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Abstract
Popular goodness-of-fit tests like the famous Pearson test compare the estimated
probability mass function with the corresponding hypothetical one. If the resulting
divergence value is too large, then the null hypothesis is rejected. If applied to i. i. d.
data, the required critical values can be computed according to well-known asymptotic
approximations, e. g., according to an appropriate χ2-distribution in case of the Pear-
son statistic. In this article, an approach is presented of how to derive an asymptotic
approximation if being concerned with time series of autocorrelated counts. Solutions
are presented for the case of a fully specified null model as well as for the case where
parameters have to be estimated. The proposed approaches are exemplified for (among
others) different types of CLAR(1) models, INAR(p) models, discrete ARMAmodels
and Hidden-Markov models.

Keywords Count time series · Goodness-of-fit test · Estimated parameters ·
Asymptotic approximation · Quadratic-form distribution
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1 Introduction

In many applications, one is interested in testing a hypothesis with respect to the
marginal distribution of a given count time series X1, . . . , XT . This might be done by
looking at a specific feature of the hypothetical count distribution, e. g., at the Poisson
index of dispersion as in Schweer andWeiß (2014), or by deriving a test statistic which
considers any kind of deviation from the null model. In Meintanis and Karlis (2014),
such tests are developed based on probability generating functions (pgf), while here,
we follow the textbook approach and consider goodness-of-fit statistics based on the
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hypothetical and estimated probability mass function (pmf). As an important example
within the power-divergence family (Cressie and Read 1984; Read and Cressie 1988),
we shall concentrate on Pearson’s goodness-of-fit statistic, but the presented approach
could be adapted to other pmf-based statistics as well.

In Sect. 2, an approach is presented of how to explicitly compute the asymptotic
distribution of Pearson’s goodness-of-fit statistic (so no bootstrap implementation is
required). This approach covers both scenarios, where the model parameters are either
specified, or where they have to be estimated from the available data. The approach
can be applied if the process satisfies certain mixing and moment conditions, and
if the h-step-ahead conditional distributions (and corresponding moments) can be
computed. A number of examples are presented, including types of CLAR(1) models,
INAR(p) models, discrete ARMA models and Hidden-Markov models, also see the
summaries in Appendix A. The goodness of the resulting asymptotic approximations
to the actual Pearson statistic’s distribution is investigated in Sect. 3, where results
from a simulation study are presented. There, we also analyze the size and power of
the test if applied in practice, and we briefly discuss two real-data examples. Finally,
we conclude in Sect. 4.

2 Goodness-of-fit testing

Many common goodness-of-fit test statistics fall within the power-divergence family
as discussed by Cressie and Read (1984) and Read and Cressie (1988). Since the
asymptotic behavior of these statistics is the same as that of the famous Pearson’s
goodness-of-fit statistic G2 to be defined below (Cressie and Read 1984; Read and
Cressie 1988), we shall focus on the latter in the sequel.

If the given data X1, . . . , XT are independent and identically distributed (i. i. d.),
and if the Pearson statistic G2 is constructed by using k categories, it is known that its
asymptotic distribution is a χ2-distribution (Cressie and Read 1984; Read and Cressie
1988) [also note the results by Kißlinger and Stummer (2016) about statistics within
the family of scaled Bregman divergences having such a limiting χ2-distribution].
More precisely, if the hypothetical distribution is fully specified, then G2 converges to
the χ2

k−1-distribution with k − 1 degrees of freedom. If, in contrast, the hypothetical
distribution has r ≥ 1 unspecified parameters, which have to be estimated from the
same data, the degrees of freedom have to be further reduced by r , i. e., the distribution
of G2 is approximated by the χ2

k−1−r -distribution.
In the sequel, we shall consider both scenarios, i. e., a fully specified hypothetical

distribution, or a distribution with estimated parameters, but in the case of seri-
ally dependent time series data X1, . . . , XT . Such a scenario (although referring to
continuous-valued data)was also considered byMoore (1982),where itwas shown that
the asymptotic distribution of the Pearson statistic (under rather general conditions)
can be formally derived; however, the involved matrices appeared “intractible” such
that explicit computations were presented only for a Gaussian AR(1) process (first-
order autoregressive) with fully specified null distribution. In this work, an approach
is presented for explicitly computing the limit distribution for a variety of count time
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Goodness-of-fit testing of a count time series’ marginal… 621

seriesmodels and under parameter estimation, such that the Pearson test can be applied
in all these cases without the need for a bootstrap implementation.

2.1 Pearson’s goodness-of-fit test

Let (Xt )Z be a stationary count process. With a goodness-of-fit test based on
X1, . . . , XT , we want to test the hypothesis that the marginal distribution satisfies
P(Xt = i) = pi for some pmf (pi )i . First, we define an appropriate set of categories,
e. g., following one of the rules of thumb surveyed in Horn (1977). Like in Kim and
Weiß (2015), we shall assume b − a + 2 categories of the form

{0, . . . , a}, {a + 1}, . . . , {b}, {b + 1, . . .} with some 0 ≤ a < b. (1)

Then the hypothetical probabilities for Xt falling into one of these categories are
computed from p = (p0, . . . , pb)� as

π :=

⎛
⎜⎜⎜⎜⎜⎝

πa

πa+1
...

πb

πb+1

⎞
⎟⎟⎟⎟⎟⎠

:=

⎛
⎜⎜⎜⎜⎜⎝

p0 + · · · + pa
pa+1

...

pb
1 − p0 − . . . − pb

⎞
⎟⎟⎟⎟⎟⎠

= A p + eb−a+2

with eb−a+2 := (0, . . . , 0, 1)�, and (2)

A := A(a, b) :=

⎛
⎜⎜⎜⎜⎜⎝

1 · · · 1
0 · · · 0
...

...

0 · · · 0
−1 · · · −1︸ ︷︷ ︸

a+1

0 · · · 0

1
...

. . . 0
0 1

−1 · · · −1

⎞
⎟⎟⎟⎟⎟⎟⎠

︸ ︷︷ ︸
b−a

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭
b − a + 2.

Defining p̂i as the relative frequency of i within X1, . . . , XT , i. e., p̂i
= 1

T

∑T
t=1 1{Xt=i} with 1 denoting the indicator function, and setting π̂ := A p̂ +

eb−a+2 with p̂ = ( p̂0, . . . , p̂b)�, Pearson’s goodness-of-fit statistic is computed as

G2 = T (π̂ − π)� diag(π)−1 (π̂ − π). (3)

This can be rewritten

G2 = T G� G with G := diag
(
π

−1/2
a , . . . , π

−1/2
b+1

)
A( p̂ − p). (4)

Fromnowon, let us assume that themarginal pmf is determined by someparameter θ ∈
R
r , i. e., p = p(θ) and π = π(θ) = A p(θ) + eb−a+2. We shall distinguish the
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two scenarios, where either θ is specified (so fully specified pmf), or θ has to be
estimated from X1, . . . , XT (goodness-of-fit with estimated parameters). In the latter
case, we shall use simple moment estimators, i. e., we assume that θ̂ is expressed as a
differentiable function h : Rr → R

r applied to the empirical marginal raw moments
μ̂1 = X̄ = 1

T

∑T
t=1 Xt , …, μ̂r = 1

T

∑T
t=1 X

r
t . The ultimate aim is to derive the

asymptotic distributions of
√
T G( p̂, θ) and

√
T G( p̂, θ̂), respectively, as well as of

G2( p̂, θ) and G2( p̂, θ̂), respectively.

2.2 A central limit theorem

To derive the asymptotic distributions of
√
T G( p̂, θ) and

√
T G( p̂, θ̂), respectively,

we start with a central limit theorem. For this purpose, we assume that (Xt )Z satisfies
appropriate mixing and moment conditions: in the examples considered below, it
is sufficient to assume, e. g., that (Xt )Z is α-mixing with geometrically decreasing
weights, and that the (2r + δ)-moments with some δ > 0 exist. Then we can apply
Theorem 1.7 in Ibragimov (1962) to obtain the required limit distribution.

Special attention is given to the case, where the lagged bivariate probabilities
P(Xt = i, Xt−h = j) are symmetric in i, j (property “SYM”), since then more
simple closed-form expressions can be obtained. Note that SYM is implied by time
reversibility. But our approach also works if the optional property SYM is violated,
computations are just more complex in that case.

In view of (4), we define the (b + 1 + r)-dimensional process

Zt =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

1{Xt=0}
...

1{Xt=b}
Xt
...

Xr
t

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

with μZ := E[Zt ] =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

p0
...

pb
μ1
...

μr

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (5)

where μk := E[Xk
t ] with μ := μ1 (marginal raw moments). The idea is to choose r

sufficiently large such that all parameters in θ can be estimated by the method-of-
moments. Note that the mixing properties of (Xt )Z carry over to (Zt )Z such that
Theorem 1.7 in Ibragimov (1962) is applicable.

Theorem 2.2.1 Let (Xt )t∈Z be a stationary count process, which is α-mixing with
geometrically decreasing weights and has existing (2r+δ)-moments with some δ > 0,
and let Zt be given by (5). Then

1√
T

T∑
t=1

(Zt − μZ)
D−→ N(0,Σ),
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where

σi j = E[Z0,i · Z0, j ] − μZ,i μZ, j

+
∞∑
h=1

(
E[Z0,i · Zh, j ] + E[Zh,i · Z0, j ] − 2μZ,i μZ, j

)

SYM= E[Z0,i · Z0, j ] − μZ,i μZ, j + 2
∞∑
h=1

(
E[Zh,i · Z0, j ] − μZ,i μZ, j

)
.

Note that 1√
T

∑T
t=1 Zt = √

T ( p̂0, . . . , p̂b, μ̂1, . . . , μ̂r )
�. Assuming some differ-

entiable function h : Rr → R
r such that θ = h(μ1, . . . , μr ), the moment estimator

of θ follows as θ̂ = h(μ̂1, . . . , μ̂r ). Applying the Delta method, Theorem 2.2.1 leads
to the asymptotic result

√
T
(
( p̂, θ̂) − ( p, θ)

) D−→ N
(
0,Σ∗) with Σ∗ := DΣD�, (6)

with D denoting the Jacobian of
(
z0, . . . , zb, h(zb+1, . . . , zb+r )

)� evaluated at
(p0, . . . , μr )

�. If, in contrast, θ is specified, then it suffices to consider the asymptotic
result √

T ( p̂ − p)
D−→ N

(
0,Σ ( p)) with Σ ( p) := (σi j )i, j=0,...,b. (7)

So formally, the asymptotic distributions (6) and (7) are easily derived, also see
the analogous results by Moore (1982); in Sect. 2.4, we shall pick up again these
asymptotic distributions for

√
T ( p̂− p) and

√
T
(
( p̂, θ̂) − ( p, θ)

)
, respectively, and

derive the resulting asymptotic distribution of the Pearson statistic with specified or
estimated parameters. But before continuing in this direction, it is crucial to ask if
the covariances occurring in Theorem 2.2.1 can be computed at all in practice, since
otherwise we could not benefit from this result in applications. Therefore, in Sect. 2.3,
it is shown that for many different types of count processes, explicit results are easily
obtained.

2.3 Intermezzo: application and implementation of Theorem 2.2.1

The requiredmoments E[Zh,i ·Z0, j ]with h ≥ 0 in Theorem 2.2.1 are easy to compute
in many practically relevant cases. As outlined in the sequel, the minimal requirement
for computability is that the h-step-ahead conditional probabilities pi | j (h) := P(Xt =
i | Xt−h = j) are available.

For i, j ∈ {0, . . . , b}, we have
E[Zh,i · Z0, j ] − μZ,iμZ, j = P(Xt = i, Xt−h = j) − pi p j

=
{

(δi, j − pi ) p j if h = 0,
(p(h)

i | j − pi ) p j if h > 0,
(8)

where δi, j denotes the Kronecker delta. So if being able to compute the pi | j (h), then
all σi j with i, j = 0, . . . , b [and hence Σ ( p) from (7)] are available.
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624 C. H. Weiß

Next, for i, j ∈ {1, . . . , r}, we have μZ,b+i = μi as well μZ,b+ j = μ j , and we
obtain

E[Zh,b+i · Z0,b+ j ] = E[Xi
t · X j

t−h] =
{

μi+ j if h = 0,
E[Xi

t · X j
t−h] if h > 0.

(9)

So joint moments of sufficiently high order need to be computed. For r = 1, it
is indeed sufficient to compute the autocovariance function. If closed-form moment
expressions are not available, a numerical computation based on the h-step-ahead
bivariate distributions is possible, e. g., by truncating the summation after M + 1
summands with M sufficiently large.

Finally, for the remaining moments, the optional property SYM would be particu-
larly useful, because then

E[Zh,i · Z0,b+ j ] SYM= E[Zh,b+ j · Z0,i ]

holds for i = 0, . . . , b and j = 1, . . . , r . For the latter moments, we obtain

E[Zh,b+ j · Z0,i ] = E[X j
t 1{Xt−h=i}] =

{
i j pi if h = 0,
E[X j

t | Xt−h = i] pi if h > 0.
(10)

Note that such conditional moments (10) are often easy to compute in practice, as
illustrated by the subsequent examples. If the “nice-to-have” property SYM does not
hold, then E[Zh,i · Z0,b+ j ] = ∑∞

x=0 x
j p(h)

i |x px has to be calculated (numerically)
from the h-step-ahead bivariate distribution.

Example 2.3.1 (i. i. d. Counts) Let (Xt )Z be i. i. d. Then pi | j (h) − pi = 0 for h > 0,
so (8) simplifies and we obtain the well-known result that σi j = (δi, j − pi ) p j for

i, j = 0, . . . , b. Similarly, (9) simplifies because of E[Xi
t · X j

t−h] = μi μ j for h > 0,
so σb+i,b+ j = μi+ j − μi μ j for i, j = 1, . . . , r . Finally, the independence implies

SYM, and E[X j
t | Xt−h = i] = μ j if h > 0. So σi,b+ j = (i j − μ j ) pi because of

(10).

Example 2.3.2 (CLAR(1)Model) Let (Xt )Z follow aCLAR(1)model (Grunwald et al.
2000) as described in Appendix A.1. Applying (A.2) to (10), we obtain for j = 1
(referring to the estimation of the mean μ) that

E[Zh,b+1 · Z0,i ] = (
αh · i + (1 − αh) μ

)
pi ,

which also holds for h = 0. Hence, if SYM holds, σi,b+1 in Theorem 2.2.1 becomes

σi,b+1 = E[Z0,b+1 · Z0,i ] − μ pi + 2
∞∑
h=1

(
E[Zh,b+1 · Z0,i ] − μ pi

)

= (i − μ) pi + 2
∞∑
h=1

αh (i − μ) pi = (i − μ) pi
1 + α

1 − α
.
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Furthermore, (9) leads to E[Zh,b+1 Z0,b+1]−μ2 = Cov[Xt , Xt−h] = σ 2 ρ(h), where
ρ(h) = αh according to (A.2). So σb+1,b+1 in Theorem 2.2.1 becomes

σb+1,b+1 = σ 2 + 2
∞∑
h=1

σ 2 αh = σ 2 1 + α

1 − α
.

Aswe have seen in Example 2.3.2, the covariances σi,b+1 and σb+1,b+1 directly follow
from the CLAR(1) property, without further distributional assumptions. To evaluate
the remaining expressions, let us consider two particular instanceswithin theCLAR(1)
family, which date back to McKenzie (1985) and are often used in applications.

Example 2.3.3 (Poisson INAR(1) Model) Let (Xt )Z follow the Poisson INAR(1)
model from Appendix A.2. Then the marginal distribution pi = e−μ μi/i ! is deter-
mined by only one parameter, themean parameterμ. So it suffices to consider only one
estimator (thus r = 1), μ̂ = X̄ . The results of Example 2.3.2 hold with an additional
simplification: because of the Poisson’s equidispersion property, we have σ 2 = μ.

The remaining entries σi j in Theorem 2.2.1 for i, j ∈ {0, . . . , b} simplify with (8)
to

σi j = (δi, j − pi ) p j + 2 p j

∞∑
h=1

(pi | j (h) − pi )

which are computed by either using (A.3) for the Poisson INAR(1)’s h-step-ahead tran-
sition probabilities, or by utilizing that (Xt , Xt−h) are bivariately Poisson distributed
according to BPoi

(
αh μ; (1 − αh) μ, (1 − αh) μ

)
. Since a closed-form expression

for σi j is rather complex, in practice, one approximates

σi j ≈ (δi, j − pi ) p j + 2 p j

M∑
h=1

(pi | j (h) − pi ) with M sufficiently large.

Example 2.3.4 (Binomial AR(1) Model) Let (Xt )Z follow the binomial AR(1) model
from Appendix A.3, i. e., with binomial marginal distribution pi = (ni

)
π i (1−π)n−i .

The results of Example 2.3.2 hold withμ = nπ , σ 2 = nπ(1−π) as well as α replaced
by ρ. The required moment estimator of π is defined as π̂ := X̄/n. As a result, the
Jacobian D used for (6) takes a very simple form, D = diag(1, . . . , 1, 1/n).

The entries σi j in Theorem 2.2.1 for i, j ∈ {0, . . . , b} are computed as in Exam-
ple 2.3.3, but using formula (A.7) for the h-step-ahead transition probabilities. Note
that in this particular example, the asymptotic covariance matrix Σ ( p) from (7) can
also be computed by using a result in Tavaré and Altham (1983) for finite Markov
chains, see Kim and Weiß (2015) for details.

A CLAR(1) process not being time reversible is the geometric INAR(1) process.

Example 2.3.5 (Geometric INAR(1) Model) If (Xt )Z follows the geometric INAR(1)
model from Appendix A.2, then, in contrast to Example 2.3.3, the property SYM
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626 C. H. Weiß

does not hold. So numerical approximations are required for Theorem 2.2.1. These
include the computation of the pi | j (h), since a simple closed-form formula is not
available: for N sufficiently large, define P̃ := (pi | j )i, j=0,...,N with the transition
probabilities (A.5); then the h-step-ahead transition probabilities (pi | j (h))i, j=0,...,N

are approximated by the matrix P̃h .
The geometric marginal distribution satisfiesμ = (1−π)/π and σ 2 = (1−π)/π2,

and it requires one estimator (thus r = 1), π̂ = 1/(1 + X̄). The Jacobian D used for
(6) equals D = diag

(
1, . . . , 1, −π2

)
.

In an analogous way as in Example 2.3.5, one can also handle INAR(1) processes with
other types of non-Poissonmarginal distribution, e. g., a negative binomial distribution
(McKenzie 1986). In the latter case, the main difference to Example 2.3.5 is the fact
that the negative binomial distribution has two parameters, i. e., now r = 2 moments
have to be considered for parameter estimation. The required formulae for higher-order
joint moments can be found in Schweer and Weiß (2014).

The next examples demonstrate that the count processes to be considered are not
limited toMarkov chains.As an illustrative example for a higher-orderAR-typemodel,
the Poisson INAR(2) model by Alzaid and Al-Osh (1990) is presented.

Example 2.3.6 (Poisson INAR(2) Model) Let (Xt )Z follow the Poisson INAR(2)
model from Appendix A.2, especially Example A.2.2. Like any Poisson INAR(p)
process in the sense of Alzaid and Al-Osh (1990), this process is time reversible such
that the property SYM holds. All computations can be done in complete analogy to

the INAR(1) case in Example 2.3.3, by using that (Xt , Xt−h) ∼ BPoi
(
ρ(h) μ; (1−

ρ(h)
)
μ,
(
1 − ρ(h)

)
μ
)
and E[Xt | Xt−h] = ρ(h) Xt−h + (1 − ρ(h)

)
μ, where the

ACF satisfies ρ(1) = α1 and ρ(h) = α1 ρ(h − 1) + α2 ρ(h − 2) for h ≥ 2.

It should be pointed out that the argumentation in Example 2.3.6 is easily adapted
to the family of Poisson INMA(q) processes (moving-average-type models), which
are non-Markovian but q-dependent. The latter property implies that the infinite sums
in Theorem 2.2.1 reduce to finite ones, with non-zero summands for h ≤ q. For
such Poisson INMA(q) processes, Weiß (2008) showed that again (Xt , Xt−h) ∼
BPoi

(
ρ(h) μ; (1 − ρ(h)

)
μ,
(
1 − ρ(h)

)
μ
)
holds, where the ACF has to be deter-

mined from the specific INMA(q) model. Note that the bivariate distributions
of (Xt , Xt−1), . . . , (Xt , Xt−q) require knowledge only about μ and ρ(1), . . . , ρ(q),
which are easily estimated from given time series data.

A completely different approach than INARMA for obtaining ARMA-like count
processes is given by the NDARMA models by Jacobs and Lewis (1983).

Example 2.3.7 (NDARMA Model) Let (Xt )Z be an NDARMA(p,q) process as
described in Appendix A.4. According to (A.8), these models satisfy the property
SYM with pi | j (h) − pi = (δi, j − pi ) ρ(h). Defining c := 1 + 2

∑∞
h=1 ρ(h), the

entries σi j in Theorem 2.2.1 for i, j ∈ {0, . . . , b} become σi j = c (δi, j − pi ) p j . Note
that this result coincides with the i. i. d. case from Example 2.3.1 except the additional
factor c, also see formula (14) in Weiß (2013).
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The conditional moments in (10) follow as

E[X j
t |Xt−h = i] =

∞∑
x=0

x j (px + (δx,i − px ) ρ(h)
) = μ j + ρ(h) (i j − μ j ).

So σi,b+ j in Theorem 2.2.1 becomes σi,b+ j = c (i j −μ j ) pi , compare again with the
i. i. d. result from Example 2.3.1. Finally, the joint moments in (9) are computed as

E[Xi
t X

j
t−h] =

∞∑
x,y=0

xi y j (px + (δx,y − px )ρ(h)
)
py = μiμ j

+ ρ(h)(μi+ j − μiμ j ),

so σb+i,b+ j in Theorem 2.2.1 becomes σb+i,b+ j = c (μi+ j −μi μ j ). Hence, through-
out, we obtain the i. i. d. results from Example 2.3.1 together with the additional
factor c.

Another non-Markovian example, which could be relevant in practice, is a Hidden-
Markov model for counts, see Zucchini and MacDonald (2009) for detailed informa-
tion. If A denotes the transition matrix of the hidden Markov chain with π being the
corresponding stationary marginal distribution, and if P(i) := diag

(
p(i |·)) denotes

the diagonal matrix of all state-dependent probabilities leading to the count i ∈ N0,
then the marginal and lagged bivariate probabilities are computed as

P(Xt = i) = 1� P(i)π ,

P(Xt = i, Xt−h = j) = 1� P(i)Ah P( j)π ,
(11)

where 1 denotes the vector of ones. So formulae (8)–(10) are again easily computed
in practice.

Remark 2.3.8 A further model family commonly used for ARMA-like count time
series are INGARCH models (integer-valued generalized autoregressive conditional
heteroscedasticity), see Ferland et al. (2006) and Weiß (2018) for background infor-
mation. Although these models typically satisfy the moment and mixing conditions
of Theorem 2.2.1, see Ferland et al. (2006) and Neumann (2011), goodness-of-fit
tests w.r.t. to the counts’ marginal distribution are not applicable. INGARCH models
are defined in terms of their conditional distribution (given the available past), e. g.,
by requiring a conditional Poisson distribution for Poisson INGARCH models. But
analytic expressions concerning the resulting marginal distribution are not known, so
marginal goodness-of-fit statistics cannot be computed for these models.

2.4 Asymptotic distribution of Pearson statistic

In Sect. 2.2, we ended up with the asymptotic normal distribution (6) for
√
T
(
( p̂, θ̂)−

( p, θ)
)
. This is now used to derive the asymptotic distributions of

√
T G( p̂, θ) and
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628 C. H. Weiß

√
T G( p̂, θ̂), respectively, remember (4). For this purpose, let z = (z1, z2) with z1 ∈

R
b+1 and z2 ∈ R

r , and define the function

g(z) := g(z1, z2) := diag
(
πa(z2)−1/2, . . . , πb+1(z2)−1/2)A(z1 − p(z2)

)

such that G( p̂, θ) = g( p̂, θ) and G( p̂, θ̂) = g( p̂, θ̂). To be able to apply the Delta
method to (6), the Jacobian of g is required. Note that the kth component of g(z),
k = a, . . . , b + 1, equals

gk(z) =
b∑

l=0

akl πk(z2)−1/2 (z1,l − pl(z2)
)
.

So we obtain the partial derivatives

∂
∂z1,i

gk(z) = aki πk(z2)−1/2 for i = 0, . . . , b,

∂
∂z2, j

gk(z) =
b∑

l=0

akl
((
z1,l − pl(z2)

)
∂

∂z2, j
πk(z2)−1/2 − πk(z2)−1/2 ∂

∂z2, j
pl(z2)

)

= −
b∑

l=0

akl
2

(
z1,l − pl(z2)

)
πk(z2)−3/2

b∑
m=0

akm
∂

∂z2, j
pm(z2)

−
b∑

l=0

akl πk(z2)−1/2 ∂
∂z2, j

pl(z2) for j = 1, . . . , r .

In the specified-parameter case, we evaluate the reduced Jacobian

Jg(z1) = (
∂

∂z1,i
gk(z1, θ)

)
k=a,...,b+1, i=0,...,b

in p. Together with (7), this leads to

√
T G( p̂, θ)

D−→ N
(
0,DknΣ

( p)D�
kn

)
with Dkn = diag

(
π(θ)−1/2

)
A. (12)

Here, π(θ)−1/2 is computed by applying “−1/2” (i. e., 1/
√·) separately in each com-

ponent of π(θ).
In the estimated-parameter case, we evaluate the full Jacobian

Jg(z) = (
∂

∂zl
gk(z)

)
k=a,...,b+1, l=0,...,b+r

in ( p, θ). Denoting the Jacobian of p(z2) by J p(z2), we obtain together with (6) that

√
T G( p̂, θ̂)

D−→ N
(
0,DestΣ

∗D�
est

)
with Dest =

(
Dkn, −Dkn J p(θ)

)
(13)

being a block matrix. Let us illustrate the computation of J p(θ) and hence Dest with
some common types of hypothetical marginal distribution.
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Example 2.4.1 (PoissonMarginal) If the hypotheticalmarginal distribution is a Poisson
one, i. e., Xt ∼ Poi(μ) with pi (μ) = e−μ μi/i !, like for the Poisson INAR models in
Examples 2.3.3, 2.3.6 and Appendix A.2, then the Jacobian J p is easily computed:

∂
∂μ

pi (μ) = e−μ μi−1

(i − 1)! − e−μ μi

i ! = pi−1(μ) − pi (μ),

which also holds for i = 0 with the convention p j (μ) = 0 for j < 0.

Example 2.4.2 (Binomial Marginal) If the hypothetical marginal distribution is a bino-
mial one, i. e., Xt ∼ Bin(n, π), i. e., pn,i (π) = (ni

)
π i (1−π)n−i , like for the binomial

AR(1) model in Example 2.3.4 and Appendix A.3, then again the Jacobian J p is easily
computed:

∂
∂π

pn,i (π) = i
(n
i

)
π i−1 (1 − π)n−i − (n − i)

(n
i

)
π i (1 − π)n−i−1

= n
(
pn−1,i−1(π) − pn−1,i (π)

)
,

which also holds for i = 0, n as well as n = 1 with the conventions p0,0(π) = 1 and
pm, j (π) = 0 for j < 0 or j > m.

Example 2.4.3 (Geometric Marginal) If the hypothetical marginal distribution is the
geometric distribution Geom(π), i. e., pi (π) = π (1 − π)i , like for the geometric
INAR(1)model in Example 2.3.5 andAppendixA.2, then the Jacobian J p is computed
by using

∂
∂π

pi (π) = (1 − π)i − i π (1 − π)i−1 = 1
π
pi (π) − i pi−1(π),

which also holds for i = 0 with the convention p j (π) = 0 for j < 0.

As the final step, we apply Theorem 3.1 in Tan (1977) to (12) and (13) to obtain the
asymptotic distribution of Pearson’s goodness-of-fit test statistic (4) in both scenarios.
This is a quadratic-form distribution, i. e., the distribution of an expression of the form∑u

i=1 λi Z2
i with Z1, . . . , Zr being i. i. d. N(0, 1)-variates [also see Moore (1982)]. In

the specified-parameter case, it holds that

G2( p̂, θ)
D−→

u∑
i=1

λi Z
2
i , (14)

where λ1, . . . , λu are the non-zero eigenvalues of DknΣ
( p)D�

kn according to (12).
Note that in the particular case of a binomial AR(1) process (Example 2.3.4 and
Appendix A.3), the asymptotic distribution in (14) can also be computed according to
the approach of Kim and Weiß (2015).

In the estimated-parameter case, it holds that

G2( p̂, θ̂)
D−→

v∑
j=1

λ∗
j Z

2
j , (15)
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where λ∗
1, . . . , λ

∗
v are the non-zero eigenvalues of DestΣ

∗D�
est according to (13).

To evaluate such quadratic-form distributions, the R package CompQuadForm
(Duchesne and Micheaux 2010) can be used, e. g., the functions davies or imhof.
This is also done in the next Sect. 3, where we investigate the asymptotic distributions
(14) and (15) from various viewpoints. Before doing this, we conclude with a brief
remark concerning the NDARMA models from Example 2.3.7.

Example 2.4.4 (NDARMA Model) Since the involved covariance matrices of an
NDARMA(p,q) process differ from those of the i. i. d. case only by the unique factor c
as defined in Example 2.3.7, goodness-of-fit testing based on NDARMA processes,
with or without estimated parameters, is done by computing the respective critical
values for the i. i. d. case and by multiplying them by c, also see Weiß (2013).

3 Computations and simulations

In the sequel, some results from a simulation study are presented to demonstrate the
goodness of the asymptotic approximations (14) and (15) to the Pearson statistic’s
distribution, and to illustrate the application of the Pearson test in practice.

3.1 Finite-sample performance of asymptotic approximations

Since the above approach concerning the distribution of Pearson’s goodness-of-fit test
statistic (4) relies on asymptotic results for sample size T → ∞, the first question to
be analyzed is the one about the performance of the resulting approximation for time
series of finite length T . For this purpose, diverse types of count processwere simulated
(always with 10,000 replications), the Pearson statistics with specified or estimated
parameters, respectively, were computed, and empirical properties of the resulting
samples are now compared to the corresponding asymptotic properties according to
(14) or (15), respectively.

Our first comparison refers to Kim and Weiß (2015), who derived the asymptotic
distribution of the Pearson statistic for the special case of a binomial AR(1) process
(Example 2.3.4 and Appendix A.3) with specified parameters. In the last four lines of
their Table 1, however, Kim and Weiß (2015) gave simulated values of the quantiles
q0.25, q0.50, q0.75, q0.95, q0.99 also for the case of estimating the binomial parameter π

by π̂ := X̄/n.With the novel approach derived in this paper, see Example 2.3.4, we are
able to also compute these quantiles asymptotically. This is shown in Table 1, where
we see a rather good agreement between the asymptotic and the simulated quantiles,
although the sample size T = 70 is rather small in a time series context.

Next, we check the finite-sample performance for a number of countmodels with an
unbounded range: the Poisson INAR(1) model (Example 2.3.3 and Appendix A.2) as
a first-order model satisfying the property “SYM”, the geometric INAR(1) model
(Example 2.3.5 and Appendix A.2) as a first-order model violating the property
“SYM”, and the Poisson INAR(2) model (Example A.2.2 and Appendix A.2) as a
second-order model satisfying the property “SYM”. In each case, the design param-
eters were chosen such that Cochran’s rule is satisfied, i. e., the expected count per

123



Goodness-of-fit testing of a count time series’ marginal… 631

Ta
bl
e
1

Q
ua
nt
ile
s
of

Pe
ar
so
n
st
at
is
tic

(e
st
im

at
ed

pa
ra
m
et
er
s)
fo
rb

in
om

ia
lA

R
(1
)p

ro
ce
ss
:a
sy
m
pt
ot
ic
ve
rs
us

si
m
ul
at
ed

va
lu
es
,w

he
re
th
e
la
tte
ra
re
ta
ke
n
fr
om

Ta
bl
e
1
in
K
im

an
d
W
ei
ß
(2
01

5)

n
π

ρ
T

a
b

q 0
.2
5

q 0
.5
0

q 0
.7
5

q 0
.9
5

q 0
.9
9

5
0.
4

0.
00

70
0

4
1.
92

3
1.
91

4
3.
35

7
3.
26

8
5.
38

5
5.
24

6
9.
49

9.
28

13
.2
8

13
.6
6

5
0.
4

0.
50

70
0

4
2.
44

9
2.
35

1
4.
29

2
3.
96

2
6.
92

1
6.
29

3
12

.3
3

11
.7
3

17
.4
4

18
.1
9

22
0.
4

0.
00

70
5

11
3.
48

3
3.
55

4
5.
37

7
5.
41

8
7.
87

0
7.
90

3
12

.6
2

12
.5
9

16
.8
4

16
.6
5

22
0.
4

0.
50

70
5

11
3.
84

5
3.
91

1
5.
95

1
6.
00

0
8.
74

4
8.
62

1
14

.1
4

13
.7
8

19
.0
3

18
.8
0

123



632 C. H. Weiß

Ta
bl
e
2

M
ea
n,

st
an
da
rd

de
vi
at
io
n
an
d
qu
an
til
es

of
Pe
ar
so
n
st
at
is
tic

fo
r
Po

is
so
n
IN

A
R
(1
)
pr
oc
es
s
w
ith

μ
=

3:
as
ym

pt
ot
ic
ve
rs
us

si
m
ul
at
ed

va
lu
es

α
T

a
b

M
ea
n

SD
q 0

.2
5

q 0
.5
0

q 0
.7
5

q 0
.9
5

q 0
.9
9

Sp
ec
ifi
ed

pa
ra
m
et
er
s

0.
25

20
0

0
6

7.
80

7.
81

4.
26

4.
33

4.
70

4.
73

7.
03

6.
96

10
.0
7

9.
95

15
.8
5

16
.1
2

21
.0
6

21
.4
3

50
0

0
7

8.
82

8.
82

4.
49

4.
58

5.
54

5.
52

8.
06

8.
00

11
.2
6

11
.1
5

17
.2
7

17
.6
0

22
.6
1

23
.2
6

10
00

0
8

9.
83

9.
86

4.
72

4.
79

6.
39

6.
44

9.
07

9.
16

12
.4
4

12
.3
3

18
.6
5

18
.6
6

24
.1
0

25
.0
3

0.
50

20
0

0
6

9.
87

9.
88

5.
85

5.
92

5.
70

5.
68

8.
66

8.
66

12
.6
8

12
.6
8

20
.9
7

21
.1
5

29
.2
2

29
.7
0

50
0

0
7

10
.9
7

10
.9
8

6.
07

6.
18

6.
64

6.
65

9.
79

9.
75

13
.9
8

13
.9
2

22
.4
3

22
.6
3

30
.7
4

31
.4
3

10
00

0
8

12
.0
5

11
.9
6

6.
26

6.
39

7.
58

7.
43

10
.8
9

10
.7
1

15
.2
2

15
.0
3

23
.8
2

23
.7
6

32
.1
6

32
.6
6

0.
75

20
0

0
6

17
.4
4

17
.1
9

11
.9
0

12
.4
7

9.
22

9.
05

14
.5
3

14
.0
7

22
.3
6

21
.4
2

40
.3
6

41
.0
3

59
.5
0

62
.5
5

50
0

0
7

18
.9
7

18
.8
3

12
.1
8

12
.7
3

10
.5
3

10
.3
9

16
.1
1

15
.7
3

24
.1
5

23
.4
9

42
.3
5

43
.2
6

61
.5
6

64
.4
2

10
00

0
8

20
.4
0

20
.4
6

12
.3
9

13
.0
6

11
.7
9

11
.6
5

17
.5
7

17
.3
6

25
.7
9

25
.5
9

44
.1
0

44
.8
9

63
.3
3

68
.5
7

E
st
im
at
ed

pa
ra
m
et
er
s

0.
25

20
0

0
6

6.
15

6.
13

3.
55

3.
50

3.
54

3.
59

5.
48

5.
45

8.
03

7.
94

12
.9
0

12
.7
8

17
.2
3

17
.3
4

50
0

0
7

7.
16

7.
14

3.
83

3.
81

4.
35

4.
33

6.
49

6.
46

9.
24

9.
22

14
.3
9

14
.4
1

18
.9
1

18
.7
3

10
00

0
8

8.
17

8.
18

4.
09

4.
08

5.
17

5.
23

7.
49

7.
53

10
.4
3

10
.3
6

15
.8
3

15
.7
3

20
.5
2

20
.7
5

0.
50

20
0

0
6

6.
89

6.
86

4.
04

3.
96

3.
93

4.
00

6.
11

6.
10

9.
00

8.
93

14
.5
9

14
.2
0

19
.6
8

19
.3
7

50
0

0
7

7.
98

7.
94

4.
34

4.
33

4.
81

4.
81

7.
20

7.
18

10
.3
0

10
.2
6

16
.1
9

15
.9
1

21
.4
8

21
.1
7

10
00

0
8

9.
05

8.
95

4.
61

4.
64

5.
69

5.
59

8.
27

8.
17

11
.5
6

11
.3
6

17
.7
1

17
.6
4

23
.1
6

23
.4
5

0.
75

20
0

0
6

10
.4
9

10
.1
6

6.
68

6.
35

5.
72

5.
74

9.
04

8.
84

13
.6
5

13
.1
2

23
.2
9

21
.8
8

32
.8
2

31
.6
6

50
0

0
7

11
.9
9

11
.6
9

7.
12

7.
02

6.
90

6.
84

10
.5
2

10
.2
5

15
.4
4

14
.8
1

25
.5
5

24
.6
4

35
.4
2

35
.6
8

10
00

0
8

13
.4
0

13
.3
2

7.
46

7.
62

8.
06

8.
01

11
.9
3

11
.8
0

17
.1
1

16
.7
4

27
.5
5

27
.4
4

37
.6
4

39
.5
3

123



Goodness-of-fit testing of a count time series’ marginal… 633

Ta
bl
e
3

M
ea
n,

st
an
da
rd

de
vi
at
io
n
an
d
qu
an
til
es

of
Pe
ar
so
n
st
at
is
tic

fo
r
ge
om

et
ri
c
IN

A
R
(1
)
pr
oc
es
s
w
ith

μ
=

3:
as
ym

pt
ot
ic
ve
rs
us

si
m
ul
at
ed

va
lu
es

α
T

a
b

M
ea
n

SD
q 0

.2
5

q 0
.5
0

q 0
.7
5

q 0
.9
5

q 0
.9
9

Sp
ec
ifi
ed

pa
ra
m
et
er
s

0.
25

20
0

0
8

9.
84

9.
88

4.
78

4.
79

6.
37

6.
40

9.
05

9.
05

12
.4
5

12
.5
0

18
.8
0

18
.7
2

24
.4
8

24
.8
3

50
0

0
11

12
.8
4

12
.7
9

5.
38

5.
44

8.
95

8.
87

12
.0
7

12
.0
0

15
.8
9

15
.8
3

22
.7
8

22
.7
8

28
.7
6

29
.2
6

10
00

0
13

14
.8
4

14
.9
5

5.
74

5.
96

10
.7
0

10
.6
7

14
.0
8

14
.1
4

18
.1
6

18
.3
0

25
.3
8

25
.9
0

31
.5
5

32
.6
7

0.
50

20
0

0
8

12
.2
1

12
.1
2

6.
65

6.
61

7.
52

7.
55

10
.8
9

10
.8
8

15
.4
0

15
.0
5

24
.7
5

24
.5
5

34
.2
2

34
.5
0

50
0

0
11

15
.2
1

15
.2
5

7.
10

7.
20

10
.1
8

10
.2
3

13
.9
6

13
.9
5

18
.8
2

18
.7
8

28
.4
6

28
.9
2

37
.9
7

38
.6
2

10
00

0
13

17
.2
1

17
.3
4

7.
38

7.
49

11
.9
8

12
.1
2

16
.0
0

15
.9
4

21
.0
7

21
.0
8

30
.9
1

31
.2
7

40
.4
4

41
.1
9

0.
75

20
0

0
8

21
.7
0

21
.2
1

13
.9
0

13
.5
8

12
.1
4

12
.0
3

18
.3
5

17
.9
4

27
.4
5

26
.7
0

48
.4
4

47
.2
6

70
.8
1

70
.2
7

50
0

0
11

24
.9
8

24
.9
6

14
.2
5

14
.5
1

15
.1
6

15
.0
6

21
.7
3

21
.6
9

31
.0
7

30
.8
5

52
.2
2

52
.1
6

74
.6
3

75
.9
2

10
00

0
13

27
.0
6

27
.2
6

14
.4
4

14
.9
0

17
.1
2

17
.0
1

23
.8
8

23
.8
4

33
.3
6

33
.7
9

54
.5
7

55
.9
5

76
.9
8

79
.0
5

E
st
im
at
ed

pa
ra
m
et
er
s

0.
25

20
0

0
8

8.
25

8.
32

4.
11

4.
14

5.
24

5.
30

7.
57

7.
63

10
.5
2

10
.5
8

15
.9
7

16
.0
5

20
.7
3

20
.6
7

50
0

0
11

11
.2
1

11
.1
9

4.
79

4.
78

7.
72

7.
71

10
.5
3

10
.5
3

13
.9
5

13
.9
5

20
.0
7

19
.9
0

25
.2
6

25
.3
3

10
00

0
13

13
.1
9

13
.2
8

5.
19

5.
31

9.
43

9.
42

12
.5
1

12
.6
7

16
.2
2

16
.4
1

22
.7
3

22
.9
2

28
.1
9

28
.5
9

0.
50

20
0

0
8

9.
29

9.
26

4.
88

4.
79

5.
77

5.
77

8.
41

8.
39

11
.8
3

11
.8
1

18
.4
8

18
.0
9

24
.7
1

24
.4
6

50
0

0
11

12
.2
5

12
.3
5

5.
48

5.
54

8.
29

8.
38

11
.3
9

11
.4
5

15
.2
5

15
.3
2

22
.4
4

22
.8
4

28
.9
4

29
.4
8

10
00

0
13

14
.2
3

14
.3
4

5.
85

5.
85

10
.0
2

10
.1
7

13
.3
9

13
.5
1

17
.5
1

17
.5
7

25
.0
2

25
.2
1

31
.6
9

31
.7
0

0.
75

20
0

0
8

14
.8
6

14
.6
7

8.
97

8.
70

8.
59

8.
52

12
.8
7

12
.8
7

18
.8
7

18
.7
2

31
.9
6

31
.5
1

45
.5
8

43
.5
1

50
0

0
11

18
.0
3

18
.0
9

9.
49

9.
60

11
.3
9

11
.4
2

16
.1
0

16
.0
4

22
.4
7

22
.5
3

35
.9
9

36
.3
5

49
.8
9

50
.6
7

10
00

0
13

20
.0
9

20
.2
2

9.
78

9.
91

13
.2
4

13
.2
7

18
.2
0

18
.2
0

24
.7
7

24
.9
9

38
.5
0

39
.1
4

52
.5
0

53
.2
8

123



634 C. H. Weiß

Ta
bl
e
4

M
ea
n,

st
an
da
rd

de
vi
at
io
n
an
d
qu
an
til
es

of
Pe
ar
so
n
st
at
is
tic

fo
r
Po

is
so
n
IN

A
R
(2
)
pr
oc
es
s
w
ith

μ
=

3:
as
ym

pt
ot
ic
ve
rs
us

si
m
ul
at
ed

va
lu
es

α
1

α
2

T
a

b
M
ea
n

SD
q 0

.2
5

q 0
.5
0

q 0
.7
5

q 0
.9
5

q 0
.9
9

Sp
ec
ifi
ed

pa
ra
m
et
er
s

0.
25

0.
25

20
0

0
6

9.
42

9.
37

5.
64

5.
85

5.
42

5.
37

8.
24

8.
13

12
.0
8

11
.9
4

20
.1
1

20
.0
3

28
.2
8

29
.2
2

50
0

0
7

10
.4
7

10
.5
0

5.
84

6.
05

6.
32

6.
25

9.
32

9.
31

13
.3
1

13
.3
6

21
.5
0

21
.9
7

29
.7
0

31
.3
7

10
00

0
8

11
.5
0

11
.6
4

6.
03

6.
42

7.
21

7.
20

10
.3
7

10
.3
3

14
.5
1

14
.5
4

22
.8
2

23
.7
7

31
.0
4

32
.9
4

0.
50

0.
25

20
0

0
6

15
.3
1

15
.2
0

11
.1
5

11
.8
8

7.
78

7.
60

12
.3
9

11
.9
1

19
.4
7

18
.9
7

36
.8
8

37
.5
3

56
.0
6

60
.2
8

50
0

0
7

16
.5
9

16
.5
1

11
.3
6

11
.9
5

8.
90

8.
64

13
.7
2

13
.2
5

20
.9
7

20
.5
3

38
.4
9

39
.0
0

57
.7
2

61
.2
1

10
00

0
8

17
.7
8

17
.7
0

11
.5
1

12
.0
7

9.
97

9.
91

14
.9
7

14
.5
1

22
.3
3

21
.9
8

39
.9
1

40
.7
0

59
.1
5

63
.3
0

0.
75

0.
10

20
0

0
6

25
.8
4

25
.2
0

19
.7
1

20
.8
2

12
.4
8

12
.0
5

20
.4
9

19
.3
1

33
.1
5

31
.2
6

64
.1
6

64
.2
1

97
.9
5

10
4.
81

50
0

0
7

27
.7
5

27
.6
5

20
.0
6

21
.9
5

14
.1
1

13
.7
2

22
.4
5

21
.6
9

35
.3
9

34
.7
1

66
.6
4

69
.1
4

10
0.
55

10
8.
62

10
00

0
8

29
.4
5

29
.1
7

20
.3
0

21
.6
4

15
.6
2

15
.1
3

24
.2
2

23
.4
1

37
.3
4

36
.0
8

68
.7
1

70
.8
9

10
2.
64

10
8.
65

E
st
im
at
ed

pa
ra
m
et
er
s

0.
25

0.
25

20
0

0
6

6.
44

6.
35

3.
74

3.
71

3.
70

3.
64

5.
73

5.
68

8.
41

8.
28

13
.5
6

13
.3
2

18
.1
8

18
.1
7

50
0

0
7

7.
48

7.
43

4.
03

4.
04

4.
53

4.
47

6.
76

6.
71

9.
65

9.
58

15
.0
9

15
.0
6

19
.8
9

19
.7
9

10
00

0
8

8.
50

8.
49

4.
28

4.
34

5.
37

5.
33

7.
79

7.
68

10
.8
6

10
.8
4

16
.5
5

16
.4
2

21
.5
2

22
.1
2

0.
50

0.
25

20
0

0
6

8.
36

8.
11

5.
25

5.
00

4.
60

4.
58

7.
24

7.
10

10
.8
6

10
.4
6

18
.3
7

17
.6
1

25
.8
0

24
.9
8

50
0

0
7

9.
61

9.
37

5.
61

5.
65

5.
59

5.
49

8.
48

8.
15

12
.3
6

11
.8
4

20
.2
4

19
.6
0

27
.9
6

29
.4
9

10
00

0
8

10
.7
9

10
.6
8

5.
89

5.
93

6.
57

6.
53

9.
66

9.
59

13
.7
5

13
.4
1

21
.9
1

21
.7
7

29
.7
9

30
.6
6

0.
75

0.
10

20
0

0
6

13
.6
0

12
.8
4

9.
37

8.
91

7.
04

6.
97

11
.3
5

10
.8
4

17
.6
3

16
.2
9

31
.6
4

28
.7
4

46
.2
0

45
.1
9

50
0

0
7

15
.4
4

14
.8
6

9.
96

10
.0
1

8.
45

8.
24

13
.1
5

12
.6
2

19
.8
5

18
.6
9

34
.5
6

32
.7
4

49
.6
7

50
.3
2

10
00

0
8

17
.1
2

16
.6
5

10
.3
9

10
.7
0

9.
80

9.
47

14
.8
2

14
.2
9

21
.8
5

21
.0
0

37
.0
1

36
.0
5

52
.4
3

53
.7
8

123



Goodness-of-fit testing of a count time series’ marginal… 635

category is ≥ 5. For each of these models, selected results are shown in Tables 2, 3
and 4 for illustration; further results can be obtained from the author upon request.

The results in Tables 2, 3 and 4 show a rather good agreement between the asymp-
totic approximation and the simulated values of mean, standard deviation as well
as the quantiles q0.25, . . . , q0.99 throughout, with slightly increasing discrepancy for
increasing autocorrelation level. This agreement is better in the estimated-parameter
case, which is more relevant for practice anyway.

3.2 Approximate critical values

After having demonstrated the goodness of the asymptotic approximation, let us next
investigate the resulting (asymptotic) critical values inmore detail, as they are required
for applying the Pearson test. The graphs in Fig. 1 show the critical values (level 5%)
for the Pearson statistic based on a time series of length T = 200, which stems
from either a Poisson INAR(1), a geometric INAR(1), or a Poisson INAR(2) process.
All processes have the marginal mean μ = 3, and the INAR(2) process satisfies
α1 = α, α2 = 0.2. In view of Cochran’s rule, we have two further categories for the
geometric marginal distribution.

The respective solid graphs in Fig. 1 show the critical values for the case of specified
parameters, while the dashed graphs refer to the estimated-parameter case. Like in the
i. i. d. case, we have smaller critical values if the parameters have to be estimated; so
ignoring the fact of estimated parameters (just plugging-in estimates instead of true
parameter values) would lead to a (very) conservative test procedure. Furthermore,
the critical values increase (without bound) with increasing dependence parameter α

(note the analogous result in Moore (1982) for a fully-specified Gaussian AR(1) pro-
cess). So if one would apply the i. i. d.-asymptotics to serially dependent data, the test
performance would be severely deteriorated. Finally, comparing the graphs for the
Poisson INAR models, we see that the additional dependence caused by α2 = 0.2
leads to a further increase of the critical values.

0.0 0.2 0.4 0.6 0.8

50
10

0
15

0

C
rit

ic
al
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ue
 a

t 5
%
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l Specified (solid) or estimated (dashed):

Poi−INAR(1), (a,b)=(0,6)
Geom−INAR(1), (a,b)=(0,8)
Poi−INAR(2), (a,b)=(0,6)

α

Fig. 1 Critical values (asymptotic approximation)with respect to Poisson or geometricmarginal distribution
having mean μ = 3, sample size T = 200, see Sect. 3.2
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3.3 Size and power in practice

Finally,we investigate the size andpower of thePearson test if applied in practice: since
parameter values are usually not known, they have to be estimated from the available
time series, and parameter estimates are also required for evaluating the asymptotic
approximations (“plug-in approach”). The presented results rely on simulations (again
with 10,000 replications), with μ being estimated by the arithmetic mean, and with α

or α1, α2, respectively, being estimated from the sample autocorrelation function.
Table 5 shows the simulated sizes for diversemodels if thePearson tests are designed

by assuming the level 5%. For the Poisson INAR(2)model as a data-generating process
(DGP), also the robustness w.r.t. to a misspecification of the autoregressive order was
investigated: the model order was chosen too small, i. e., the test design was done by
falsely assuming a Poisson INAR(1) process. For the correctly specified model types
and orders (but always with estimated parameters), the simulated sizes are very close
to the nominal level of 5%. An exception is the scenario α = 0.75 and T = 200
(strong autocorrelation), where somes sizes are slightly too large. More discrepancy
is observed if the Poisson INAR(2) DGP is underfitted, so the model order should not
be chosen too small in practice. Later in this section, we also analyze the effect of an
overfitting as well as of misspecifying the model type.

Next, let us investigate the power of the Pearson test. If the test assumes Poisson
INAR(1) but the data are generated by a geometric INAR(1) process (having the
same mean and ACF), or vice versa, the power was equal to 1.000 in nearly any case
(therefore, these values are not tabulated here). So such kind of alternative scenario
is nearly always detected. More refined alternative scenarios are analyzed in Table 6.
There, the Pearson test assumed a Poisson INAR(1)model, but if a value larger than 1 is
given for the index of dispersion, I = σ 2/μ, then the trueDGPwas a negative binomial
(NB) INAR(1) process.More precisely, the innovations (εt ) areNB-distributed in such
a way that the observations exhibit the given values of μ, I and ρ(1). It can be seen
that the power increases with increasing I , and the increase is faster for larger sample
sizes T , as expected. In applications, however, one has to be aware of the fact that
the power of detection becomes worse with an increasing level of autocorrelation.
Our conclusions slightly differ for the second power scenario considered in Table 6:
there, the DGP was a Poisson INARCH(1) process (see Remark 2.3.8), which shows
increasing overdispersion with increasing autocorrelation level (we have the relation
I = 1/

(
1−ρ(1)2

)
). Thus, it is plausible that now the power improves with increasing

autocorrelation.
Let us now return to the discussion of Table 5. There, we observed that an under-

fitting of the actual DGP is problematic and may lead to considerably increased sizes.
So it is natural to ask for the effect of overfitting the model order instead. Table 7
provides results if an i. i. d. DGP (“model order 0”) is overfitted by an INAR(1) model,
and Table 8 if an INAR(1) DGP is overfitted by an INAR(2) model. It can be seen
that the effect on size and power is very small, sometimes these values are slightly
reduced if the model order is unnecessarily large. But the amount of reduction does
not appear to be of practical relevance. So an overfitting of the DGP is substantially
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Table 6 Simulated size of Pearson test (level 5%) for Poisson INAR(1) process (I = 1), and simulated power
for NB-INAR(1) process (I > 1) or Poisson INARCH(1) process, respectively; all having mean μ = 3

ρ(1) T a b Rejection rates; I = INARCH(1)

1 1.05 1.10 1.20 1.50

0.25 200 0 6 0.049 0.062 0.093 0.220 0.802 0.068

500 0 7 0.047 0.084 0.170 0.524 0.997 0.107

1000 0 8 0.048 0.124 0.323 0.851 1.000 0.169

0.50 200 0 6 0.047 0.056 0.082 0.191 0.690 0.401

500 0 7 0.048 0.073 0.157 0.447 0.984 0.834

1000 0 8 0.048 0.110 0.285 0.775 1.000 0.991

0.75 200 0 6 0.055 0.054 0.068 0.121 0.452 0.980

500 0 7 0.045 0.061 0.110 0.282 0.877 1.000

1000 0 8 0.052 0.089 0.187 0.534 0.993 1.000

less problematic than an underfitting. Thus, we conclude that in practice, one should
better choose a somewhat larger model order in case of doubt.

The previous robustness study allowed for a misspecification of the model order,
but it assumed that the model family was chosen correctly. So finally, we also consider
the case where the model type is misspecified, see Table 9. The considered types of
misspecification are chosen such that in practice, there is a large risk of choosing the
wrong model: the marginal distribution of the DGP is the same as that of the wrong
model, and also the autocorrelation structure is very similar or even identical. In the left
part of Table 9, the DGP is Poisson INMA(1), so it has a Poissonmarginal distribution,
and its autocorrelation structure might be confused with the one of a Poisson INAR(1)
process. In the right part of Table 9, two types of DGP having a geometric marginal
distribution and an AR(1)-like ACF are chosen (and confused with the geometric
INAR(1) model): the geometric AR(1) process proposed by Ristić et al. (2009) is
defined by an INAR(1)-like recursion but using negative-binomial thinning instead of
binomial thinning (hencewe abbreviate it as “NT-AR(1)” in Table 9), the one proposed
by Al-Osh and Aly (1992) uses some kind of “iterated thinning” (“IT-AR(1)”), where
first a binomial thinning and then a negative binomial thinning is applied at each
time t . The sizes of the misspecified Poisson INAR(1) model in the left part of Table 9
are still very close to 5%, so erroneously treating the INMA(1) as INAR(1) data is
not problematic. For the misspecified geometric INAR(1) models, the sizes become
visibly smaller than 5% for large autocorrelation levels. So the Pearson test becomes
conservative in these cases. On the other hand, for increasing autocorrelation, it is
usually also more easy to distinguish between the different models, since then, e. g.,
sample paths or conditional variances are more pronounced.

3.4 Real-data examples

We conclude our investigations with two real-data examples. The count time series
x1, . . . , xT shown in Fig. 2a is taken from the book by Weiß (2018). It consists of
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Table 9 Simulated size of Pearson test (level 5%) under model misspecification: true DGP Poisson
INMA(1), but test assumes Poisson INAR(1) (left table); true DGP geometric AR(1) using either negative-
binomial thinning (“NT-AR(1)”) or iterated thinning (“IT-AR(1)”), but test assumes geometric INAR(1)
(right table); all having mean μ = 3

Simulated size under Poi-INAR(1); DGP: Poi-INMA(1)

ρ(1) T a b

0.25 200 0 6 0.048

500 0 7 0.047

1000 0 8 0.048

0.40 200 0 6 0.050

500 0 7 0.045

1000 0 8 0.051

Simulated size under Geom-INAR(1); DGP: Geom-NT-AR(1) Geom-IT-AR(1)
ρ(1) T a b

0.25 200 0 8 0.052 0.052

500 0 11 0.049 0.042

1000 0 13 0.050 0.048

0.50 200 0 8 0.048 0.034

500 0 11 0.041 0.031

1000 0 13 0.043 0.037

0.75 200 0 8 0.025 0.024

500 0 11 0.014 0.015

1000 0 13 0.011 0.013

the daily numbers of downloads of a tex editor for the period Jun. 2006 to Feb.
2007 (hence length T = 267). As can be seen from the PACF plot, we are concerned
with an AR(1)-like autocorrelation structure, with a rather low autocorrelation level:
ρ̂(1) ≈ 0.245. The download counts have the mean ≈ 2.401 and the large dispersion
index≈ 3.127. In view of the autocorrelation structure, the INAR(1) family appears to
be a plausible choice for the data, and in view of the strong degree of overdispersion,
it appears plausible to test the null hypothesis of a geometric marginal distribution
within this INAR(1) family (on level 5%).

The same null hypothesis is also to be tested for the second data example, plotted in
Fig. 2b, which consists of T = 800 counts of so-called iceberg orders concerning the
Deutsche Telekom shares traded in the XETRA system of Deutsche Börse, measured
every 20 minutes for 32 consecutive trading days in the first quarter of 2004 (Jung and
Tremayne 2011). According to the plotted PACF, we again have an AR(1)-like auto-
correlation structure, but now of larger extend (ρ̂(1) ≈ 0.635). Mean and dispersion
index equal ≈ 1.406 and ≈ 1.551, respectively.

For the download counts, we estimate the parameter of the hypothetical geometric
distribution as π̂ ≈ 0.294. The Pearson statistic is computed for the nine categories
defined by a = 0 and b = 7, and it takes the value≈ 1.179. The critical value obtained
for the hypothetical geometric INAR(1) model equals ≈ 14.504 such that we cannot
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Fig. 2 Time series plot and PACF plot (against lag k) of data examples from Sect. 3.4: a download counts,
b counts of iceberg orders
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Fig. 3 Pmf plot (against count x) for data examples from Sect. 3.4: sample pmf (in black) and geometric
pmf (in gray) for a download counts, b counts of iceberg orders

reject the null hypothesis. In fact, looking at Fig. 3a, where the sample pmf (black) is
compared to the pmf of Geom(π̂) (gray), we see a rather good agreement. It should
also be noted that the critical value under an i. i. d.-assumption would only be slightly
smaller than the above critical value:≈ 14.067 (95% quantile of χ2

9−1−1-distribution).
This small discrepancy is plausible in view of Fig. 1, where the critical values show a
small slope for low values of α (here, we have α̂ ≈ 0.245).

Things differ for the second data example. The estimated geometric parameter
equals π̂ ≈ 0.416, so we choose the same categorization as before (a = 0, b = 7)
and, thus, obtain the same critical value under an i. i. d.-assumption: ≈ 14.067. The
critical value for the hypothetical geometric INAR(1) model is now much larger,
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≈ 21.106, which is confirmed by Fig. 1 and the rather large estimate α̂ ≈ 0.635.
The Pearson statistic, however, becomes even larger, ≈ 67.286, so this time, we have
to reject the null of a geometric marginal distribution. Considering the pmf plots in
Fig. 3b, this decision appears plausible as both pmfs deviate visibly from each other,
especially for low counts x ≤ 2.

4 Discussion

If Pearson’s goodness-of-fit test statistic is applied to data stemming from a count
process, its distribution can be asymptotically approximated with the help of a
quadratic-form distribution. The specific distribution can be explicitly computed for
a number of practically relevant count process models. The approach does not only
cover the situation where the null model is fully specified, but also where parame-
ters have to be estimated. The simulation study showed that the obtained asymptotic
approximation works rather well for time series of finite length, and that the test can be
successfully applied in practice to uncover model violations. Also the effect of differ-
ent types of model misspecification was investigated. It turned out that an overfitting
was clearly less problematic than an underfitting, so the model order should not be
chosen too small. Also cases of misspecifying the model type have been analyzed,
where the test’s performance is affected especially for large autocorrelation levels. So
careful model selection is recommended before applying the test to the given count
time series.

For future research, it would be interesting to analyze how to best choose the
categories (1) for the Pearson statistic such that the asymptotic approximation works
well and we obtain an optimal power; in this work, we used the popular Cochran’s
rule for simplicity. Another research direction could be to investigate if and how the
presented approach applies to the family of scaled Bregman divergences (Kißlinger
and Stummer 2016). In view of Remark 2.3.8, an important question would be to
analyze if a Pearson-like test could also be developed for the conditional distribution
of a count process, since many important count time series models, like INGARCH
and regression models, are defined by specifying the conditional distribution. Finally,
returning to the possible problem of amodel misspecification, it would be desirable for
practice to have a nonparametric way of estimating the covariance matrices Σ ( p),Σ∗
involved in computing the Pearson statistic’s asymptotics. In this context, the Editor
pointed out the work by Francq and Zakoïan (2013), where the estimation of the
parameter vector (say, θ ) for a time series’ marginal distribution is considered. In
addition, a nonparametric estimator for θ̂ ’s covariance matrix is developed. For future
research, it should be tried to develop an analogous approach for nonparametrically
estimating Σ ( p),Σ∗.
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A Specific models for count processes

The subsequent models are used in the main part of this article to illustrate the deriva-
tion of the asymptotic distributions of the considered goodness-of-fit tests.

A.1 CLAR(1) model

Many important models for countMarkov chains belong to the class of conditional lin-
ear autoregressive models of order one (CLAR(1) models) as discussed by Grunwald
et al. (2000). The homogeneous count Markov chain (Xt )Z is said to have CLAR(1)
structure if the conditional mean of Xt is linear in Xt−1, i. e., if

E[Xt | Xt−1] = α · Xt−1 + β for some α ∈ R and β > 0. (A.1)

The condition |α| < 1 guarantees a finite stationary mean given by μ := E[Xt ] =
β/(1−α). If also the stationary variance of Xt is finite, i. e., σ 2 := V [Xt ] < ∞, then
the autocorrelation function (ACF) is of AR(1)-type, i. e., it altogether holds that

ρ(h) := Corr [Xt , Xt−h] = αh, E[Xt | Xt−h] = αh ·Xt−h+(1−αh) μ. (A.2)

A.2 INARmodels

If X is a discrete random variable with range N0 and if α ∈ (0; 1), then the random
variable α ◦ X :=∑X

i=1 Zi is said to arise from X by binomial thinning (Steutel and
Harn 1979). Here, the Zi are i. i. d. binary random variables with P(Zi = 1) = α,
which are also independent of X . Hence, α ◦ X has a conditional binomial distribution
given the value of X , i. e., α ◦ X |X ∼ Bin(X , α). The boundary values α = 0 and
α = 1 might be included into this definition by setting 0 ◦ X := 0 and 1 ◦ X := X .

Using the random operator “◦”, McKenzie (1985) defined the INAR(1) model in
the following way.

Definition A.2.1 (INAR(1) Model) Let the innovations (εt )Z be an i. i. d. process with
range N0, denote E[εt ] = με , V [εt ] = σ 2

ε . Let α ∈ (0; 1). A process (Xt )Z of
observations, which follows the recursion

Xt = α ◦ Xt−1 + εt ,

is said to be an INAR(1) process if all thinning operations are performed independently
of each other and of (εt )Z, and if the thinning operations at each time t as well as εt
are independent of (Xs)s<t .
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The most popular instance of the INAR(1) family is the Poisson INAR(1) model
(McKenzie 1985), which assumes the innovations (εt )Z to be i. i. d. according to the
Poisson distribution Poi(λ). A Poisson INAR(1) process is an irreducible and aperiodic
Markov chain with a unique stationary marginal distribution for (Xt )Z, the Poisson
distribution Poi(μ) with μ = λ

1−α
. It is also α-mixing with geometrically decreasing

weights (Schweer and Weiß 2014). Furthermore, the Poisson INAR(1) model consti-
tutes the only instance within the INAR(1) family, which is time reversible (McKenzie
1985; Schweer 2015).

The (Poisson) INAR(1)model belongs to the class ofCLAR(1)models, so it satisfies
(A.2). The h-step-ahead transition probabilities are given by (Freeland and McCabe
2004)

p(h)
i | j =

min {i, j}∑
m=0

(
j

m

)
αh m (1 − αh) j−m · e−μ (1−αh)

(
μ (1 − αh)

)i−m

(i − m)! , (A.3)

and (Xt , Xt−h) are bivariately Poisson distributed (Johnson et al. 1997) according to
BPoi

(
αh μ; (1−αh) μ, (1−αh) μ

)
(Alzaid andAl-Osh 1988).Here,BPoi(λ0; λ1, λ2)

refers to the joint distribution of (Y0+Y1,Y0+Y2)� with independent Poisson variates
Yi ∼ Poi(λi ) for i = 0, 1, 2.

A simple example of an INAR(1) process not being time reversible is the geometric
INAR(1) process (McKenzie 1985, 1986), which has marginal distribution Geom(π),
i. e., P(Xt = x) = π (1 − π)x . Here, the innovations stem from a zero-inflated
geometric distribution,

εt := Bt Gt with independent Bt ∼ Bin(1, 1 − α), Gt ∼ Geom(π), (A.4)

with pmf P(ε = x) = δx,0 α + (1−α) π (1−π)x . Hence, the 1-step-ahead transition
probabilities are computed as

pi | j =
min {i, j}∑
m=0

(
j

m

)
αm (1 − α) j−m · P(ε = i − m). (A.5)

It is also possible to obtain any other member of the family of negative binomial distri-
butions as amarginal distribution by choosing an appropritae innovations’ distribution,
see McKenzie (1986) for details.

It is also possible to extend the INAR(1) recursion in Definition A.2.1 to a pth-order
autoregression of the form

Xt = α1 ◦ Xt−1 + · · · + αp ◦ Xt−p + εt with α• :=
p∑

j=1

α j < 1. (A.6)

Due to the stochastic nature of the thinnings involved in (A.6), however, additional
assumptions concerning the thinnings (α1 ◦ Xt , . . . , αp ◦ Xt ) are required. While
the INAR(p) model by Du and Li (1991) assumes the conditional independence of
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(α1 ◦ Xt , . . . , αp ◦ Xt ) given Xt , the one by Alzaid and Al-Osh (1990) supposes a
conditional multinomial distribution. As shown by Schweer (2015), only the latter
model continues the INAR(1)’s property that we have time reversibility exactly in the
case of Poisson innovations (then also the observations are Poisson-distributed), while
the INAR(p) model by Du and Li (1991) is neither time reversible nor does it have
Poisson marginals. For this reason, we shall focus here on the time reversible Poisson
INAR(p) model according to Alzaid and Al-Osh (1990), where the innovations are
i. i. d. Poi(λ) and, hence, the observations have the stationary marginal distribution
Poi(μ) with μ = λ/(1 − α•).

Example A.2.2 (Poisson INAR(2) Model) Solving the Yule–Walker-type equations
(3.6) and (3.8) in Alzaid and Al-Osh (1990), the ACF of the Poisson INAR(2) model
becomes

ρ(1) = α1, ρ(h) = α1 ρ(h − 1) + α2 ρ(h − 2) for h ≥ 2.

As shown in Appendix B, the lagged observations Xt and Xt−h with h ∈ N are
bivariately Poisson distributed,

(Xt , Xt−h) ∼ BPoi
(
ρ(h) μ; (1 − ρ(h)

)
μ,
(
1 − ρ(h)

)
μ
)
,

with conditional mean E[Xt | Xt−h] = ρ(h) Xt−h + (1 − ρ(h)
)
μ.

A.3 Binomial AR(1) model

Inmanyapplications, it is known that the observed count data cannot becomearbitrarily
large, but their range has a natural upper bound n ∈ N that can never be exceeded.
For the case of such time series of counts supported on {0, . . . , n}, McKenzie (1985)
proposed the binomial AR(1) model.

Definition A.3.1 (Binomial AR(1) Model) Let ρ ∈ (max {− π
1−π

,− 1−π
π

} ; 1
)
and

π ∈ (0; 1). Define β := π · (1 − ρ) and α := β + ρ. Fix n ∈ N. The process (Xt )Z,
defined by the recursion

Xt = α ◦ Xt−1 + β ◦ (n − Xt−1),

where all thinnings are performed independently of each other, andwhere the thinnings
at time t are independent of (Xs)s<t , is referred to as a binomial AR(1) process.

The condition on ρ guarantees that the derived parameters α, β satisfy α, β ∈ (0; 1),
i. e., these parameters can indeed serve as thinning probabilities.

It is known that (Xt )Z is a stationary, ergodic and φ-mixing finite Markov chain
(again with geometrically decreasing weights), the marginal distribution of which is
Bin(n, π) (McKenzie 1985; Kim andWeiß 2015). The binomial AR(1) model belongs
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to the class ofCLAR(1)models, so it satisfies (A.2), and it is time reversible (McKenzie
1985). The h-step-ahead transition probabilities are given by (Weiß and Pollett 2012)

p(h)
i | j =

min {i, j}∑
m=max {0,i+ j−n}

(
j

m

)(
n − j

i − m

)
αm
h (1−αh)

j−m β i−m
h (1−βh)

n− j+m−i , (A.7)

where βh := π · (1 − ρh) and αh := βh + ρh .

A.4 NDARMAmodel for counts

The “new” discrete ARMA (NDARMA) models have been proposed by Jacobs and
Lewis (1983). They generate an ARMA-like dependence structure through some kind
of random mixture.

Definition A.4.1 (NDARMA Model for Counts) Let the observations (Xt )Z and the
innovations (εt )Z be count processes, where (εt )Z is i. i. d. with P(εt = i) = pi , and
where εt is independent of (Xs)s<t . The randommixture is obtained through the i. i. d.
multinomial random vectors

(αt,1, . . . , αt,p, βt,0, . . . , βt,q) ∼ MULT(1; φ1, . . . , φp, ϕ0, . . . , ϕq),

which are independent of (εt )Z and of (Xs)s<t . Then (Xt )Z is said to be an
NDARMA(p,q) process if it follows the recursion

Xt = αt,1 · Xt−1 + · · · + αt,p · Xt−p + βt,0 · εt + · · · + βt,q · εt−q.

The stationary marginal distribution of Xt is identical to that of εt , i. e., P(Xt = i) =
pi = P(εt = i), and we always have

p(h)
i | j = pi · (1 − ρ(h)

) + δi, j · ρ(h). (A.8)

The autocorrelations are non-negative and can be determined from the Yule–Walker
equations (Jacobs and Lewis 1983)

ρ(h) =
p∑
j=1

φ j · ρ(|h − j |) +
q−h∑
i=0

ϕi+h · r(i) for h ≥ 1,

where the r(i) satisfy

r(i) =
i−1∑

j=max {0,i−p}
φi− j · r( j) + ϕi 1(0 ≤ i ≤ q),

which implies r(i) = 0 for i < 0, and r(0) = ϕ0. Mixing properties have been
established by Weiß (2013).
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B Bivariate distributions of INAR(2) model

We pick up the derivations of Alzaid and Al-Osh (1990) and extend them to obtain
the bivariate distribution of Xt and Xt−h for h ∈ N. Let (Xt )Z follow an INAR(2)
model, where we first do not further specify the innovations’ distribution. Define the
sequence of weights (w j ) j≥−1 by

w−1 = 0, w0 = 1, w j = α1 w j−1 + α2 w j−2 for j = 1, 2, . . . , (B.1)

which satisfy
∑∞

j=0 w j = 1/(1 − α•) (Alzaid and Al-Osh 1990 [p. 317]). Let us

introduce a further sequence of coefficients (a j ) j≥−1 with a j = (a j,1, a j,2)
�:

a−1 = (0, 1)�, a0 = (1, 0)�, a j = α1 a j−1 +α2 a j−2 for j = 1, 2, . . . (B.2)

Obviously, the first components are identical to the weights (B.1), a j,1 = w j for
all j ≥ −1, while the second components satisfy a j,2 = α2 a j−1,1 = α2 w j−1
for j ≥ 0.

Following Alzaid and Al-Osh (1990), p. 320, we define the bivariate process (X t )Z
by X t = (Xt , α2 ◦ Xt−1)

�, which is a Markov chain satisfying

E
[
z
Xt,1
1 z

Xt,2
2

∣∣ X t−1, . . .
] = pgfε(z1)

(
1 + α1 (z1 − 1) + α2 (z2 − 1)

)Xt−1,1 z
Xt−1,2
1 .

(B.3)
In a first step, we extend this result to arbitrary time lags h ∈ N. Using the coefficients
(B.2), we rewrite (B.3) as

E
[(
1 + a0,1 (z1 − 1) + a0,2 (z2 − 1)

)Xt,1

(
1 + a−1,1 (z1 − 1) + a−1,2 (z2 − 1)

)Xt,2
∣∣∣ X t−1, . . .

]

= pgfε
(
1 + a0,1 (z1 − 1) + a0,2 (z2 − 1)

)

·(1 + a1,1 (z1 − 1) + a1,2 (z2 − 1)
)Xt−1,1

(
1 + a0,1 (z1 − 1) + a0,2 (z2 − 1)

)Xt−1,2 . (B.4)

Using the law of total expectation, we apply (B.4) and obtain

E
[
z
Xt,1
1 z

Xt,2
2

∣∣ X t−h
] = pgfε

(
1 + a0,1 (z1 − 1) + a0,2 (z2 − 1)

)

· · · E
[(
1 + a1,1 (z1 − 1) + a1,2 (z2 − 1)

)Xt−1,1

(
1 + a0,1 (z1 − 1) + a0,2 (z2 − 1)

)Xt−1,2
∣∣∣ X t−h

]

= · · · =
h−1∏
j=0

pgfε
(
1 + a j,1 (z1 − 1) + a j,2 (z2 − 1)

)
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·(1 + ah,1 (z1 − 1) + ah,2 (z2 − 1)
)Xt−h,1

(
1 + ah−1,1 (z1 − 1) + ah−1,2 (z2 − 1)

)Xt−h,2 . (B.5)

On the one hand, this implies the marginal pgf as

pgfX (z) = ∏∞
j=0 pgfε

(
1 + w j (z1 − 1) + α2 w j−1 (z2 − 1)

)
,

pgfX (z) = pgfX (z, 1) = ∏∞
j=0 pgfε

(
1 + w j (z − 1)

)
,

(B.6)

also see (4.4) and Theorem 2.1 in Alzaid and Al-Osh (1990). On the other hand, we
compute from (B.5) the lagged bivariate pgf as

pgfX t ,X t−h
(z, y) =

h−1∏
j=0

pgfε
(
1 + w j (z1 − 1) + α2 w j−1 (z2 − 1)

) · E
[
y
Xt−h,1
1 y

Xt−h,2
2

·(1 + wh (z1 − 1) + α2 wh−1 (z2 − 1)
)Xt−h,1

(
1 + wh−1 (z1 − 1) + α2 wh−2 (z2 − 1)

)Xt−h,2
]

=
h−1∏
j=0

pgfε
(
1 + w j (z1 − 1) + α2 w j−1 (z2 − 1)

)

·pgfX
(
y1
(
1 + wh (z1 − 1) + α2 wh−1 (z2 − 1)

)
,

y2
(
1 + wh−1 (z1 − 1) + α2 wh−2 (z2 − 1)

))
.

This implies that

pgfXt ,Xt−h
(z, y) = pgfX

(
y
(
1 + wh (z − 1)

)
, 1 + wh−1 (z − 1)

)

h−1∏
j=0

pgfε
(
1 + w j (z − 1)

)
. (B.7)

Now, we turn to the special case of the Poisson INAR(2) model (Example A.2.2),
i. e., where the innovations (εt )Z satisfy pgfε(z) = exp

(
λ (z − 1)

)
. Using that∑∞

j=0 w j = 1/(1 − α•) and that μ = λ/(1 − α•), (B.6) simplifies to

pgfX (z) = exp
(
μ
(
(z1 − 1) + α2 (z2 − 1)

))
, pgfX (z) = exp

(
μ (z − 1)

)
, (B.8)

also see (5.1) in Alzaid and Al-Osh (1990). In particular, the stationary marginal
distribution is Poi(μ). The bivariate pgf (B.7) becomes
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pgfXt ,Xt−h
(z, y) = exp

(
μ
(
y − 1 + wh y (z − 1) + α2 wh−1 (z − 1)

))

exp
(
λ (z − 1)

h−1∑
j=0

w j

)
.

This expression can be further simplified by considering (B.1). It follows that

(1 − α•)
h−1∑
j=0

w j =
h−1∑
j=0

w j − α2 wh−1 − α1 w0

−
h∑
j=2

(α1 w j−1 + α2 w j−2)

= 1 + α1 +
h−1∑
j=2

w j − α2 wh−1 − α1 −
h∑
j=2

w j

= 1 − α2 wh−1 − wh,

so we continue

pgfXt ,Xt−h
(z, y) = exp

(
μ
(
y − 1 + z − 1 + wh (y − 1)(z − 1)

))

= exp
(
μ
(
(1 − wh) (y − 1) + (1 − wh) (z − 1) + wh (yz − 1)

))
.

(B.9)

Obviously, this pgf is symmetric in z and y, confirming the time reversibility. For
h = 1, it simplifies to (5.3) in Alzaid and Al-Osh (1990). In particular, (B.9) shows
that (Xt , Xt−h) are bivariately Poisson distributed according to BPoi

(
wh μ; (1 −

wh) μ, (1 − wh) μ
)
, see Johnson et al. (1997). This implies the conditional mean

E[Xt | Xt−h] = wh Xt−h + (1 − wh) μ.

The proof of Example A.2.2 is completed by noting that the weights in (B.1) follow
the same recursion as the ACF of thePoisson INAR(2) model, sowh = ρ(h) for h ≥ 0
in this special case.
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