of M1 and M2, respectively, are also
stochastically ordered. The rest of Sect. 4 is centered on comparison between two sys-
tems in the sense of stochastic precedence. In other words, we study conditions under
which for two weighted k/n systems with lifetimes T1 and T2, P(T1 ≤ T2) ≥ 1/2.
Finally, some concluding remarks are presented in Sect. 5.

2 Preliminaries

In this section, we present some notions which are useful in deriving the main results.
Throughout the paper, for a continuous random variable (r.v) X , let F̄ , f and λF =
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f /F̄ be survival function, density function and failure rate function, respectively. For
a continuous random variable Y , functions Ḡ, g and λG = g/Ḡ are defined similarly.

Definition 1 The random variable X is said to be smaller than the random variable Y
in the

(i) usual stochastic order (denoted by X ≤st Y ) if for all t , F̄(t) ≤ Ḡ(t) ;
(ii) hazard rate order (denoted by X ≤hr Y ) if for all t , λF (t) ≥ λG(t);
(iii) likelihood ratio order (denoted by X ≤lr Y ) if g(t)/ f (t) is an increasing function

of t .

It is well known that the following implications hold between these orderings:

X ≤lr Y ⇒ X ≤hr Y ⇒ X ≤st Y .

The concepts of partial orderings are extended to the multivariate case. For n-
dimensional randomvectorX, let F̄ and f be survival function (i.e., F̄(t) = P(X > t))
and density function, respectively. For n-dimensional random vector Y, functions Ḡ
and g are defined similarly. We denote min{t1, t2} = (min{t1,1, t1,2}, . . . ,min{tn,1,

tn,2}) and max{t1, t2} = (max{t1,1, t1,2}, . . . ,max{tn,1, tn,2}).
(i) The random vector X is smaller than the random vector Y in the multivariate

stochastic order if
P(X ∈ U) ≤ P(Y ∈ U),

for all sets U ⊆ Rn (where U is an upper set).
(ii) The random vector X is said to be smaller than the random vector Y in the

multivariate hazard rate order if

F̄(t1)Ḡ(t2) ≤ F̄(min{t1, t2})Ḡ(max{t1, t2}) ∀ t1, t2 ∈ R
n,

(iii) The random vector X is said to be smaller than the random vector Y in the
multivariate likelihood ratio order if

f (t1)g(t2) ≤ f (min{t1, t2})g(max{t1, t2}) ∀ t1, t2 ∈ R
n,

Standard references for more details on basic features and applications of these orders
include Barlow and Proschan (1981), Li and Li (2013) and Shaked and Shanthikumar
(2007).

Dealing with vectors of dependent random variables, a common approach to
describe the dependence between the random variables is using the copula. Any joint
distribution function H of a random vector (T1, . . . , Tn)with the marginal distribution
functions F1, . . . , Fn, can be written (by the Sklar theorem) as
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H(t1, . . . , tn) = Cα(F1(t1), . . . , Fn(tn)), (1)

for all ti ∈ R, i = 1, . . . , n, where the n-dimensional functionCα : [0, 1]n → [0, 1] is
called a copula function. The quantity α is the parameter of the copula which describes
the dependency between T1, . . . , Tn . Also, the copula Cα is unique if marginals
F1, . . . , Fn are continuous and is given by

Cα(u1, . . . , un) = H(F−1
1 (u1), . . . , F

−1
n (un)),

where F−1
i (u) = in f {t : Fi (t) ≥ u}, i = 1, . . . , n. Conversely, the joint distribution

of random vector (T1, . . . , Tn) can be determined by (1) if the marginal distributions
of T1, . . . , Tn and the copula function are known. For more details on copulas and
their properties see, Nelsen (2006).

There are many parametric copula families in which these parameters control
the strength of dependence between the marginals. Indeed, the copula parameter α

determines the properties of Cα(u1, . . . , un). In some cases, there is a one to one
relationship between copula parameter and Kendall’s tau that allow to reparameter-
ize parameter space into an easier interpretable one. For an n-dimensional copula
Cα(u),u = (u1, . . . , un), the Kendall’s τ correlation is defined as follows

τn(α) = 1

2n−1 − 1

[
2n

∫ 1

0
. . .

∫ 1

0
Cα(u)dCα(u) − 1

]
,

Genest et al. (2011). In the independence case, Cα(u) = u1 . . . un and

∫ 1

0
. . .

∫ 1

0
Cα(u)dCα(u) = 1/2n,

which implies that τn(α) = 0. When the Kendall coefficient is given, the copula
parameter can be achieved.

Among the class of copulas, an interesting and important one is the class of
Archimedean copulas, which can be written as

C(u1, . . . , un) = ϕ(ϕ−1(u1) + · · · + ϕ−1(un)),

where ϕ : [0,∞] → [0, 1] is a continuous and strictly decreasing function with
ϕ(0) = 1, ϕ(∞) = 0 and the inverse function is denoted as ϕ−1. The function ϕ

is named Archimedean generator of C . Many classical copulas such as Ali-Mikhail-
Haq, Clayton, Frank and Gumbel families belong to this class. An important member
of Archimedean copulas family is the product copula i.e. a copula for the case of
independence.

Now, we present the definition of symmetric copula.
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Definition 2 For a given copula C(u1, . . . , un), if

C(u1, . . . , ui−1, ui , ui+1, . . . , uk−1, uk, uk+1, . . . , un)

= C(u1, . . . , ui−1, uk, ui+1, . . . , uk−1, ui , uk+1, . . . , un),

then ui and uk are said to be exchangeable. For any pair ui , uk ∈ [0, 1], if ui and uk
are exchangeable, then the copula C(u1, . . . , un) is a symmetric copula.

In reliability, the dependence structure among the component lifetimes are com-
monly positive, so this positive dependence should be considered whenever we choose
an appropriate copula. In this context we consider two families called Clayton and
FGM, the first is an Archimedean copula but the latter is not, while both of them are
symmetric copulas. For ease of reference, we recall the exact formula of the Clayton
and FGM copulas.

(i) The n-variate Clayton copula is defined by

Cα(u1, . . . , un) = (u−α
1 + · · · + u−α

n − n + 1)−1/α α ∈ [− 1,∞)\{0}.

For this family of copulas the value of Kendall’s tau is given by

τn(α) = 1

2n−1 − 1

[
2n

n−1∏
i=0

(
1 + iα

2 + iα

)
− 1

]
.

(ii) The n-variate form of FGM family of copulas is defined by

Cθ (u1, . . . , un) =
(

n∏
i=1

ui

) {
1 + θ

n∏
i=1

(1 − ui )

}
θ ∈ (− 1, 1).

In this case, the value of Kendall’s tau is given by

τn(θ) = θ

3n(2n−1 − 1)
{1 + (− 1)n}.

It is necessary tomention that the FGMcopula describes positive (negative) depen-
dence for θ > 0 (θ < 0).

3 System description

In the following, we consider a weighted k/n system consists of n dependent com-
ponents. The components belong to two distinct classes CX = {X1, . . . , Xm} and
CY = {Ym+1, . . . ,Yn} with sizes m and n − m, respectively. Let FX and FY denote
the distribution functions of the components lifetime in CX and CY , respectively. We
assume that the components have two states at any time, either working or failed.
When a selected component from CX (CY ) is in a working state, it has the weight
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w (w∗). So, the system is in performance level k if and only if the total weights of
operating components is k or above. In other words, components of the system are
chosen from two distinct classes of components such that m of them have the weight
w with lifetime distribution FX , and the remaining n−m components have the weight
w∗ with lifetime distribution FY . If X1, . . . , Xm,Ym+1, . . . ,Yn denote the lifetimes
of the system components in the two classes, then the total weight of the system is
expressed by the stochastic process Wn(t) at time t ≥ 0,

Wn(t) =
∑

i=1,...,m

w I (Xi > t) +
∑

i=m+1,...,n

w∗ I (Yi > t),

where the symbol I(.) denotes the indicator random variable. The lifetime of the
weighted k/n system, T , is

T = inf{t : Wn(t) < k}.

Hence the system reliability is

R(t) = P(T > t) = P(Wn(t) ≥ k), ∀t ≥ 0.

Suppose that the dependence between X1, . . . , Xm,Ym+1, . . . ,Yn is modeled by the
n-dimensional copula function C , i.e. the joint distribution function of X1, . . . , Xm,

Ym+1, . . . ,Yn is displayed as

H(t1, . . . , tn) = C(FX (t1), . . . , FX (tm), FY (tm+1), . . . , FY (tn)).

The reliability properties of a system with two different kind of dependent compo-
nents, when dependency is modeled by copulas, was studied by Eryilmaz (2014).

In what follows, we consider the case when n-copula is symmetric and the size of
two classesCX andCY are random. LetM be a random variable with support contained
in {0,1,…,n}. Ifm (the number of components from CX ) is selected randomly accord-
ing to the random variable M , then the system reliability function can be represented
as

RM (t) = P(TM > t)

=
n∑

m=0

P

⎛
⎝w

∑
i=1,...,m

I (Xi > t) + w∗ ∑
i=m+1,...,n

I (Yi > t) ≥ k

⎞
⎠ P(M = m)

=
n∑

m=0

Rm(t)P(M = m)

=
n∑

m=0

∑ ∑
wy+w∗z≥k
0≤y≤m

0≤z≤n−m

(
m

y

)(
n − m

z

) y∑
l=0

z∑
s=0

(−1)(l+s)
(
y

l

)(
z

s

)
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×C(FX (t), . . . , FX (t)︸ ︷︷ ︸
(m−y+l)times

, FY (t), . . . , FY (t)︸ ︷︷ ︸
(n−m−z+s)times

)

×P(M = m).

The last equality follows from relation (4) in Eryilmaz (2014).
Let us look at the following examples which rely on the notations introduced just now.

Example 1 Consider two weighted 3/4 systems with w = 2, w∗ = 1, FX (t) =
1 − exp{− 0.1t}, FY (t) = 1 − exp{− 0.4t}. Let the dependence structure among
components be generated by FGM copula. Assume that in the first (second) system the
number of components from CX is selected randomly according to random variables
M1 (M2). If the random variables M1 and M2 follow Binomial distribution B(4, 0.1)
and B(4, 0.9), respectively, then for j = 1, 2,

RMi (t) =
4∑

m=0

P

⎛
⎝2

∑
i=1,...,m

I (Xi > t) +
∑

i=m+1,...,n

I (Yi > t) ≥ 3

⎞
⎠ P(Mj = m)

=
4∑

m=0

Rm(t)P(Mj = m)

=
4∑

m=0

∑ ∑
2y+z≥3
0≤y≤m

0≤z≤4−m

(
m

y

)(
4 − m

z

) y∑
l=0

z∑
s=0

(−1)(l+s)
(
y

l

)(
z

s

)

×(1 − exp{−0.1t})m−y+l(1 − exp{−0.4t})4−m−z+s

×(1 + θ(exp{−0.1t})m−y+l(exp{−0.4t})4−m−z+s)P(Mj = m)

Figure 1a, shows reliability results of these systems when τ = 0.001.
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Fig. 1 The systems reliability a related to Example 1, b related to Example 2
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The following example considers the case where the components are independent
(i.e. the product copula is used).

Example 2 Consider two weighted 3/3 systems and assume that w = 3, w∗ = 2,
FX (t) = 1 − exp{− 0.2

√
t}, FY (t) = 1 − exp{− 0.3

√
t} where the components are

assumed to be independent. Let the number of components of the first (second) system
be selected randomly from CX according to the random variable M1 (M2). If M1 and
M2 are chosen randomly from {0,1,2,3} with probabilities {5/26, 6/26, 7/26, 8/26}
and {1/10, 2/10, 3/10, 4/10}, respectively, then

RM1(t) =
3∑

m=0

∑∑
3a+2b≥3
0≤a≤m

0≤b≤3−m

(
m

a

)(
3 − m

b

)
(exp{−0.2

√
t})a(1 − exp{−0.2

√
t})m−a

×(exp{−0.3
√
t})b(1 − exp{−0.3

√
t})3−m−b(m + 5)/26

and

RM2(t) =
3∑

m=0

∑ ∑
3a+2b≥3
0≤a≤m

0≤b≤3−m

(
m

a

)(
3 − m

b

)
(exp{−0.2

√
t})a(1 − exp{−0.2

√
t})m−a

×(exp{−0.3
√
t})b(1 − exp{−0.3

√
t})3−m−b(m + 1)/10

In Fig. 1b, the reliability plots of these systems are depicted.

4 Comparison between two systems based on usual stochastic
ordering

In this section we consider two independent weighted k/n systems with lifetimes T1
and T2. We aim to investigate conditions under which the reliability of the systems
are ordered in two cases. In the first case, let Ti be the lifetime of the system built up
in the case when Mi components are chosen randomly from the class CXi , i = 1, 2.
The reliability of the two systems are compared in Theorem 1. In the second case, let
Ti be the lifetime of the system built up in the case when the distribution functions of
the components in CXi and CYi are stochastically ordered, i = 1, 2. A comparison of
systems reliability is shown in Theorem 2. To organize the proof of the theorems, we
present the following lemmas.

Lemma 1 Let X1, . . . , Xn be continuous random variables with symmetric copula
CX1,...,Xn , marginal distribution functions FX1 , . . . , FXn , and joint distribution func-
tion HX1,...,Xn . Let Zi = I (Xi > t), i = 1, . . . , n. Then there exists a symmetric
selection for the copula CZ1,...,Zn .
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Proof We prove this for the case of 2-copula. The proof for the case of n-copula is
similar. First notice that

HZ1,Z2(s1, s2) = P(I (X1 > t) ≤ s1, I (X2 > t) ≤ s2)

=

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

0 for s1 < 0 or s2 < 0,

CX1,X2(FX1(t), FX2(t)) for 0 ≤ s1 < 1, 0 ≤ s2 < 1,

CX1,X2(FX1(t), 1) for 0 ≤ s1 < 1, s2 ≥ 1,

CX1,X2(1, FX2(t)) for s1 ≥ 1, 0 ≤ s2 < 1,

CX1,X2(1, 1) for s1 ≥ 1, s2 ≥ 1.

Define subcopula C ′
Z1,Z2

as

C ′
Z1,Z2

(u1, u2) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

0 for u1 = 0 or u2 = 0,

CX1,X2(FX1(t), FX2(t)) for u1 = FX1(t), u2 = FX2(t),

CX1,X2(FX1(t), 1) for u1 = FX1(t), u2 = 1,

CX1,X2(1, FX2(t)) for u1 = 1, u2 = FX2(t),

CX1,X2(1, 1) for u1 = 1, u2 = 1.

Let D be the set of all permutations of all points in RanFZ1 × RanFZ2 . Define
subcopula C ′′

Z1,Z2
on D in the manner that the value of C ′′

Z1,Z2
is the same for all

permutations of a point. It is possible since the copula CX ,Y is symmetric. That is,

C ′′
Z1,Z2

(u1, u2) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 for u1 = 0 or u2 = 0,

CX1,X2(FX1(t), FX2(t)) for u1 = FX1(t), u2 = FX2(t),

CX1,X2(FX1(t), FX2(t)) for u1 = FX2(t), u2 = FX1(t),

CX1,X2(FX1(t), 1) for u1 = FX1(t), u2 = 1,

CX1,X2(FX1(t), 1) for u1 = 1, u2 = FX1(t),

CX1,X2(1, FX2(t)) for u1 = 1, u2 = FX2(t),

CX1,X2(1, FX2(t)) for u1 = FX2(t), u2 = 1,

CX1,X2(1, 1) for u1 = 1, u2 = 1.

Then the extension ofC ′′
Z1,Z2

via Sklar theorem is a symmetric copula named itCZ1,Z2 .
The copula CZ1,Z2 is a function that links FZ1 and FZ2 to HZ1,Z2 . �

Lemma 2 Assume that Rm represents the reliability of a weighted k/n system with
two distinct classes CX and CY where the size of the class CX is m. Suppose that the
components of the system are dependent with a symmetric copula. Let also w and w∗
be the weights of the components and F̄X and F̄Y denote the reliability functions of
the components in CX and CY , respectively. If w ≤ w∗ and F̄X (t) ≤ F̄Y (t), for all t ,
then Rm ≤ Rm−1, for all m = 0, . . . , n, with convention R−1 = 1, where
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Rm(t) = P

(
w

m∑
i=1

I (Xi > t) + w∗
n−m∑
i=1

I (Yi > t) ≥ k

)
.

Proof First note that under the assumptions w ≤ w∗ and F̄X (t) ≤ F̄Y (t), for all t , we
have for all values s ∈ R+

P(w I (X > t) ≥ s) ≤ P(w∗ I (Y > t) ≥ s). (2)

From (2), it follows that Vm(t) ≤st Wn−m+1(t) where Vi (t) = w I (Xi > t), i =
1, . . . ,m and Wi (t) = w∗ I (Yi > t), i = 1, . . . , n − m + 1. It is well-known that for
a symmetric n-copula C , n ≥ 3, all its (n − 1)-margins are symmetric and they are
equal. From this fact and Lemma 1

CV1,...,Vm−1,W1,...,Wn−m ,Wn−m+1 = CV1,...,Vm−1,Vm ,W1,...,Wn−m .

Put

Wn,m(t) =
m∑
i=1

Vi (t) +
n−m∑
i=1

Wi (t),

and

Wn,m−1(t) =
m−1∑
i=1

Vi (t) +
n−m+1∑
i=1

Wi (t).

Then from Theorems 6.B.14 and 6.B.16.(a) of Shaked and Shanthikumar (2007), we
have

Wn,m(t) ≤st Wn,m−1(t).

That is, Rm ≤ Rm−1, for all m = 1, . . . , n. This completes the proof. �
Now, we are ready to prove the main theorems.

Theorem 1 Suppose that Ti , i = 1, 2, represent the lifetime of a weighted k/n system
where the system components are dependent with a symmetric copula and the com-
ponents are chosen randomly from two distinct classes CX and CY . Let also w and
w∗ be the weights of the components and F̄X and F̄Y denote the reliability functions
of the components in CX and CY . Assume that the random variables M1 and M2 are
the number of selected components from the set CX in the first and second system,
respectively.

(i) If M1 ≤st M2, w ≤ w∗ and for all t, F̄X (t) ≤ F̄Y (t), then T1 ≥st T2.
(ii) If M1 ≤st M2, w ≥ w∗ and for all t, F̄X (t) ≥ F̄Y (t), then T1 ≤st T2.
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Proof We only prove part (i), the proof of part (ii) is similar. We have,

RM (t) =
n∑

m=0

Rm(t)P(M = m)

=
n−1∑
m=0

Rm(t)[P(M ≥ m) − P(M ≥ m + 1)] + Rn(t)P(M = n)

=
n∑

m=0

(Rm(t) − Rm−1(t))P(M ≥ m),

with convention R−1 = 1. From, M1 ≤st M2, we have for all m, P(M1 ≥ m) ≤
P(M2 ≥ m). Also from Lemma 2, Rm ≤ Rm−1, m = 1, . . . , n. Hence,

(Rm(t) − Rm−1(t))P(M1 ≥ m) ≥ (Rm(t) − Rm−1(t))P(M2 ≥ m),m = 1, . . . , n,

which, in turn, implies that, for all t , RM1(t) > RM2(t). �
The following example gives an illustration of Theorem 1.

Example 3 Consider a weighted 2/2 system with w = 1, w∗ = 2, FX (t) = 1 −
exp{− 0.2t}, FY (t) = 1 − exp{− 0.1t} and assume that the dependence structure
among components is generated by Clayton copula. We consider two different cases
for random variable M . In the first one we assume that M = M1 takes its values
randomly from {0,1,2} with uniform probabilities and in the second case M = M2
takes its values on the same set with probabilities {1/6, 2/6, 3/6}.
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Fig. 2 The system reliability for system in Example 3
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We leave it to the reader to verify that M1 ≤st M2 and F̄X (t) ≤ F̄Y (t). So the
conditions of Theorem 1 are satisfied. Hence RM1(t) ≥ RM2(t). The plots of the
reliability functions of the systems are depicted in Fig. 2 when τ = 0.5. In the case
that the Clayton copula evinces negative dependency, the obtained result is similar to
the positive dependency.

To complete the discussion, hazard rate (hr) and likelihood ratio (lr) orders are
investigated as well. In this case, it is seen that the ordering for M is not transferred
to the system lifetime TM . This is shown in the next example.

Example 4 Consider a weighted 1/1 system with w = 2, w∗ = 1, FX (t) = 1 −
exp{− 0.1t}, FY (t) = 1 − exp{− 0.2t}. If M = M1 takes its values randomly from
{0,1} with probabilities {0.1,0.9} and M = M2 takes its values on the same set
with probabilities {0.00901,0.990990}, it is plain to see M1 ≤hr M2 and X ≥hr Y .
However, a situation can be found in which TM1 ≤hr TM2 doesn’t hold, i.e., P(TM1 ≥
t2)P(TM2 ≥ t1) ≥ P(TM1 ≥ t1)P(TM2 ≥ t2),∀t1 ≤ t2. It will be established if take
t1 = 3.465 and t2 = 4.581. Since the hr order is the necessary condition for lr order
and in this example, M1 ≤lr M2 and X ≥lr Y , hence TM1 ≤lr TM2 doesn’t hold.

In the following, we explore the conditions under which the stochastic ordering
between the components of two weighted k/n systems imply the stochastic ordering
between the lifetimes of the systems.

Theorem 2 Suppose that Tj represents the lifetime of a weighted k/n system with two
classes CX j and CY j where the size of the class CX j is random, j = 1, 2. Let M be a
random variable with support contained in {0, 1, . . . , n}. Suppose the size of the class
CX j is selected randomly according to the random variable M. Moreover, Let FX j

and FY j indicate the distribution functions of the components in CX j and CY j . Assume
that when a selected component from CX j (CY j ) lies in a working situation, it has the
weight w (w∗), j = 1, 2. Let the dependence structure among components be built
with a common symmetric copula. If X1 ≥st X2 and Y1 ≥st Y2, then T1 ≥st T2.

Proof Let Xi j and Yl j be the lifetimes of the components in the classes CX j and CY j ,
j = 1, 2, i = 1, . . . ,m and l = 1, . . . , n − m. It suffices to show that

⎛
⎜⎜⎝w

m∑
i=1

i∈CX1

I (Xi1 > t) + w∗
n−m∑
i=1

i∈CY1

I (Yi1 > t)

⎞
⎟⎟⎠

≥st

⎛
⎜⎜⎝w

m∑
i=1

i∈CX2

I (Xi2 > t) + w∗
n−m∑
i=1

i∈CY2

I (Yi2 > t)

⎞
⎟⎟⎠ ,

for each fixed m. According to the assumption

Xi1 ≥st Xi2, Yl1 ≥st Yl2, i = 1, . . . ,m, l = 1, . . . , n − m. (3)
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Then from what we have argued in Theorem 1, w I (Xi1 > t) ≥st w I (Xi2 > t) and
w∗ I (Yl1 > t) ≥st w∗ I (Yl2 > t). From Lemma 1 the components in random vectors

(I (X11 > t), . . . , I (Xm1 > t), I (Y11 > t), . . . , I (Y(n−m)1 > t))

and

(I (X12 > t), . . . , I (Xm2 > t), I (Y12 > t), . . . , I (Y(n−m)2 > t))

are dependent with a symmetric common copula. Then, from the inequality (3), the
result follows using Theorems 6.B.14 and 6.B.16.(a) of Shaked and Shanthikumar
(2007). �

Remark 1 Note that the random variables T1 and T2 in part (i) of Theorem 1 and
Theorem 2 are independent and since

P(T1 ≥ T2) =
∫ ∞

0
P(T1 ≥ t)dFT2(t),

then it is easy to see that the usual stochastic order implies the sp order (see Arcones
et al. 2002; Santis et al. 2015). Recall that for two random variables X1 and X2, the
random variable X1 is said to be stochastically precede X2 (written X1 ≤sp X2) if
and only if P(X1 ≤ X2) ≥ 1/2. The random variables X1 and X2 are sp-equivalent
if and only if they satisfy P(X1 ≤ X2) = 1/2.

In the following, we give two examples to measure the difference between P(T1 ≥
T2) and 1/2 in two cases. The first case is when the dependence structure is Clayton
and the second one is when the component lifetimes are independent.

Example 5 Consider a weighted k/10 system for k = 1, . . . , 11 with w = 1, w∗ = 2,
FX1(t) = 1 − exp{− 0.1t}, FY1(t) = 1 − exp{− 0.2t}, FX2(t) = 1 − exp{− 0.5t},
FY2(t) = 1 − exp{− 0.6t}. So the conditions of Theorem 2 are satisfied. Thus by
Remark 1, we have P(T1 ≥ T2) ≥ 1/2. Now, assume that the dependence structure
among components is generated by Clayton copula when τ = 0.2 and τ = 0.5. In
the case that the random variable M follows Binomial distribution B(10, 0.7), the
values of P(T1 ≥ T2) for k = 1, . . . , 11 are calculated. The corresponding results are
presented in Table 1.

Example 6 Consider a weighted k/10 system for k = 1, . . . , 11 with w = 1, w∗ = 2,
FX1(t) = 1 − exp{− 0.1t}, FY1(t) = 1 − exp{− 0.2t}, FX2(t) = 1 − exp{− 0.5t},
FY2(t) = 1 − exp{− 0.6t}. Again the conditions of Theorem 2 are satisfied. Then
Remark 1 gives P(T1 ≥ T2) ≥ 1/2.Here, assume that the components are independent
and the randomvariableM followsBinomial distribution B(10, 0.7). The third column
in Table 1 shows P(T1 ≥ T2) for k = 1, . . . , 11.
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Table 1 The values of
P(T1 ≥ T2): the first column
(τ = 0.2), the second column
(τ = 0.5), for system in
Example 5, the third column
(independence) for system in
Example 6

k Clayton Clayton Independence
τ = 0.2 τ = 0.5 τ = 0

1 0.9150 0.8327 0.8455

2 0.8939 0.8260 0.8425

3 0.8823 0.8269 0.8266

4 0.8716 0.8265 0.8017

5 0.8626 0.8259 0.7745

6 0.8542 0.8243 0.7470

7 0.8463 0.8216 0.7196

8 0.8384 0.8172 0.6923

9 0.8298 0.8109 0.6646

10 0.8195 0.8027 0.6353

11 0.7633 0.7502 0.5748

5 Conclusion

In this paper, we studied some reliability and stochastic properties of weighted k-out-
of-n systems. We assumed that the system is built up from two different classes of
components that are classified with respect to the weights and reliability functions of
the components. It was assumed that a random number of components, say M , are
chosen from the first class and the rest of components are selected from the second
class. Different copula functions were considered for modeling the structure of depen-
dency of the system component lifetimes. The reliability of the system, was expressed
as a mixture of the reliability of weighted k-out-of-n systems, with fixed number of
components of the two types, in terms of the probability mass function of the random
variable M . We showed that when the random mechanism of the chosen components
for different two weighted k-out-of-n systems are ordered in usual stochastic (st) order
then, under some conditions on the weights and the distributions of components life-
time, the lifetimes of the two systems are also ordered in st order. In addition, the
lifetimes of two different systems were compared in the sense of stochastic prece-
dence concept. We presented some illustrative examples for the results under different
conditions.
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