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Abstract
A framework for the detection of change points in the expectation in sequences of
random variables is presented. Specifically, we investigate time series with general
distributional assumptions that may show an unknown number of change points in the
expectation occurring on multiple time scales and that may also contain change points
in other parameters. To that end we propose a multiple filter test (MFT) that tests the
null hypothesis of constant expectation and, in case of rejection of the null hypothesis,
an algorithm that estimates the change points.

The MFT has three important benefits. First, it allows for general distributional
assumptions in the underlying model, assuming piecewise sequences of i.i.d. random
variables, where also relaxations with regard to identical distribution or independence
are possible. Second, it uses aMOSUMtype statistic and an asymptotic setting inwhich
the MOSUM process converges weakly to a functional of a Brownian motion which
is then used to simulate the rejection threshold of the statistical test. This approach
enables a simultaneous application of multiple MOSUM processes which improves
the detection of change points that occur on different time scales. Third, we also show
that the method is practically robust against changes in other distributional parameters
such as the variance or higher order moments which might occur with or even without
a change in expectation. A function implementing the described test and change point
estimation is available in the R package MFT.
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1 Introduction

The statistical testing and estimation of structural breaks in time series is of high
importance in various applications, such as econometrics (Fryzlewicz 2014), mobile
communication (Zhang et al. 2009), machine learning (Harchaoui and Lévy-Leduc
2008), ocean engineering (Killick et al. 2010) or also neurophysiological data analysis
(Staude et al. 2010). Accordingly, there is a vast literature on change point analysis (for
an overview and review see Basseville and Nikiforov 1993; Brodsky and Darkhovsky
1993; Aue and Horváth 2013; Jandhyala et al. 2013; Brodsky 2017).

In this paper we investigate an unknown number of change points in the expec-
tation occurring on multiple time scales in time series with general distributional
assumptions in which also other parameters are allowed to change. Also othermethods
address these aspects. Nonparametric methods have been proposed by Horváth et al.
(2008); Eichinger and Kirch (2018). The detection of change points on multiple time
scales is investigated by, e.g., Frick et al. (2014), Fryzlewicz (2014) and Matteson and
James (2014), some of thesemethods also requiring only relatively weak distributional
assumptions. Other approaches provide robustness against changes in other parame-
ters when aiming at detecting changes in the expectation. Recently, Pein et al. (2017)
developed a method on multiscale change point inference for Gaussian sequences
using likelihood ratio statistics, which detects change points in the expectation where
the variance is allowed to change simultaneously. In general, few results can be found
concerning change point detection in the expectation that is robust against changes in
the variance. Applied approaches using leave-one-out cross validation and segmenta-
tion are proposed in Arlot and Celisse (2011) andMuggeo and Adelfio (2011). Among
the existing literature, however, we are not aware of a method that combines all three
properties, i.e., (1) that makes weak distributional assumptions on the data, (2) that
captures the aspect of change points occurring on multiple time scales and (3) that
also turns out to be robust against changes in other parameters than the expectation.

Here we consider a method, abbreviated MFT, that tests the null hypothesis of con-
stant expectation and that, after rejection of the null hypothesis, aims at estimating the
change points in the expectation. We translate a framework for change point detection
that was designed for point processes (Messer et al. 2014) to a model that is based on
piecewise sequences of i.i.d. randomvariables. This transition requires the formulation
of a multiple change point model as well as underlying moving sum (MOSUM) type
processes (compare, e.g., Eichinger and Kirch 2018), which also contain parameter
estimating processes. It is also necessary to derive the processes’ limit behavior under
the null hypothesis of no change in the expectation. The results of the transition show
that the translated MFT exhibits two important properties that proved to be beneficial
in the point process scenario. First, the MFT works under relatively general distri-
butional assumptions on sequences of random variables, i.e., also on non-Gaussian
sequences. We also discuss extensions to sequences of independent random variables
showing a certain variability in their variances (heteroscedasticity) or a certain degree
of dependence. Second, by simultaneous application of multiple MOSUM processes,
change points occurring on different time scales can be investigated.

Additionally, we derive results under alternative scenarios of change points that
support the methods’ robustness against changes in other parameters than the expec-
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tation. The results of the paper show that the MFT is sensitive to changes in the
expectation while it proves robust against changes in other parameters such as the
variance or higher order moments. Also, a routine is provided in the R-package MFT
(Messer et al. 2017a) that complements the theoretical results of the MFT by enabling
its straightforward practical applicability.

The paper is organized as follows. The set of model assumptions is presented
in Sect. 2. Then the MFT is derived in Sect. 3. There we formulate the MOSUM
process which includes a parameter estimating auxiliary process. Then we investigate
an asymptotic setting in which the MOSUM process converges weakly to a functional
L of a standard Brownian motion, which depends only on the window size—i.e., the
MOSUM bandwidth—and is independent of the distribution of the data. This limit
process L can therefore be used to derive the rejection threshold of the statistical
test via simulations. This approach is suitable for relatively general distributional
assumptions, since it is based on Donsker type limit theorems. Further, the MFT
allows the combination of multiple window sizes, i.e., simultaneous application of
multiple MOSUM processes, in order to detect change points at multiple time scales.
In case of rejection of the null hypothesis, we combine the MOSUM processes of
different window sizes and provide an algorithm that estimates the change points in
multiple time scales (Sect. 4). This combines the advantages of small windows, which
can be more precise for changes occurring in fast time scales, with the advantages of
larger windows, which can be more sensitive to smaller changes. Finally, we show
robustness of the procedure against changes in other distributional parameters if there
is no change in expectation. The properties of the test are entirely unchanged as
long as the expectation and variance remain unchanged. In case of changes in the
variance, we show that for constant expectation, there is only a negligible change in
the limit behavior of theMOSUM process, which affects only the covariance structure
in the neighborhood of the variance change point (Sect. 5). In Sect. 6, we complement
our theoretical findings in exemplary simulations, where we show the procedures’
sensitivity to changes in the expectation (occurring on multiple time scales) and its
robustness against changes in other parameters.

2 Themodel

Let X = (Xi )i=1,2... be a sequence of i.i.d. real-valued, square-integrable random
variables with positive variances. These constitute the null hypothesis of constant
expectation μ := E[X1].

The full model M with changes in the expectation is given by piecewise com-
bination of null elements. We assume the observation regime to be 1, . . . , T , for a
total time T ∈ N\{0, 1}. We consider a set of change points C ⊂ {2, . . . , T } with
elements c1 < c2 . . . < ck fixed, but unknown. Given C , consider k + 1 indepen-
dent null processes X[1], . . . ,X[k+1], with X[ j] = (Xi,[ j])i=1,2,... having expectations
μ[ j] := E[X1,[ j]] for j = 1, . . . , k. Unless otherwise stated we assumeμ[ j] �= μ[ j+1]
for all j which means that the expectation changes at every c j , while also other param-
eters are allowed to change. Then the compound process is given by
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b X1 X2 X3 X4

Fig. 1 Examples of time series. a A null element without change point. b A process X ∈ M with three
change points, where the first change point c1 = 500 shows a small change in expectation while the change
points c2 = 1200 and c3 = 1290 occur rapidly with large changes in expectation. a Xi ∼ N (0, 1),
T = 2000. b All random variables independent and normally distributed with variance 1 and means
μ[1] = 0, μ[2] = 0.3, μ[3] = 2.2, μ[4] = 1.4, T = 2000

X1,[1], . . . , Xc1−1,[1], Xc1,[2], . . . , Xc2−1,[2], . . . , Xck ,[k+1], . . . , XT ,[k+1],

i.e., at each change point c j , we enter a process X[ j+1] with new expectation μ[ j+1].
Herewe aim at testing the null hypothesis of no change points, i.e.,C = ∅, when the

observed process is a null element with constant expectation (for an example of a null
element see Fig. 1a). In case of rejection of the null hypothesis, we aim at estimating
the set of change points C . An example with three change points is shown in Fig. 1b.

Note that the assumption of i.i.d. random variables is used here for simplicity, while
the methods and proofs require only relaxations of this assumption (see Sect. 3).

3 Themultiple filter test (MFT)

In the following we construct the MFT for the null hypothesis C = ∅. This is an
asymptotic method and in the formulation of the model M therefore we let time and
the change points grow linearly in a parameter n. That is, for the asymptotics below,
we switch from the parameters T , c1, . . . , ck and the window size h introduced in the
following to parameters nT , nc1, . . . , nck and nh, n ∈ N.

Let X ∈ M. The MFT is based on multiple MOSUM statistics which compare the
empirical means of the observations in adjacent windows. At first consider a single
window h ∈ {1, 2, . . . , �T /2�} for which we consider the time horizon [h, T − h]. It
denotes �·� the floor function. For all t ∈ [h, T − h] we set

D(n)
h,t := X̄r − X̄�

ŝ(n)
h,t

, (1)
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with X̄� := (1/nh)
∑�nt�

i=�nt�−nh+1 Xi and X̄r := (1/nh)
∑�nt�+nh

i=�nt�+1 Xi and further

(ŝ(n)
h,t )

2 := σ̂ 2
r + σ̂ 2

�

nh
, (2)

with empirical variances being evaluated locally from the observations within the win-
dows, i.e., σ̂ 2

� := (1/nh)
∑�nt�

i=�nt�−nh+1(Xi− X̄�)
2 and σ̂ 2

r := (1/nh)
∑�nt�+nh

i=�nt�+1(Xi−
X̄r )

2.
Simply put, D(n)

h,t is the common (unpooled) two-sample t-statistic, which at every
time point compares two adjacent subsamples of sample size nh. We are interested in
large deviations of D(n)

h,t from zero as these indicate a change in expectation. Shifting

the window continuously in time results in càdlàg-valued step-processes D(n) :=
(D(n)

h,t )t∈[h,T−h] that take values in (D[h, T − h], dSK ) which denotes the space of all
càdlàg-functions on [h, T − h] endowed with the Skorokhod topology.

TheMFT is based on an approximation of theMOSUMprocess D(n) by a Gaussian
process L . By letting n → ∞ we show weak convergence to the limit process L :=
(Lh,t )t∈[h,T−h], which is a functional of a standard Brownian motion W given by

Lh,t = (Wt+h − Wt ) − (Wt − Wt−h)√
2h

, (3)

see Proposition 3.1. Note that L is a Gaussian process with zero mean and unit vari-
ance. Accordingly, D(n) typically fluctuates around zero under the null. The process
convergence enables us to pursue two ideas. First, due to continuity of the maximum
operator, the convergence of the temporal maximum is preserved, i.e.

max
t∈[h,T−h] |D

(n)
h,t |

d−→ max
t∈[h,T−h] |Lh,t |,

while
d−→ denotes convergence in distribution. As a consequence, we can simulate a

quantile of the distribution of the right hand side which is used as a rejection threshold
for the statistical test. And second, again due to continuity, we can also maximize over
different windows

M (n) := max
h∈H max

t∈[h,T−h] |D
(n)
h,t |

d−→ max
h∈H max

t∈[h,T−h] |Lh,t |, (4)

for any finite window set H ⊂ {1, 2, . . . , �T /2�}. This allows the simultaneous appli-
cation of multiple windows, which is particularly advantageous for the estimation of
change points that occur on different time scales. Smaller windows are more sensitive
to change points occurring in fast succession, while larger windows provide higher
power when changes are small. The global maximum M := M (1), with T being large,
serves as the test statistic of the MFT. Again, a quantile Q of the limit distribution can
be derived via simulations as, to the best of our knowledge, there is no closed formula
available.
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Proposition 3.1 For X ∈ M with C = ∅ and h ∈ {1, 2, . . . , �T /2�} it holds in
(D[h, T − h], dSK ) as n → ∞

D(n) d−→ L.

Proof Let W denote a standard Brownian motion. Let X = X1, X2 . . . with μ =
E[X1] and σ 2 = Var(X1) and for n = 1, 2, . . . define the rescaled random walk
S(n) := (S(n)

t )t∈[0,T ] by

S(n)
t := 1

σ
√
n

�nt�∑

i=1

(Xi − μ). (5)

Then, by Donsker’s theorem, in (D[0, T ], dSK ) the process S(n) converges weakly to
W as n → ∞. Now we map the process S(n) based on the life times up to time t to a
process based on the life times in the adjacent windows in [t − h, t + h]. For that we
define the continuous map ϕ : (D[0, T ], dSK ) → (D[h, T − h], dSK ) via

( f (t))t∈[0,T ]
ϕ�−→

(
( f (t + h) − f (t)) − ( f (t) − f (t − h))√

2h

)

t∈[h,T−h]
.

Mapping S(n) via ϕ, continuity yields in (D[h, T − h], dSK ) as n → ∞
(

X̄r − X̄�

(2σ 2/nh)1/2

)

t

d−→ (Lh,t )t . (6)

In Lemma 3.2, the consistency of the estimator ŝ(n)
h,t is shown i.e., in (D[h, T −h], dSK )

we have (ŝ(n)
h,t /(2σ

2/nh)1/2)t → (1)t almost surely as n → ∞. This allows us to

exchange the denominator in (6) with ŝ(n)
h,t by Slutsky’s Lemma, which finishes the

proof. 
�
Let (D[h, T − h], d‖·‖) denote the space of all càdlàg-functions on [h, T − h]

endowed with the supremum norm. Analogously define (D[0, T ], d‖·‖). Note that
convergence w.r.t. d‖·‖ implies convergence w.r.t. dSK .

Lemma 3.2 For X ∈ M with C = ∅, h ∈ {1, 2, . . . , �T /2�} and ŝ(n)
h,t given in (2) it

holds in (D[h, T − h], d‖·‖) as n → ∞ almost surely

(
ŝ(n)
h,t

(2σ 2/nh)1/2

)

t

−→ (1)t .

Proof By construction of ŝ(n)
h,t it is sufficient to show that in (D[h, T − h], d‖·‖)

it holds (σ̂ 2
� )t → (σ 2)t a.s. and (σ̂ 2

r )t → (σ 2)t a.s. as n → ∞. We show the
first convergence. The second follows analogously. Indeed, it is sufficient to show

123



The multiple filter test for change point detection in… 595

a.s. process convergence of the first two empirical moments (Xm
� )t → (μm)t ,

with Xm
� := (1/nh)

∑�nt�
i=�nt�−nh+1 X

m
i for m = 1, 2, since we can decompose

σ̂ 2
� = X2

� − X�
2
. We show that in (D[0, T ], d‖·‖) as n → ∞ a.s.

(
1

n

∑�nt�
i=1

Xm
i

)

t
→

(
tν〈m〉)

t
, (7)

with ν〈1〉 := μ and ν〈2〉 := σ 2+μ2 denoting the first twomoments of the observations
such that we obtain in (D[h, T − h], d‖·‖) as n → ∞ almost surely

(Xm
�

)t =
(

1

nh

∑�nt�
i=1

Xm
i

)

t
−

(
1

nh

∑�n(t−h)�
i=1

Xm
i

)

t
−→

(
t

h
ν〈m〉

)

t
−

(
t − h

h
ν〈m〉

)

t

= (ν〈m〉)t .

We deduce (7) from the strong law of large numbers (SLLN) using a discretization
argument. For uniform convergence we first bound the suprema

sup
0≤t≤T

∣
∣
∣
∣
∣
∣

1

n

�nt�∑

i=1

Xm
i − tν〈m〉

∣
∣
∣
∣
∣
∣
≤ sup

0≤t≤T

∣
∣
∣
∣
∣
∣

1

n

�nt�∑

i=1

Xm
i − �nt�

n
ν〈m〉

∣
∣
∣
∣
∣
∣
+ rn

= max
j∈{1,2,...,nT }

∣
∣
∣
∣
∣
∣

1

n

j∑

i=1

Xm
i − j

n
ν〈m〉

∣
∣
∣
∣
∣
∣
+ rn,

with remainder rn := supt∈[0,T ] |t − �nt�/n| ν〈m〉 ≤ (1/n) ν〈m〉 → 0 as n → ∞ and
we need to show that also the maximum vanishes almost surely. Let ε > 0, then by the
SLLN for almost every realization we find j0 ∈ N such that |(1/ j)∑ j

i=1 X
k
i −ν〈m〉| <

ε/2 for all j > j0 and thus

max
j∈{1,2,...,nT }

∣
∣
∣
∣
∣
∣

1

n

j∑

i=1

Xm
i − j

n
ν〈m〉

∣
∣
∣
∣
∣
∣
≤ 1

n
max
j≤ j0

∣
∣
∣
∣
∣
∣

j∑

i=1

Xm
i − jν〈m〉

∣
∣
∣
∣
∣
∣

+ j

n
max

j0< j≤nT

∣
∣
∣
∣
∣
∣

1

j

j∑

i=1

Xm
i − ν〈m〉

∣
∣
∣
∣
∣
∣
≤ ε

for n large enough, because the maximum in the first summand does not depend on
n and the maximum of the second summand becomes small according to the SLLN.
Since ε can be chosen arbitrarily small the left hand side vanishes with probability
one and (7) holds. 
�
Relaxations of model assumptions As noted above, the assumption of i.i.d. random
variables is used here for simplicity, rather than being necessary for the convergence
of the maximum in Eq. (4). Technically, to establish the procedure, we made use of
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first, Donsker’s theorem for the proof of Proposition 3.1 and second, the SLLN to
ensure consistent parameter estimation in Lemma 3.2. Both results may also hold true
when the i.i.d. assumption is relaxed. For example, the identical distribution of the
random variables can be relaxed by allowing a certain variability in the variances of
the random variables (heteroscedasticity), as proposed in Messer et al. (2014, Lemma
A.9.): letting the random variables to have constant expectation (E(Xi ) = μ for all
i ∈ N), but allowing the variances to vary slightly by assuming them to be uniformly
bounded and their mean to converge (1/n)

∑n
i=1 Var(Xi ) → σ 2 as n → ∞ for some

constant σ 2 > 0, a functional central limit theorem was proven assuming also the
Lindeberg condition for the random variables to hold true. This formulation of null
elements of constant expectation is particularly useful to describe data in which certain
variability in variances is observed on small time scales.

Further, also the independence assumption can be weakened assuming the random
variables to form a stationary and ergodic sequence. In these models the ergodic
theorem substitutes the SLLN, and versions of Donsker’s theorem are well known,
see e.g., Billingsley (1999, Theorem 19.1.). In these cases, the variance σ 2 has to be
exchangedbyρ2 = σ 2+2

∑∞
i=2 Cov(X1, Xi ) in order to account for the dependencies

of the data. (Further, the assumption
∑∞

i=2 ‖E[X1 −E[X1]|{Xk |k ≥ i}]‖ < ∞, while
‖ · ‖ denotes the L2 norm, ensures the absolute converge of the series of covariances.)
Given a consistent estimator for the true order of scaling

√
2ρ/nh in the MOSUM

statistic, the procedure can be adapted (see Messer et al. 2017b, Proposition 2.2., for
a detailed discussion in the scenario of point processes).

Illustration of the MFT The construction of the MFT is depicted again in Eqs. (8)–
(11). First, under the null hypothesis the rescaled random walk S(n) based on the
observations X converges weakly to a standard Brownian motion W . Given h, the
process D(n) converges to L . This convergence holds for all h ∈ H . The crucial point
is that on the empirical (left) side all functionals are based on the single process X,
while on the limit (right) side all functionals are evaluated from a single Brownian
motion W , while all mappings in (9)–(11) are continuous, such that convergence is
preserved. For the simulation of the rejection threshold Q, we can therefore simulate
realizations of Brownianmotions, and for each realization evaluate themaximumof all
functionals {(|Lh,t |)t∈[h,T−h]|h ∈ H}. Taking themaximumof D(n) across all window
sizes as a test statistic thus avoids multiple testing in the test of the null hypothesis.

S(n)(X)
d−→ W (8)

D(n)(X)
d−→ L(W ) (9)

max
t

|D(n)
h,t (X)| d−→ max

t
|Lh,t (W )| (10)

max
h

max
t

|D(n)
h,t (X)| d−→ max

h
max
t

|Lh,t (W )| (11)

In the example inFig. 2, the distributions ofmaxt |Dh,t (X)| andmaxh maxt |Dh,t (X)|
(red) correspondclosely to thedistributions of their asymptotic analoguesmaxt |Lh,t (W )|
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maxt Dh,t(X)

maxt Lh,t(W)

n = 1:  X

n →∞ : W
a

42 3 2 3 4
maxh maxt Dh,t(X)

maxh maxt Lh,t(W)
b

Q

Fig. 2 Distribution ofmaxt |Dh,t (X)| (a) andmaxh maxt |Dh,t (X)| (b), red, and their asymptotic analogues
maxt |Lh,t (W )| and maxh maxt |Lh,t (W )|, blue. Red distributions are derived from time series of length
T = 1000 with N (0, 1)-distributed random variables and a window choice of h = 80 (a) and H =
{80, 180, 280} (b). Q denotes the 95% quantile of the simulated (red) distribution of the global maximum
and corresponds closely to the true 95% quantile (dashed blue line) (color figure online)

andmaxh maxt |Lh,t (W )| (blue). Givenα ∈ (0, 1), we derive Q as the (1−α)-quantile
of the simulated distribution of the asymptotic quantity maxh maxt Lh,t (W ).

In practice, this method can be well applicable, i.e., when n = 1, but T is large,
in spite of being based on asymptotic results. One only needs to choose the smallest
window sufficiently large. For example, for normally distributed random variables, the
pointwise distribution canbe considered sufficiently close to the normal distribution for
values of h of about 30 in analogy to the t-distribution (simulation results not shown).
For corresponding simulation studies with gamma distributed random variables in the
case of point processes, see, e.g., Messer et al. (2014).

4 Themultiple filter algorithm

In Fig. 3a, the MFT is illustrated for the data taken from Fig. 1a where no change
in the mean occurs. Accordingly, the global maximum M lies below Q, and the null
hypothesis is not rejected. If, however, the null hypothesis is rejected, we aim at
estimating the set of change points C . To that end, we adopt a heuristic algorithm,
called the multiple filter algorithm (MFA) originally proposed for point processes in
Messer et al. (2014) to the analysis of time series. Figure 3c, d illustrate the analysis
of the data from Fig. 1b with three change points.

First, we see that M lies above Q, and the null hypothesis is rejected (panel
c). The MFA then detects change point candidates separately with every individual
window h ∈ H as follows. For every h ∈ H the MOSUM process D(1) is succes-
sively searched for maximizers. Start with the entire (discrete) observation region
t ∈ {h, h + 1, . . . , T − h} and if the maximum lies above Q, its argument ĉh,1
is accepted as a first change point candidate. Then restrict the previous observation
region by deleting the h-neighborhood {ĉh,1 − h, . . . , ĉh,1 + h − 1} of ĉh,1 and search
for the next maximizer. This procedure is repeated until the remaining process lies
below Q, yielding a set of change point candidates for every h ∈ H (Fig. 3d, diamonds,
two candidates for the smallest window (blue), one for the second smallest window
(gray) and two for the largest window (red)). Note that it is sufficient to restrict to
the discrete observation region (instead of [h, T − h]) since D(1) has step-function
paths.
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a

M
Q

T0

b

time

c M

Q

h1

h2

h3

d

T0

e

time

Fig. 3 Application of the MFA to the data in Fig. 1. a, c Processes D(1) for three different window sizes. d
Change point candidates of the second process and their h-neighborhoods of all windows (two candidates
with h1 (blue), one with h2 (gray) and two with h3 (red)). b, e Final set of change point estimates and
estimates of means (gray) compared to the true means (orange) (color figure online)

In the second step the MFA integrates the change point candidates across all win-
dows resulting in a final set of estimates Ĉ . Here we argue that large windows may
be affected by subsequent change points and may therefore yield less precise esti-
mates. Therefore, let h1 < h2 < · · · h|H | be the ordered elements of H . We start
with including all change point candidates referring to the smallest window h1 (in
Fig. 3d two blue candidates). Then, by moving to successively larger windows, we
add change point estimates ĉh j ,i of larger windows h j only if their h j -neighborhood
(ĉh j ,i − h j , ĉh j ,i + h j ) does not contain an already accepted change point. In Fig. 3d

we update Ĉ by a third estimate resulting from the largest window h3 (red). Finally, we
estimate the expectation in the segments given by the estimated set of change points
Ĉ (Fig. 3e).

Figure 3 illustrates the advantage of the simultaneous use of multiple windows:
Smaller windows are more sensitive to fast changes (blue), while larger windows have
more powerwhen the change in expectation is small (red). The functionMFT.mean()
in the R package MFT (Messer et al. 2017a) performs the MFT and the corresponding
MFA for a given time series.

Note that the MFA does not represent a statistical test but an algorithm that can be
used after rejection of the null hypothesis in order to estimate the change points. It
makes use of the fact that change point effects are only local, i.e., a given change point
affects the process D(n) only in its h-neighborhood. This is because the process D(n)

is 2h-dependent by construction, resulting also from local parameter estimation. As
the h-neighborhood is cut out after estimation of the change point, multiple distinct
crossings of the rejection threshold are a good indication of multiple change points.
Accordingly, true change points did not increase the frequency of falsely detected
change points in simulations (cmp. Messer et al. 2014 Section 5.1.3 and Table 2).
Similar procedures were shown to yield consistent change point estimates under mild
conditions in Gaussian sequence change point models (Hušková and Slabý 2001;
Eichinger and Kirch 2018).
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5 Robustness against changes in other parameters

In the previous sections we assumed that a change point describes a change in the
expectation, implying that under the null hypothesis of no change in the expectation, no
change point occurred and thus, no parameter change is observed, yielding a sequence
of i.i.d. random variables under the null hypothesis.

Herewe consider a situation inwhich a changepoint does not change the expectation
but potentially the variance or higher order moments, while we still test the null
hypothesis of no change in expectation. Interestingly, the MFT is robust against such
violations of the model assumptions. More precisely we show that, given no change in
expectation, the MOSUM process D(n) can still be approximated by a 2h-dependent
Gaussian process L̃ := (L̃h,t )t with mean zero and unit variance. The only difference
to the limit process L (Eq. (3)) is a small deviation in the covariance structure in the
h-neighborhood of a change point. As we show in a one change point model, this is
practically negligible with respect to the maximum of the MOSUM process and thus
to the derivation of the rejection threshold Q.

In the following assume a one change point model C = {nc} associated with two
independent processes X[1] and X[2] such that the asymptotic setting is given by

X1,[1], . . . , Xnc−1,[1], Xnc,[2], . . . , XnT ,[2].

We explicitly assume μ := μ[1] = μ[2] (no change in expectation), while other
parameters are allowed to change. Let σ 2[1] := Var(X1,[1]) and σ 2[2] := Var(X1,[2]).
The following Proposition 5.1 states that in (D[h, T − h], dSK ) the MOSUM process
D(n) converges weakly to L̃ given by

L̃h,t :=

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(Wt+h−Wt )−(Wt−Wt−h)√
2h

, if |t − c| > h,

σ[2](Wt+h−Wc)+σ[1][(Wc−Wt )−(Wt−Wt−h)]
h·s(1)h,t

, if c − h ≤ t ≤ c,

σ[2][(Wt+h−Wt )−(Wt−Wc)]−σ[1](Wc−Wt−h)

h·s(1)h,t

, if c < t ≤ c + h,

(12)

for a standard Brownian motionW . There (s(n)
h,t )

2 is given by 2σ 2[1]/(nh) for t < c− h

and 2σ 2[2]/(nh) for t > c− h and for a linear interpolation within the h-neighborhood
of the change point, i.e., in t ∈ [c − h, c + h] it is

(s(n)
h,t )

2 = (t + h − c)σ 2[2] + (c − (t − h))σ 2[1]
nh2

. (13)

The idea is that (s(n)
h,t )

2 approximates the asymptotic variance of the numerator X̄r− X̄�.

We find L̃ to be a Gaussian process with E[L̃h,t ] = 0 and Var(L̃h,t ) = 1 that equals
L for |t − c| > h, i.e., outside the h-neighborhood of c. The only difference between
L and L̃ is a slight deviation in the covariance structure around the change point
(Fig. 4b), resulting in minor differences between the individual processes L and L̃
in this neighborhood that hardly affect their maximum (Fig. 4a). Further note that, if
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Fig. 4 The two limit processes L (blue) and L̃ (red) in and around the neighborhood of a change point in
the variance at time c (a). The two processes coincide for |t − c| > h and show a slight difference in the
autocovariance around the change point. b compares the autocovariance of L (blue) as a function of the lag
v with the simulated covariance of L̃ (red) at the change point c (color figure online)

also the variance remains unchanged σ 2[1] = σ 2[2] (but potentially other parameters do
change) then the two limit processes coincide for all t ∈ [h, T − h].
Proposition 5.1 Let X ∈ M with C = {nc} such that c ∈ [h, T − h] and μ[1] = μ[2].
Then it holds in (D[h, T − h], dSK ) as n → ∞

D(n) d−→ L̃.

Proof We proceed similarly to the proof of Proposition 3.1, applying Donsker’s the-
orem and continuous mapping to obtain the MOSUM statistic. The difference is that
joint convergences w.r.t. the two underlying processesX[1] andX[2] are used to obtain
the result concerning the compound process X.

First observe that (σ[k]/(nh · s(n)
h,t ))t∈[0,T ] = (σ[k]/(h · s(1)

h,t )t∈[0,T ] is continuous
and does not depend on n. For k = 1, 2 denote the rescaled random walk w.r.t. X[k]
by S(n)

[k] (see (5)). Further define (S̃(n)
t,[k])t∈[0,T ] via S̃(n)

t,[k] := (σ[k]/(nh · s(n)
h,t ))S

(n)
t,[k].

For two independent standard Brownian motions W [1] and W [2] we then obtain in
(D[0, T ] × D[0, T ], dSK ⊗ dSK ) as n → ∞ joint convergence

(
(S̃(n)

t,[1])t , (S̃
(n)
t,[2])t

)
d−→

⎛

⎝

(
σ1

h · s(1)
h,t

W [1]
t

)

t

,

(
σ2

h · s(1)
h,t

W [2]
t

)

t

⎞

⎠ (14)

according to Donsker’s theorem and due to the independence ofX(1) andX(2).We now
map these pairs to the scenario of theMOSUMstatisticmerging the information of both
processes in the neighborhood of the change point. For that we define the continuous
map ϕ : (D[0, T ] × D[0, T ], dSK ⊗ dSK ) → (D[h, T − h], dSK ) given by

(( f (t))t∈[0,T ], (g(t))t∈[0,T ])

ϕ�−→

⎛

⎜
⎜
⎝

( f (t + h) − f (t)) − ( f (t) − f (t − h))1[h,c−h)(t)
+(g(t + h) − g(c)) + ( f (c) − f (t)) − ( f (t) − f (t − h))1[c−h,c)(t)
+(g(t + h) − g(t)) − (g(t) − g(c)) − ( f (c) − f (t − h))1[c,c+h)(t)
+(g(t + h) − g(t)) − (g(t) − g(t − h))1[c+h,T−h](t)

⎞

⎟
⎟
⎠

t∈[h,T−h]

.
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Applying ϕ to (14) yields in (D[h, T − h], dSK ) as n → ∞
(
X̄r − X̄�

s(n)
h,t

)

t

d−→ (L̃h,t )t . (15)

To see this we exemplarily calculate the left hand side of the convergence of ϕ(·) for
t ∈ [c − h, c)

ϕ
(
(S̃(n)

t,[1])t∈[0,T ], (S̃(n)
t,[2])t∈[0,T ]

)∣
∣
∣
t
= (S̃(n)

t+h,[2] − S̃(n)
c,[2]) + (S̃(n)

c,[1] − S̃(n)
t,[1])

−(S̃(n)
t,[1] − S̃(n)

t−h,[1])

= X̄r − X̄�

s(n)
h,t

.

Here we used that all μ are equal and thus, cancel out. Then σk cancels out by con-
struction of S̃(n)

t,[k], and finally it is s(1)
h,t /

√
n = s(n)

h,t by definition of s(n). For the right

hand side we see by definition of L̃h,t in (12) that it holds e.g., for t ∈ [c − h, c)

ϕ

⎛

⎝

(
σ1

h · s(1)
h,t

W [1]
t

)

t

,

(
σ2

h · s(1)
h,t

W [2]
t

)

t

⎞

⎠

∣
∣
∣
∣
∣
∣
t

= σ[2](W [2]
t+h − W [2]

c ) + σ[1][(W [1]
c − W [1]

t ) − (W [1]
t − W [1]

t−h)]
h · s(1)

h,t

.

Let now (Wt )t denote a standard Brownian motion. Then we can omit the superscripts
on the r.h.s. of the latter display without changing the distribution while continuity of
the sample paths is preserved, which results in the maintained limit L̃h,t . Finally we
can exchange the true order of scaling in (15) with ŝ(n)

h,t by Slutsky’s Lemma using
Lemma 5.2. 
�

Lemma 5.2 Let X ∈ M with C = {nc} such that c ∈ [h, T − h] and μ[1] = μ[2].
Further let ŝ(n)

h,t be given in (2) and s
(n)
h,t as in (13). Then it holds in (D[h, T − h], d‖·‖)

as n → ∞ almost surely

(
ŝ(n)
h,t

s(n)
h,t

)

t

−→ (1)t .

This Lemma basically states that the local parameter estimation is consistent as long
as there is no change in expectation, even if other parameters potentially change. Note
that this result is an extension of Lemma 3.2; it reduces to Lemma 3.2 in the case of
σ 2 := σ 2[1] = σ 2[2].
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Proof First we decompose the true order of variance (s(n)
h,t )

2 =: s2r + s2� w.r.t. both

window halves, i.e., for the left window we find nh · s2� = σ 2
1 for t < c, nh · s2� = σ 2

2
for t > c + h and it describes a linear interpolation when the window overlaps the
change point, for t ∈ [c, c + h]

nh · s2� = t − c

h
σ 2
2 + c − (t − h)

h
σ 2
1 .

A similar decomposition for the right window yields nh · s2r = σ 2
1 for t < c − h,

nh ·s2r = σ 2
2 for t > c and nh ·s2r = ((t+h)−c)σ 2

2 /h+(c− t)σ 2
1 /h for t ∈ [c−h, c].

By definition of the estimator (ŝ(n)
h,t )

2 = (σ̂ 2
r + σ̂ 2

� )/nh it suffices to show that in
(D[h, T − h], d‖·‖) it holds almost surely as n → ∞

(
σ̂ 2

�

nh · s2�

)

t

−→ (1)t (16)

while an analogous statement for the right window half follows in the same manner.
Because μ := μ[1] = μ[2] we find the second moment of the observations in X[k] as
ν

〈2〉
[k] := σ 2[k] + μ2 for k = 1, 2. For t ∈ [h, T − h] we define (ν

〈2〉
� )t via

ν
〈2〉
� := nh · s2� − μ2 =

⎧
⎪⎪⎨

⎪⎪⎩

ν
〈2〉
[1] if t < c,
t−c
h ν

〈2〉
[2] + c−(t−h)

h ν
〈2〉
[1] if c ≤ t ≤ c + h,

ν
〈2〉
[2] if t > c + h,

(17)

which we understand as the true order of the second moment X2
� . We decompose

σ̂ 2
� = X2

� − X�
2
and note that in (D[h,T−h], d‖·‖) a.s. process convergence (X�)t →

(μ)t follows with analogous arguments as in the proof of Lemma 3.2 (since μ[1] =
μ[2]). Thus it remains to show process convergence of the second empirical moment

(X2
�)t → (ν

〈2〉
� )t uniformly almost surely as n → ∞. From (7) we know that it holds

for k = 1, 2 in (D[0, T ], d‖·‖) almost surely as n → ∞
(
1

n

∑�nt�
i=1

X2
i,[k]

)

t
→

(
tν〈2〉

[k]
)

t
.

Representing (X2
�)t accordingly as

(X2
�)t =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(
1
nh

∑�nt�
i=1 X2

i,[1]
)

t
−

(
1
nh

∑�n(t−h)�
i=1 X2

i,[1]
)

t
with t ∈ (h, c),

(
1
nh

∑�nt�
i=1 X2

i,[2]
)

t
−

(
1
nh

∑�nc�
i=1 X2

i,[2]
)

t

+
(

1
nh

∑�nc�
i=1 X2

i,[1]
)

t
−

(
1
nh

∑�n(t−h)�
i=1 X2

i,[1]
)

t
with t ∈ [c, c + h],(

1
nh

∑�nt�
i=1 X2

i,[2]
)

t
−

(
1
nh

∑�n(t−h)�
i=1 X2

i,[2]
)

t
with t ∈ (c + h, T − h),
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gives uniform a.s. convergence to (ν
〈2〉
� )t in all three subdivisions and thus also regard-

ing the entire time horizon [h, T −h] proves (16) and thus the statement of the Lemma.

�

Thus, in case of constant expectation, a change in the variance leads to only minor
deviations of the limit process. Therefore we argue that L can be used in practice
to derive the rejection threshold Q also in cases with variance changes, while the
significance level is practically unchanged.

The practical negligibility of changes in the variance is also supported by the
marginal behavior of the MOSUM process at the change point c when any parameters
are allowed to change. It follows as n → ∞

D(n)
h,c − μ[2] − μ[1]

(σ 2[2] + σ 2[1])1/2
√
nh

d−→ N (0, 1) (18)

which basically states the test power of a t-test as a simple application of the Delta
method. Thus, it is the (scaled) difference of the expectations that results in large
values of the MOSUM process. Conversely, as long as the mean does not change,
i.e., μ[2] = μ[1], the MOSUM process will converge to a zero mean, unit variance
Gaussian process, as stated in Proposition 5.1. Also note that in the extended case of
simultaneous changes in the expectation and variance, Proposition 5.1 and Lemma
5.2 can be extended analogously (see Messer and Schneider (2017) for corresponding
results in the framework of point processes). In that case, the expectation of D(n)

locally shows a systematic deviation from zero: in the h-neighborhood of a change
point, it takes the form of a hat if the variance stays constant and the form of a shark
if both parameters change (compare also Bertrand 2000; Bertrand et al. 2011). In any
case, the maximal expected deviation lies at the change point itself. As a consequence,
the procedure is sensitive to changes in the expectation while it does not tend to falsely
detect changes in other parameters.

6 Simulation example

In this section we support our theoretical findings, illustrating the performance of the
MFT with respect to the sensitivity to change points in the expectation as well as its
robustness to other parameter changes. Sequences of independent random variables
with three change points in the expectation (c1, c3, c4) on different time scales and
one change point in the variance (c2) are simulated (Fig. 5a). While the magnitude
of the first change in expectation at c1 is small, the other two change points in the
expectation (c3, c4) occur close to each other. To stress the applicability under general
distributional assumptions we use samples of normally distributed random variables
(panel b) as well as gamma distributed (panel c) random variables. We apply the MFA
using a 5% significance level for the statistical test. Panels b and c show temporal
histograms of the number of detected change points in 1000 simulations.

The results support again the three properties of the MFT. First, the histograms
for the numbers of detected change points are highly similar for both simulated
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Fig. 5 Number of detected change points in 1000 simulations under the alternative with expectations and
variances given in a. The mean changes at c1 = 400, c3 = 1200, c4 = 1305 and the variance changes
at c2 = 800. Parameters: μ[1] = 0.5, μ[2] = 0.85, μ[3] = 0.85, μ[4] = 1.9, μ[5] = 1, σ 2[1] = σ 2[2] =
0.25, σ 2[3] = σ 2[4] = σ 2[5] = 1, T = 2000, H = {100, 150, 200, 250, 300}. All random variables are
independent and normal (b) or gamma-distributed (c)

distributions, illustrating the applicability of the MFT under general distributional
assumptions. Second, all three change points in the expectation are correctly detected
in 98.3% (96.9%) in the normal (gamma) case, where we call a change point correctly
detected if it is located in the h1/2 = 50-neighborhood of an estimated change point.
The change at c1 was correctly detected in 98.6% (97.8%) of the cases, the change
at c3 in 99.9% (99.8%) and the change at c4 in 99.8% (99.3%) of the simulations,
supporting sensitivity to changes in the expectation on multiple time scales. Third, the
percentage of simulations with falsely detected change points is 4.6% (5.0%) for the
normal (gamma) distributed random variables, which does not exceed the 5% signif-
icance level. The variance change point was falsely detected in only five (six) out of
the 1000 simulations.

Interestingly, the robustness of theMFT to changes in variance and other parameters
also allows extensions of the MFT to the detection of other change points than the
expectation, for example in the variance. To that end the MFT could be extended in
a straightforward manner by suitable modification of the MOSUM statistic, which
would then compare estimates of the empirical variances within the two windows by
including the information of the estimated changes in expectation (compare Albert
et al. 2017, for the respective method in point processes).

In summary, these simulations support the theoretical results and suggest good
performance and practical applicability of the multiple filter test.

7 Discussion

We proposed a method that extends the MFT for change point detection in point
processes (Messer et al. 2014, 2017b) to sequences of events. The MFT contains a
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test for the null hypothesis of constant expectation and, in case of rejection of the
null, an algorithm for the detection of change points in the expectation. It is based
on multiple MOSUM processes depending on different window sizes. Both, the test
as well as the algorithm depend on a rejection threshold which is derived in a two-
step procedure of first, showing weak process convergence of all involved MOSUM
processes (see Proposition 3.1) and second aMonteCarlo simulation of the distribution
of the global maximum over all corresponding limit processes.

Technically, the translation from point processes to sequences of random variables
involved introducing the procedure to the inverted point process. For a given window
size h we evaluate a fixed number of 2h observations at each time point, rather than a
random number of observations. We are now able to evaluate real-valued sequences
of events, in contrast to the point process framework, where positivity of the data
was assumed. We proposed a local, i.e., time dependent, estimator for the process
parameters in order to account for alternatives that contain changes in the expectation:
local estimation results in consistent parameter estimation at those points in time
where the corresponding window of the MOSUM process does not overlap a change
point in the expectation. Particularly, on a functional level consistency of the estimator
was shown for sequences of events where no changes in the expectation occur, while
change points in other parameters may exist, see Lemma 5.2.

The present MFT has three important benefits. First, it does not require specific
parametric assumptions but works for sequences of independent and identically dis-
tributed random variables. For the theoretical results of Sect. 3, sufficient conditions
were given that also allow for relaxations of these assumptions. This is because the
MFT is based on a functional central limit theorem, which is known to hold true for
i.i.d. random variables and also for relaxations of the assumption of independence or
identical distribution. Second, change points occurring on different time scales can
be detected. This is achieved by simultaneous evaluation of all MOSUM processes.
The adequate derivation of the rejection threshold is a consequence of the fact that all
processes are continuous functionals of the same underlying rescaled random walk.
Third, our theoretical findings support the robustness of the MFT against changes
in parameters other than the expectation. This is stated in Proposition 5.1 where we
showed that the limit of theMOSUMprocess is aGaussian processwith zeromean and
unit variance as long as the expectation remains unchanged while other parameters are
allowed to change. We also discussed the sensitivity of the procedure to change points
in the expectation (see Eq. (18)): the asymptotic marginal of the MOSUM statistic at a
change point is normal and its mean is given as a scaled difference of the expectations
of the populations. The three benefits of the MFT were also supported in simulations.
For practical applicability, the procedure is made accessible in the R-package MFT
(Messer et al. 2017a).
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