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Abstract
For testing a linear hypothesis about fixed effects in a normal mixed linear model, a
popular approach is to use a Wald test, in which the test statistic is assumed to have
a null distribution that is approximately chi-squared. This approximation is question-
able, however, for small samples. In 1997 Kenward and Roger constructed a test that
addresses this problem. They altered the Wald test in three ways: (a) adjusting the
test statistic, (b) approximating the null distribution by a scaled F distribution, and (c)
modifying the formulas to achieve an exact F test in two special cases. Alterations
(a) and (b) lead to formulas that are somewhat complicated but can be explained by
using Taylor series approximations and a few convenient assumptions. The modified
formulas used in alteration (c), however, are more mysterious. Restricting attention to
models with linear variance–covariance structure, we provide details of a derivation
that justifies these formulas. We show that similar but different derivations lead to dif-
ferent formulas that also produce exact F tests in the two special cases and are equally
justifiable. A simulation study was done for testing the equality of treatment effects in
block-designmodels. Tests based on the different derivations performed very similarly.
Moreover, the simulations confirm that alteration (c) is worthwhile. The Kenward–
Roger test showed greater accuracy in its p values than did the unmodified version of
the test.
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196 W. Alnosaier, D. Birkes

1 Introduction

The Kenward–Roger (KR) test is widely used for testing linear hypotheses about fixed
effects in normal mixed linear models. Following its introduction in 1997 (Kenward
and Roger 1997), it has been cited in the literature more than 2500 times according
to Google Scholar. Since 1999 (Stroup 1999) it has been incorporated in the SAS
statistical package as the DDFM = KRoption in theMODEL statement of itsMIXED
procedure (SAS Institute Inc 2015). The KR test has also been made available in the R
package ‘pbkrtest’ (Halekoh and Højsgaard 2014) and can be found at Matlab Central
as function ‘ddfmixed.m’written byWitkovsky (2012). Simulation studies have shown
that it performs well in a variety of mixed linear models (Schaalje et al. 2002; Guiard
et al. 2003; Kowalchuk et al. 2004; Spilke et al. 2005; Chen 2006; Wimmer and
Witkovsky 2007; Arnau et al. 2009; Wulff and Robinson 2009; Livacic-Rojas et al.
2010).

Consider a data vector y whose distribution can be assumed to be multivariate
normal with mean vector Xβ, where β is a vector of fixed-effect parameters, and
with an invertible variance–covariance matrix� depending on a vector θ of variance–
covariance parameters. We will assume the variance–covariance structure is linear.
Suppose we want to test a linear hypothesis H0 : L′β = 0where L is a matrix whose �

columns are linearly independent. In developing their test, Kenward and Roger (1997)
begin with the idea of a Wald test statistic of the form

T = β̂
′
L[L′V̂ar(β̂)L]−1L′β̂ (1.1)

where β̂ is an estimator of β and V̂ar(β̂) is an estimator of Var(β̂). For large samples it
is often true that aWald test statistic like T has approximately a chi-squared distribution
with � degrees of freedom under the null hypothesis. For small samples, however, the
null distribution of T may not be well approximated by this distribution. Kenward and
Roger improve on the approximation in three ways:

(a) Theyuse an improved estimator V̂ar(β̂)basedon results ofHarville and coworkers
(Kackar and Harville 1984; Harville and Jeske 1992).

(b) They allow the approximating null distribution of T to be a scaled F distribution.
(c) They modify the approximating null distribution to be exact in two special cases.

Improvements (a) and (b) mainly involve Taylor series approximations and a few
convenient assumptions. The resulting formulas are somewhat complicated but the
outline of their derivation in Kenward and Roger (1997) makes the formulas seem
reasonable. The modified formulas used to achieve improvement (c), however, are
more mysterious. Below we provide details of a derivation that justifies these for-
mulas (see Sect. 7). We show that similar but different derivations lead to different
formulas that also produce exact null distributions in the two special cases. The two
alternative procedures in Sects. 8 and 9 have formulas and derivations that are some-
what simpler than the Kenward–Roger procedure. The simulation study reported in
Sect. 11 suggests that the three procedures perform similarly, at least when testing the
equality of treatment effects in a block-design model with random blocks.
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Inner workings of the Kenward–Roger test 197

Section 2 presents basic notation and assumptions; Sect. 3 contains notation and
formulas for improvement (a); Sect. 4 describes improvement (b); a description and
justification of improvement (c) are given in Sects. 5–7. The justification leads us
to two variations on improvement (c) that are derived in Sects. 8 and 9. In Sect. 10
are some theoretical results about when the three modifications produce the same
formulas. Simulation results are presented in Sect. 11. Details are provided in the
“Appendix”.

2 The testing problem

Consider a random vector distributed according to a multivariate normal distribution:

y d= Nn(Xβ,�) (2.1)

with mean vector E(y) = Xβ and variance–covariance matrix Var(y) = � = �(θ)

where X is a known n× p matrix of full column rank, β is a p× 1 vector of unknown
fixed-effect parameters, and � is an n × n positive-definite matrix depending on
an r × 1 vector θ of unknown variance–covariance parameters. We will assume the
model includes an intercept term. Let� denote the set of allowable values of θ .Wewill
assume that one of the allowable variance–covariancematrices is the identitymatrix In
(which is true formost models).Wewill assume that the variance–covariance structure
is intrinsically linear, so that, perhaps after reparameterization,

� = θ1G1 + · · · + θrGr

for known symmetric matrices Gi . Types of variance–covariance structures that are
linear include variance–components, random-coefficient, Toeplitz, Huynh–Feldt, and
banded structures, as well as the unstructured structure. Two technical assumptions
(which are satisfied for most models) are that the matricesGi are linearly independent
and the set � contains a nonempty open subset of Rr .

Consider the problemof testing a linear hypothesisH0 : L′β = 0whereL is a known
p × � matrix of full column rank. A general approach to testing such a hypothesis is
to form a Wald-type test statistic of the form

T = (L′β̂)′[V̂ar(L′β̂)]−1(L′β̂) = β̂
′
L[L′V̂ar(β̂)L]−1L′β̂

where β̂ is an estimator of β and V̂ar(β̂) is an estimator of Var(β̂). According to
asymptotic theory, if the sample size is large (and suitable assumptions are met), one
can test the null hypothesis by rejecting it if T is greater than a critical value of the
χ2(�) distribution. This may not be a good test, however, when the sample size is
small. As stated in Sect. 1, Kenward and Roger (1997) have introduced alterations (a),
(b) and (c) in order to improve the performance of the test for small samples.
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198 W. Alnosaier, D. Birkes

3 Choosing an estimator ˆ̌ and an estimator of its
variance–covariancematrix

Kenward and Roger (1997) choose β̂ to be an estimated generalized least-squares
estimator (EGLSE), that is,

β̂ = (X′�̂−1
X)−1X′�̂−1

y

where �̂ = �(θ̂) and θ̂ is an estimator of θ . They choose θ̂ to be the residual maximum
likelihood estimator (REMLE) of θ .

Let β̃ = β̃(θ) = (X′�−1X)−1X′�−1y, which is often called a generalized least-
squares estimator (GLSE). (See the remark below.)Note that theEGLSEcan bewritten
as β̂ = β̃(θ̂). Kackar and Harville (1984) expressed

Var(β̂) = � + �

where

� = �(θ) = (X′�−1X)−1 = Var(β̃) and � = Var(β̂ − β̃)

and they approximated � by

�̃ = �̃(θ) = �

[ r∑
i=1

r∑
j=1

wi j (Qi j − Pi�P j )

]
�

where W = [wi j ]r×r = Var(θ̂) and

Pi = Pi (θ) = −X′�−1Gi�
−1X

Qi j = Qi j (θ) = X′�−1Gi�
−1G j�

−1X.

Remark In general, theGLSE depends on the value of the unknown parameter vector θ
and therefore is not a true estimator because it cannot be calculated from the observed
data. A true estimator of β is obtained by substituting an estimator θ̂ for θ , thus
producing an EGLSE. For special models, the GLSE does not depend on the value of
θ . This happens if and only if the model satisfies the condition that, for all allowable
�, the column space of �X is contained in the column space of X (Zyskind 1967,
Theorem2). For suchmodels, theGLSEofβ coincideswith theLSE and is a uniformly
best linear unbiased estimator. Zyskind’s condition is met by models such as balanced
mixed-effects classification models that are ’proper’ as defined by VanLeeuwen et al.
(1999).Most, if not all, mixed-effects classificationmodels used in practice are proper.

The REMLE θ̂ is derived from a residual model not involving β. Let W̃ = W̃(θ)

denote the inverse of the expected information matrix for the residual model. We can
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Inner workings of the Kenward–Roger test 199

approximate W by Ŵ = W̃(θ̂). Also define �̂ = �(θ̂), �̂ = �̃(θ̂), P̂i = Pi (θ̂),
Q̂i j = Qi j (θ̂).

The matrix �̂ has traditionally been used as a convenient estimator for Var(β̂), but
it tends to underestimate. First, although �̂ is a sensible estimator for �, � is not the
same as Var(β̂) unless � = 0 (which happens if and only if the model satisfies the
condition of Zyskind (1967) mentioned in the remark above). The formula � + �̃

from Kackar and Harville (1984) is a more accurate approximation for Var(β̂) than �

is, and correspondingly, �̂ + �̂ is a better estimator of Var(β̂) than �̂ is. But �̂ + �̂

still tends to underestimate Var(β̂). The bias is reduced by using an adjusted estimator

�̂A = �̂ + 2�̂

(see Harville and Jeske 1992, Sect. 4.2).
Kenward and Roger (1997) use the test statistic T with V̂ar(β̂) = �̂A and rescale

it by dividing by �:

FKR = 1

�
β̂

′
L(L′�̂AL)−1L′β̂. (3.1)

4 Approximating the null distribution of the KR test statistic

Kenward and Roger (1997) approximate the null distribution of FKR by supposing that
there are positive numbers m and λ such that the null distribution of λFKR is approx-
imately an F distribution with � numerator degrees of freedom and m denominator
degrees of freedom. It is not required that m be an integer. The values of λ and m are
determined by matching moments.

Generally there are no exact formulas for the moments E(FKR) and Var(FKR), but
by using Taylor series expansions, Kenward and Roger (1997) obtain the following
approximate formulas:

E(FKR) ≈ E# = 1 + 1

�
A2 and Var(FKR) ≈ V # = 2

�
(1 + B) (4.1)

where

A2 =
r∑

i=1

r∑
j=1

ŵi j tr(�̂P̂i �̂P̂ j )

B = 1

2�
(A1 + 6A2)

A1 =
r∑

i=1

r∑
j=1

ŵi j tr(�̂P̂i ) tr(�̂P̂ j )

� = �(θ) = �L(L′�L)−1L′�, �̂ = �(θ̂).
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200 W. Alnosaier, D. Birkes

We can approximate the null distribution of FKR by

λ#FKR
d≈ F(�,m#) (4.2)

where λ# and m# are chosen so that the approximate moments of λ#FKR match the
exact moments of F(�,m#):

λ#E# = E[F(�,m#)] = m#

m# − 2

(λ#)2V # = Var[F(�,m#)] = 2

(
m#

m# − 2

)2
(� + m# − 2)

�(m# − 4)
.

Solve for λ# and m#:

m# = 4 + � + 2

�ρ# − 1
and λ# = m#

(m# − 2)E# (4.3)

where

ρ# = V #

2(E#)2
.

5 First special case: balanced ANOVAmodel

Consider a balanced one-way ANOVA fixed-effects model,

yi j = μi + ei j

for i = 1, . . . , t , j = 1, . . . , v. The quantities μi are unknown fixed effects and the
ei j are unobservable i.i.d. random variables from a N(0, σ 2) population. Let us test
H0 : μ1 = · · · = μt . This is a special case of the testing problem in Sect. 2 with
n = tv, p = t , r = 1 and � = t − 1 (see A.1 in the “Appendix”). One can calculate:

�̂ = σ̂ 2In, σ̂ 2 = σ̂ 2
REML =

∑t
i=1

∑v
j=1(yi j − ȳi·)2
n − t

μ̂i = ȳi·, �̂A = �̂ =
(

σ̂ 2

v

)
It

FKR = v
∑t

i=1(ȳi· − ȳ··)2/(t − 1)

σ̂ 2 .

It is well known that in a normal balanced one-way ANOVA fixed-effects model,
the null distribution of the statistic FKR above is exactly the F(t−1, n− t) distribution
(Kuehl 2000, p. 57). That is,
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Inner workings of the Kenward–Roger test 201

λFKR
d= F(�,m) with m = n − t and λ = 1. (5.1)

To see whether the values of m# and λ# (defined in Sect. 4 above) are equal to the
“ideal” values n − t and 1, one can calculate:

E# = 1 + 2

n − t
, V # = 2

t − 1

(
1 + t + 5

n − t

)
(5.2)

m# = 4 + (n − t)
[1 + 2/(n − t)]2

1 − 4/[(t + 1)(n − t)] > n − t (5.3a)

λ# = m#(n − t)

(m# − 2)(n − t + 2)
=

(
1 + 2

m# − 2

) (
1 − 2

n − t + 2

)
< 1. (5.3b)

Neither m# nor λ# has the ideal value in this case.

6 Second special case: Hotelling T-squared test

Suppose y1, . . . , yv are v independent and identically distributed random p×1 vectors
with

yk
d= Np(μ,� p)

for k = 1, . . . , v. Let us test H0 : μ = 0. This is a special case of the testing problem in
Sect. 2 with n = vp, p = p, r = p(p + 1)/2 and � = p (see A.5 in the “Appendix”).
One can calculate:

�̂ = Iv ⊗ S, S = �̂ pREML =
∑v

k=1(yk − ȳ·)(yk − ȳ·)′
v − 1

μ̂ = ȳ·, �̂A = �̂ = 1

v
S

FKR = v

p
ȳ′·S−1ȳ·.

In this setting it is common to apply the one-sample Hotelling T-squared test, in
which the test statistic is T 2 = pFKR. It is known (Mardia et al. 1979, Section 5.2.1b)
that the null distribution of [(v− p)/[(v−1)p]]T 2 = [(v− p)/(v−1)]FKR is exactly
F(p, v − p). That is,

λFKR
d= F(�,m) with m = v − p and λ = v − p

v − 1
. (6.1)
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202 W. Alnosaier, D. Birkes

(We require v > p.) To see whether the values of m# and λ# are equal to the ideal
values v − p and (v − p)/(v − 1), one can calculate:

E# = 1 + p + 1

v − 1
, V # = 2

p

(
1 + 3p + 4

v − 1

)
(6.2)

m# = 4 + (v − p)
[1 + 2p/(v − p)]2

1 − (p + 3)/[(p + 2)(v − p)] > v − p (6.3a)

λ# = m#(v − 1)

(m# − 2)(v + p)
. (6.3b)

Again in this second special case we see that m# does not have the ideal value. And
for most (if not all) choices of p and v, neither does λ#. For example, for p = 2 and
v = 10 we get λ# = 57/70 �= 8/9 = (v − p)/(v − 1).

7 Kenward and Roger’s modification of the approximate null
distribution

We see that in the two special cases the formulas (4.1) for E# and V #, when plugged
into formulas (4.3) form# and λ#, do not achieve the ideal values ofm and λ. Kenward
and Roger (1997) modified formulas (4.1) to obtain approximations E∗ and V ∗ with
the desirable property that the KR test in the two special cases coincides with the exact
test.

In the ANOVA special case,

E(FKR) = E[F(t − 1, n − t)] = n − t

n − t − 2
= 1

1 − 2
n−t

= 1

1 − A2
�

.

In the Hotelling special case,

E(FKR) = E

[(
v − 1

v − p

)
F(p, v − p)

]
= v − 1

v − p − 2
= 1

1 − p+1
v−1

= 1

1 − A2
�

.

Thus we are led to the formula

E∗ = 1

1 − A2
�

, (7.1)

which Kenward and Roger apply to all models in the class described in Sect. 2. Note
that formula (7.1) makes sense from an asymptotic viewpoint, because for large � the
quantity ε = A2/� becomes small, and for small ε we have E# = 1+ε ≈ 1/(1−ε) =
E∗.

Next consider Var(FKR). The formula for V # is a function of � and B, so let us
choose V ∗ to have this same feature. We will look at the exact values of Var(FKR)

under the null hypothesis in the two special cases and express them in terms of � and B.
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Inner workings of the Kenward–Roger test 203

In the ANOVA special case, (5.1) states that, under the null hypothesis, FKR
d=

F(�,m) with m = n − t , so:

Var(FKR) = Var[F(�,m)] = 2

(
m

m − 2

)2
(� + m − 2)

�(m − 4)
.

This formula is in terms of � and m, but we can express m in terms of � and B.
Calculate B = (t + 5)/(n − t) = (� + 6)/m (see A.2 in the “Appendix”) and write
1/m = B/(� + 6). Now

Var(FKR) = 2

�

(
1

1 − 2/m

)2 [1 + (� − 2)/m]
(1 − 4/m)

= 2

�

(
1 + �−2

�+6 B
)

(
1 − 2

�+6 B
)2 (

1 − 4
�+6 B

) .

In the Hotelling special case, (6.1) implies that, under the null hypothesis, FKR
d=

F(�,m)/λ with m = v − p and λ = (v − p)/(v − 1), so:

Var(FKR) = Var[F(�,m)/λ] = 2

(
m

m − 2

)2
(� + m − 2)

�(m − 4)

/
λ2.

Recall p = �, so that λ = m/(m + � − 1) and

Var(FKR) = 2

�

(
m + � − 1

m − 2

)2
(m + � − 2)

(m − 4)
.

To bring B into the formula, calculate B = (3p+ 4)/(v − 1) = (3�+ 4)/(m + �− 1)
(see A.6 in the “Appendix”). Let k = m + � − 1 and write 1/k = B/(3� + 4). Now

Var(FKR) = 2

�

(
k

k − � − 1

)2
(k − 1)

(k − � − 3)
= 2

�

[
1

1 − (� + 1)/k

]2
(1 − 1/k)

[1 − (� + 3)/k]

= 2

�

(
1 + −1

3�+4 B
)

(
1 − �+1

3�+4 B
)2 (

1 − �+3
3�+4 B

) .

In both cases, the formula for the exact value of the variance of FKR has the form:

Var(FKR) = 2

�

(1 + d1B)

(1 − d2B)2(1 − d3B)
.

Let d = (d1, d2, d3).
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204 W. Alnosaier, D. Birkes

Case 1:

d =
(

�−2
�+6 ,

2
�+6 ,

4
�+6

)

Case 2:

d =
( −1
3�+4 ,

�+1
3�+4 ,

�+3
3�+4

)

We need general formulas for these coefficients that reduce to the desired values in
the two cases. Write d1 = g/h.

Case 1:

g = � − 2, h = � + 6

Case 2:

g = −1, h = 3� + 4

Looking at the numerators of the ratios di , we see that in both cases

d =
(
g

h
,
� − g

h
,
� − g + 2

h

)
. (7.2)

Formulas (4.1) for E# and V # derived by Kenward and Roger (1997) as initial
approximations of E(FKR) and Var(FKR) follow naturally from Taylor expansions
and from certain simplifying assumptions. The formulas that they constructed for g
and h appear to be somewhat more improvised. Just like formulas (4.1), the formulas
for g and h are functions of the quantities �, A1, and A2. Kenward andRoger essentially
chose to express g and h as linear functions of the ratio A1/A2 with coefficients that
are functions of �. That is,

g = a0 + a1
A1

A2
and h = b0 + b1

A1

A2

for coefficients determined so that g and h have the desired values in the two special
cases. It is equivalent if one expresses h = c0 + c1g as a linear function of g, and this
leads to simpler coefficients.

Case 1:

A1

A2
= �, � − 2 = a0 + a1�, � + 6 = c0 + c1(� − 2)

Case 2:

A1

A2
= 2

� + 1
, −1 = a0 + a1

2

� + 1
, 3� + 4 = c0 + c1(−1)
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Inner workings of the Kenward–Roger test 205

These equations can be solved to obtain a0, a1, c0, c1:

g = −(� + 4) + (� + 1)(A1/A2)

� + 2
and h = 3� + 2 − 2g. (7.3)

Thus we arrive at the formula for the Kenward–Roger approximation of the variance
of their test statistic:

V ∗ = 2

�

(1 + d1B)

(1 − d2B)2(1 − d3B)
(7.4)

where d1, d2, d3 are given by formulas (7.2) and (7.3). The modified approximate null
distribution of the Kenward–Roger test statistic is given by

λ∗FKR
d≈ F(�,m∗) (7.5)

where m∗ and λ∗ are calculated as in (4.3), replacing E# and V # by E∗ and V ∗.
Approximation (7.5) is preferable to approximation (4.2) in so far as it reproduces
the exact test in the two special cases. Moreover, in the simulation study reported in
Sect. 11 below it is seen that, even in situations where no exact test is available, the
modified approximation (7.5) does better than approximation (4.2).

8 An alternativemodification

Aswill be seen in Sect. 11, the modification described in Sect. 7 is an important step in
the development of theKR test. The essential idea of themodification is to find approx-
imations E∗ and V ∗ that lead to valuesm∗ and λ∗ such that (7.5) holds approximately
under the null hypothesis and is exact in the two special cases. Some of the formulas
in the modification, particularly (7.2), (7.3) and (7.4) that are used to calculate V ∗,
might appear to be somewhat arbitrary. Indeed there are alternative modifications that
achieve the same goal. In this section we derive m† and λ†, different from m∗ and λ∗,
such that the null distribution of the KR test statistic is given approximately by

λ†FKR
d≈ F(�,m†) (8.1)

with exact equality in distribution for the two special cases.
We continue to use approximation E∗ shown in (7.1). Rather than develop a formula

for approximating Var(FKR), we will obtain a formula for m† directly.
First, in the two special cases let us express m as a function of � and B. Formulas

for B are given in Sect. 7 and can be rearranged to obtain:

m = � + 6

B
in case 1 and m = −(� − 1) + 3� + 4

B
in case 2.

In both cases, m equals a linear function of 1/B with coefficients involving �, so we
choose m† to be such a function: m† = e0 + e1/B.
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Case 1:

m = n − t, e0 = 0, e1 = � + 6

Case 2:

m = v − p, e0 = 1 − �, e1 = 3� + 4

The coefficients e0 and e1 depend on the model and to account for this we express
them as functions of A1/A2. For simplicity we choose linear functions:

e0 = f0 + f1
A1

A2
and e1 = g0 + g1

A1

A2

inwhich the coefficients are functions of � and are determined so that e0 and e1 have the
desired values in the two special cases. It is equivalent if one expresses e1 = h0+h1e0
as a linear function of e0, and the coefficients are simpler.

Case 1:

A1

A2
= �, 0 = f0 + f1�, � + 6 = h0 + h1(0)

Case 2:

A1

A2
= 2

� + 1
, 1 − � = f0 + f1

2

� + 1
, 3� + 4 = h0 + h1(1 − �)

Solving for f0, f1, h0, h1, we obtain

e0 = � + 1

� + 2

(
A1

A2
− �

)
and e1 = � + 6 − 2e0. (8.2)

Therefore, our alternative modified approximation for the null distribution of the
Kenward–Roger test statistic is given by (8.1) where

m† = e0 + e1
B

and λ† = m†

(m† − 2)E† , (8.3)

with e0 and e1 given in (8.2), and E† = E∗ in (7.1).
This alternative modification is still an improvisation but its formulas (see (7.1),

(8.2), (8.3)) are simpler than those appearing in the modification derived by Kenward
andRoger (1997); see formulas (7.1)–(7.4) and (4.3) above. Simpler formulas aremore
appealing, but a more important finding is that our alternative procedure performs very
nearly the same as the original modification in the simulation study reported in Sect. 11
below. This reassures us that, even though some of the Kenward–Roger formulas may
seem arbitrary and though equally justifiable alternative formulas exist, the particular
choice of modification seems to have little effect on the performance of the KR test.
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9 Another alternativemodification

In this section we present another pair of values m‡ and λ‡ such that

λ‡FKR
d≈ F(�,m‡) (9.1)

under the null hypothesis, with exact equality in distribution for the two special cases.
The initial, unmodified version of the KR test in Sect. 4 above uses F(�,m#)/λ#

as the approximate null distribution of FKR where m# and λ# are calculated from
E# and V #, which are Taylor approximations to the mean and variance of FKR. The
improved, modified version of the KR test in Sect. 7 above uses F(�,m∗)/λ∗ wherem∗
and λ∗ are calculated from the modified quantities E∗ and V ∗, which are extrapolated
from the exact values of the mean and variance of FKR in the two special cases. The
alternative modification in Sect. 8 uses F(�,m†)/λ† where m† is obtained directly by
extrapolating from the exact values of m in the two special cases, and λ† is calculated
from E† = E∗ and m†. Now in this section, a second alternative modification is
described that uses F(�,m‡)/λ‡ where m‡ is again obtained directly by extrapolating
from the exact values of m in the two special cases but using a different extrapolation
procedure.

In Sect. 8,m† is expressed as a linear function of 1/B, in which the coefficients are
linear functions of A1/A2, in which the coefficients are functions of �:

m† =
(

� + 1

� + 2

)(
A1

A2
− �

)
+

[
(� + 6) − 2

(
� + 1

� + 2

)(
A1

A2
− �

)]
1

B
,

which can be rewritten as a ratio of two quadratic functions of A1 and A2 with coef-
ficients that are functions of �:

m† = 2�(� + 2)(� + 6)A2 + (� + 1)(A1 − �A2)(A1 + 6A2 − 4�)

(� + 2)(A1 + 6A2)A2
.

For the alternative modification presented in this section, m‡ will be expressed as a
ratio of two linear functions of A1 and A2 with coefficients that are functions of �.

Formulas for the exact values of m in the two special cases are displayed in Sect. 8
in terms of � and B. Note that each of the two formulas can be written as a ratio of two
linear functions of A1 and A2 with coefficients that are functions of � and with 1 as the
constant term in the numerator function and 0 as the constant term in the denominator
function:

Case 1:

m = � + 6

B
= 1

1
2�(�+6) A1 + 3

�(�+6) A2
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Case 2:

m = −(� − 1) + 3� + 4

B
= 1 − �−1

2�(3�+4) A1 − 3(�−1)
�(3�+4) A2

1
2�(3�+4) A1 + 3

�(3�+4) A2

Both of these formulas have the form:

m = 1 + c1A1 + c2A2

d1A1 + d2A2
.

We can extrapolate from the two special cases by choosing c1, c2, d1, d2 such that:

c1A1 + c2A2 = 0 (9.2a)

d1A1 + d2A2 = 1

2�(� + 6)
A1 + 3

�(� + 6)
A2 (9.2b)

in case 1, that is, when A1 = 2�2/m and A2 = 2�/m (see A.2 in the “Appendix”),
and such that:

c1A1 + c2A2 = − � − 1

2�(3� + 4)
A1 − 3(� − 1)

�(3� + 4)
A2 (9.2c)

d1A1 + d2A2 = 1

2�(3� + 4)
A1 + 3

�(3� + 4)
A2 (9.2d)

in case 2, that is, when A1 = 2�/(m + � − 1) and A2 = �(� + 1)/(m + � − 1)
(see A.6 in the “Appendix”). It is convenient to divide each of the Eq. (9.2) by A2.
Equations (9.2a) and (9.2c) become:

�c1 + c2 = 0,
2

� + 1
c1 + c2 = − � − 1

�(� + 1)

which implies c1 = 1/[�(� + 2)] and c2 = −1/(� + 2). Equations (9.2b) and (9.2d)
become:

�d1 + d2 = 1

2�
,

2

� + 1
d1 + d2 = 1

�(� + 1)

which implies d1 = 1/[2�(�+2)] andd2 = 1/[�(�+2)]. Thuswe take the denominator
degrees of freedom in approximation (9.1) to be:

m‡ = 2�(� + 2) + 2(A1 − �A2)

A1 + 2A2
. (9.3)

Let

λ‡ = m‡

(m‡ − 2)E‡

where E‡ = E∗ in (7.1).
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10 When the threemodifications are identical

Under certain conditions, the KRmodification in Sect. 7 above and the two alternative
modifications in Sects. 8 and 9 are identical. For proofs of the results in this section,
see the “Appendix”.

Lemma 1 (a) If A1/A2 = �, then the three modifications are identical:

m∗ = m† = m‡ = 2�/A2 and λ∗ = λ† = λ‡ = 1.

(b) If A1/A2 = 2/(� + 1), then the three modifications are identical:

m∗ = m† = m‡ = �(� + 1)

A2
− (� − 1) and λ∗ = λ† = λ‡ = 1 − � − 1

�(� + 1)
A2.

Lemma 2 When � = 1, then A1 = A2.

Theorem 1 When � = 1, the three modifications are identical, with denominator
degrees of freedom m∗ = 2/A2 and scale factor λ∗ = 1.

The fact that � = 1 implies λ∗ = 1 is stated in Kenward and Roger (1997, p. 988).
Suppose the design matrix of a model is partitioned as X = [X1 X2 ] so that

E(y) = X1β1 + X2β2. Note that

X′�−1X =
[
X′
1�

−1X1 X′
1�

−1X2

X′
2�

−1X1 X′
2�

−1X2

]
.

Lemma 3 In a model partitioned as above, suppose:

(a) the null hypothesis involves only the parameters in β2 so that L
′β = L′

2β2;
(b) X′

1�
−1X2 = 0;

(c) X′
2�

−1X2 = f (θ)C

where f is a scalar-valued function and C is a matrix not depending on θ . Then
A1/A2 = �.

Consider a balanced incomplete block design (BIBD)with s blocks, each containing
k plots, and with t treatments, each applied to r plots. For each pair of treatments, the
number of blocks in which the two treatments appear together is the same number, say
g, for all pairs. Suppose the treatment effects are fixed and the block effects are random.
The model can be written as yi ju = μ+ τi + b j + ei ju for i = 1, . . . , t , j = 1, . . . , s,
u = 1, . . . , ni j (all ni j are either 0 or 1) where the b j ’s and ei ju’s are independent of
one another and are normally distributed with E(b j ) = E(ei ju) = 0, Var(b j ) = σ 2

b ,
Var(ei ju) = σ 2

e . In matrix notation, y = 1nμ + Tτ + Bb + e where 1n is an n × 1
vector of 1’s, n = n·· = tr = sk, τ = (τ1, . . . , τt )

′, b = (b1, . . . , bs)′, T′T = rIt ,
B′B = kIs , T′B = N = [ni j ]t×s . The design matrix for the fixed effects is [ 1n T ],
which does not have full column rank, and so to achieve the assumptions of model
(2.1) we reparameterize by settingμ∗ = μ+ τ̄· and τ ∗

i = τi − τ̄· for i = 1, . . . , t −1.
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Then μ+ τi = μ∗ + τ ∗
i for i = 1, . . . , t − 1 and μ+ τt = μ∗ − τ ∗

1 − · · ·− τ ∗
t−1. This

is an instance of model (2.1), with a full-column-rank design matrix that is partitioned
as

X = [
1n T∗] , β =

[
μ∗
τ ∗

]

and with � = σ 2
bBB

′ + σ 2
e In .

A common null hypothesis for a block design is H0 : τ1 = · · · = τt or, in terms
of the reparameterization, H0 : τ ∗

1 = · · · = τ ∗
t−1 = 0 or H0 : τ ∗ = 0. This testing

problem satisfies the conditions of Lemma 3 with X1 = 1n , X2 = T∗, L2 = It−1.

Theorem 2 For testing the equality of the treatment effects in a BIBD model with
random blocks, the three modifications are identical, with denominator degrees of
freedom m∗ = 2(t − 1)/A2 and scale factor λ∗ = 1.

11 Simulation study

Simulations were run in order to compare the performance of the KR test with the
two alternative KR-type tests as well as with the unmodified version of the KR test
(see Sect. 4). The models we chose to simulate have incomplete block designs that are
not balanced: complete block designs with missing observations, partially balanced
incomplete block designs (PBIBDs), BIBDs with missing observations, and PBIBDs
with missing observations.

Themodels can bewritten as yi ju = μ+τi+b j+ei ju for i = 1, . . . , t , j = 1, . . . , s,
u = 1, . . . , ni j where all ni j are either 0 or 1. The incidence matrix N = [ni j ]
specifies the design. As in the preceding section, we can re-express the model as
yi ju = μ∗+τ ∗

i +b j+ei ju for i = 1, . . . , t−1 and yt ju = μ∗−τ ∗
1 −· · · τ ∗

t−1+b j+et ju
for i = t . The hypothesis of interest is H0 : τ ∗

1 = · · · = τ ∗
t−1 = 0, so the null model

is yi ju = μ∗ + b j + ei ju all i, j, u. This model can be simulated by generating the b j

as an i.i.d. sample from the N(0, σ 2
b ) distribution and generating the ei ju as an i.i.d.

sample from the N(0, σ 2
e ) distribution. For each design we considered five values of

the ratio ρ = σb/σe, namely ρ = 0.25, 0.5, 1, 2, 4.
The following lemma implies there is no loss of generality in setting μ∗ = 0 and

σe = 1 when simulating the null distribution of the KR test statistic. To make explicit
the dependence of FKR on the data let us write FKR = FKR(y).

Lemma 4 For the null model, FKR(y) d= FKR(y§) where the components of y§ are
y§i ju = b§j + e§i ju and can be simulated by generating the b§j as an i.i.d. sample from

the N(0, ρ2) distribution and generating the e§i ju as an i.i.d. sample from the N(0, 1)
distribution.
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Lemma 4 is an application of Lemma 5 below, which holds for the general testing
problem described in Sect. 2.

Lemma 5 FKR(cy + Xb0) = FKR(y) for any c �= 0 and any b0 satisfying L′b0 = 0.

In other words, for any vector a in the space {Xb0 : L′b0 = 0} of possible mean
vectors in the null model, FKR(cy + a) = FKR(y). For an incomplete block design
as described above, let c = σ−1

e , a = −σ−1
e μ∗1, and y§ = cy + a. Then y§i ju =

σ−1
e yi ju − σ−1

e μ∗ = σ−1
e b j + σ−1

e ei ju and the b§j = σ−1
e b j are i.i.d. N(0, ρ2) and

the e§i ju = σ−1
e ei ju are i.i.d. N(0, 1).

The block designs we studied are listed below (n = number of observations, t =
number of treatments, s = number of blocks, k = maximum block size):

D96 = a PBIBD with n = 96, t = 16, s = 48, k = 2 (Green 1974, p. 65).
D60 = a PBIBD with n = 60, t = 15, s = 15, k = 4 (Cochran and Cox 1957, p. 456).
D40 = a design with n = 40, t = 6, s = 7, k = 6, obtained from a complete block
design with t = 6 and s = 7 by deleting two observations from different blocks and
different treatments.
D21a = a design with n = 21, t = 4, s = 9, k = 3, obtained from a BIBD in Kuehl
(2000, p. 317) by deleting run 10 and treatment 550.
D21b = a design with n = 21, t = 9, s = 7, k = 3, obtained from a PBIBD in Kuehl
(2000, p. 329) by deleting blocks 8 and 9.
D18a = a design with n = 18, t = 4, s = 5, k = 4, obtained from a complete block
design with t = 4 and s = 5 by deleting two observations from different blocks and
different treatments.
D18b = a design with n = 18, t = 7, s = 6, k = 3, obtained from a BIBD in John
(1971, p. 219) by deleting the last block.
D12 = a design with n = 12, t = 6, s = 4, k = 3, obtained from a cyclic design in
Kuehl (2000, p. 346) by deleting blocks 5 and 6.

The test procedures we studied were:

KRU = the unmodified precursor to the KR test that uses the approximation
developed in Sect. 4 and ignores the modification derived in Sect. 7.
KR = the test procedure presented in Kenward and Roger (1997).
KRA1 = a variation of the KR test using the alternative modification in Sect. 8.
KRA2 = a variation of the KR test using the alternative modification in Sect. 9.

For each of the 40 models (8 designs × 5 values of ρ), we generated 10,000
independent data vectors y under the null distribution. For each well-behaved (defined
in Sect. 11.1 below) data vector we calculated FKR, m#, λ#, m∗, λ∗, m†, λ†, m‡,
λ‡. For each of the four tests, the p value of the test was approximated to be p =
Prob{F(�,m) > λFKR | y} using the appropriate values of m and λ. We measure the
adequacy of the approximation by the proportion of these p values that are smaller
than 0.05. Ideally we want this proportion to be close to 0.05.
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Table 1 The percentage of data vectors for which the REML algorithm converged, among 10,000 data
vectors generated from each of 40 models (8 designs × 5 values of ρ) under the null hypothesis. (100.0
denotes a percentage between 99.95 and 99.99% that has been rounded to one decimal place, whereas 100
denotes exactly 100%.)

D96 D60 D40 D21a D21b D18a D18b D12

ρ = 0.25 100 99.9 100.0 96.1 89.0 99.5 99.6 92.1

ρ = 0.5 100 100.0 100.0 97.7 93.1 99.5 99.8 94.7

ρ = 1 100 100 100 99.5 98.0 99.9 100.0 97.5

ρ = 2 100 100 100 100.0 99.9 100.0 100.0 99.2

ρ = 4 100 100 100 100 100.0 100.0 100 99.9

11.1 Computational issues

The REML algorithm for computing estimates of the variance components sometimes
failed to converge. The algorithm we used found a solution to the REML equations
by iteratively applying equation (90) on p. 252 of Searle et al. (1992). For each of the
40 models, the percentage of data vectors for which the REML algorithm converged
is shown in Table 1. For the three largest designs, convergence was achieved almost
100% of the time for all values of ρ. For the four smaller designs with n = 21 or 18,
convergence was achieved almost 100% of the time when ρ = 2 or 4, that is when
the variability of the block effects was high relative to the variability of the noise
in the model. Convergence could possibly be improved by using suitable alternative
numerical methods.

Another computational problem that can occur is numerical instability due to divi-
sion by numbers close to zero. For example, one data set generated from the model
with design D21a and ρ = 0.25 yielded λ∗ = −79700 (to three significant digits).
The value of A2 for this data set is a very large positive number, 823000, so that
E∗ = 1/(1− A2/�) = − 0.00000365 is a very small negative number, which leads to
a very large negative value for λ∗ = [m∗/(m∗ − 2)]/E∗ due to division by E∗. Simi-
larly, application of the two alternative KR-type procedures to this data set produced
values of λ† and λ‡ that were very large and negative.

The data sets generated from this model had a typical estimated scale factor λ∗ of
about 1, so the value λ∗ = −79700 is definitely an outlier. The mere fact that it is
negative conflicts with our objective of finding values of λ∗ and m∗ such that (7.5)
is a good approximation, because an F distribution assumes only positive values. In
the context of KR tests, let us say a data vector is well-behaved with regard to the KR
procedure if (1) the REML algorithm converges, (2) the estimated expectation E∗ is
positive, and (3) the estimated denominator degrees of freedom m∗ is > 4. Condition
(2) is appropriate because the test statistic FKR is a quadratic form (see (3.1)) that
is approximately positive definite, because �̂A = �̂ + 2�̂ is approximately positive
definite, because �̂ is positive definite and �̂ is approximately equal to �, which is
positive definite. Therefore it is reasonable to expect E(FKR) to be positive. According
to (7.1), condition (2) is equivalent to A2 < �. Condition (3) is based on the fact that the
derivation of the KR test uses the second moment of an F distribution, which requires
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Table 2 The percentage of data vectors that were well-behaved with regard to the KR procedure, among
10,000 data vectors generated from each of the 25 smaller models (5 designs× 5 values of ρ) under the null
hypothesis. (100.0 denotes a percentage between 99.95 and 99.99% that has been rounded to one decimal
place, whereas 100 denotes exactly 100%.)

D21a D21b D18a D18b D12

ρ = 0.25 91.6 71.0 99.5 81.3 20.6

ρ = 0.5 95.3 81.5 99.5 88.5 19.8

ρ = 1 98.9 93.8 99.9 97.1 14.1

ρ = 2 100.0 99.5 100.0 99.8 4.9

ρ = 4 100 100.0 100.0 100 1.0

the ddf to be > 4. From formula (4.3) we see that conditions (2) and (3) imply that λ∗
is positive, which, as indicated in the discussion of the example above, is a sensible
requirement. Replacing m∗in condition (3) by m† (or by m‡) gives the definition of
well-behaved with regard to the KRA1 (or KRA2) procedure. The prevalence of good
behavior with regard to the KR procedure is shown in Table 2; it was a problem only
for the 25 smaller models (5 smallest designs × 5 values of ρ).

The percentages of data vectors that were well-behaved with regard to the KRA1
procedure are exactly the same as the percentages for the KR procedure, for all 25
smaller models. For designs D21a and D18a, the percentages of data vectors that were
well-behaved with regard to the KRA2 procedure are the same as the percentages for
the KR procedure. For designs D21b and D18b, the KRA2 percentages are a little bit
higher than the KR percentages but by no more than about 1 percentage point. For
design D12, the KRA2 percentages are greater than the KR percentages by at most 3
percentage points.

We see that most data vectors generated from design D12 are ill-behaved. We also
looked at a smaller design D10 with n = 10, t = 5, s = 3, k = 4, obtained from a
PBIBD in Kuehl (2000, p. 323) by deleting treatment 6. For all five values of ρ, all
10,000 generated data vectors were ill-behaved. It could be worthwhile investigating
other definitions of “well-behaved” in hope of including a larger proportion of “well-
behaved” data vectors from smaller models.

11.2 Comparison of p values

For each of the 40 models (8 designs × 5 values of ρ), we generated 10,000 indepen-
dent data vectors y under the null distribution. For each well-behaved data vector we
calculated, for each of the four tests, the p value of the test. In Table 3 is displayed,
for each model and each test, the observed percentage (restricting attention to well-
behaved data sets) of p values that were less than 0.05. Ideally wewant this percentage
to be close to 5%. Of course we should keep in mind that for any given entry (that
is, any given model and any given test procedure) in Table 3, if it were true that the
long-run percentage of p values less than 0.05 was exactly 5%, we nevertheless could
not expect the observed percentage to be exactly 5%, because of simulation error. The
simulation standard error is 22%/

√
n where n is the number of well-behaved data sets.
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Table 3 The observed percentages of p values that were less than 0.05 for four test procedures calculated
from the well-behaved data sets among 10,000 data sets generated from each of 40 models (8 designs × 5
values of ρ)

D96 D60 D40 D21a D21b D18a D18b D12

ρ = 0.25

KRU 5.93 5.28 5.64 6.33 20.49 6.96 8.07 13.88

KR 5.68 4.66 5.21 5.47 6.66 5.57 5.78 0.83

KRA1 5.85 4.78 5.21 5.47 6.73 5.57 5.80 0.83

KRA2 5.73 4.68 5.21 5.47 6.60 5.57 5.76 0.85

ρ = 0.5

KRU 5.85 5.36 5.10 7.04 16.75 6.91 8.14 13.84

KR 5.61 4.75 4.66 5.92 5.85 5.45 5.09 0.81

KRA1 5.79 4.83 4.66 5.93 5.98 5.46 5.13 0.81

KRA2 5.65 4.80 4.66 5.92 5.92 5.45 5.11 0.84

ρ = 1

KRU 5.70 5.73 5.76 6.73 12.47 6.31 8.60 14.40

KR 5.40 5.21 5.24 5.45 5.73 4.90 5.05 0.92

KRA1 5.49 5.21 5.24 5.45 5.77 4.90 5.05 0.92

KRA2 5.43 5.21 5.24 5.45 5.75 4.90 5.05 0.92

ρ = 2

KRU 5.57 5.48 5.85 6.58 9.74 6.22 9.10 13.16

KR 5.08 4.80 5.25 5.15 5.21 4.94 5.12 0.82

KRA1 5.11 4.80 5.25 5.15 5.22 4.94 5.12 0.82

KRA2 5.09 4.80 5.25 5.15 5.22 4.94 5.12 0.71

ρ = 4

KRU 5.62 5.44 5.85 6.53 9.33 6.22 8.70 13.19

KR 4.93 4.84 5.27 5.04 4.89 4.90 4.92 0.00

KRA1 4.94 4.84 5.27 5.04 4.89 4.90 4.92 0.00

KRA2 4.93 4.84 5.27 5.04 4.89 4.90 4.92 0.00

In Table 3 we see that the three modified tests KR, KRA1 and KRA2 performed
exactly the same (after rounding to two decimal places) in 22 out of the 40 models. In
every one of the 40models the percentages for the three modified KR tests were within
0.20% of one another. In many practical settings 0.20% could be regarded as being an
unimportant difference and we could say that, in the models that were studied, when
testing the equality of treatment effects in unbalanced incomplete block models with
random blocks, the three modified KR tests gave very similar results. Moreover, recall
from Sect. 10 that the three modified tests coincide when testing a one-dimensional
hypothesis and when testing the equality of treatment effects in a BIBD model with
random blocks.

It is clear from Tables 2 and 3 that none of the four test procedures perform ade-
quately for models with design D12, so we will omit D12 from further discussion.
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Table 3 shows that the modification step in Sect. 7 (or an alternative modification
as in Sects. 8 or 9) is worth doing. The modifications in Sects. 7, 8 and 9 are all
motivated by considering two special cases which can be regarded as “balanced” and
admit well-known exact tests. The modifications change the formulas of KRU so as
to produce these exact tests in the two special cases. In the “unbalanced” models that
we simulated, the modifications do not produce exact tests but they do achieve an
improvement in performance over the unmodified test. The unmodified KRU test is
highly significantly liberal (i.e., its percentage in Table 3 is highly significantly larger
than 5%) for 30 of the 35models (omitting designD12). For all 35models themodified
tests are more conservative than for the unmodified test. For 23 of the 35 models the
percentages for the modified tests are not significantly different from 5%, and for 11
models the modified tests are significantly liberal but less so than the unmodified test.

As would be expected, the similarity in performance of the KR, KRA1 and KRA2
tests is due in large part to the similarity of the values ofm∗,m† andm‡ and the values
of λ∗, λ† and λ‡. See Tables 4 and 5 in A.14 in the “Appendix”. For each of the 35
models (omitting design D12), the average values of the scale factor shown in Table 5
for the three modified KR procedures are close to 1 (hence close to one another), or
specifically, between 0.958 and 1.000 (when rounded to three decimal places). Recall
from Sect. 10 that for all BIBD designs all three modified KR procedures have scale
factor equal to 1. For each of the designs D96, D60, D40, D21a and D18a and each
value of ρ, the average values of the scale factor for all three modified KR procedures
are very close to 1, namely between 0.995 and 1.000. For each of the designs D21b
and D18b and each value of ρ, the average scale factors for the three modified KR
procedures are within 0.030 of one another. The average value of λ# in the unmodified
test KRU, which ranged between 0.813 and 0.995, was noticeably different from the
average values of λ∗, λ† and λ‡ in the three modified tests for most of the 35 models.

For all of the 35 models, the average values of m∗, m† and m‡ shown in Table 4
for the three modified KR procedures were relatively close to one another. For 20 out
of the 35 models, the average values of m∗, m† and m‡ were close enough to one
another to coincide when rounded to one decimal place. The average value of m# in
the unmodified test KRU, was noticeably different from the average values of m∗, m†

and m‡ in the three modified tests for most of the 35 models.
The simulations show that, for the models we studied, the modification step is

an important part of the derivation of Kenward and Roger’s (1997) test and that the
three modification methods presented in Sects. 7, 8 and 9 give very similar results.
Our simulations are focused on block-design models—more simulation studies are
needed to determine if similar statements can be made about Kenward–Roger-type
tests of linear hypotheses on fixed effects in other normal mixed linear models.
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A Details

A.1 The ANOVA testing problem in Sect. 5 is a special case of Sect. 2

Testing the equality of group means in the balanced one-way ANOVA fixed-effects
model in Sect. 5 is a special case of the testing problem in Sect. 2 with y =
[ y11 y12 · · · y1v y21 · · · ytv ]′,β = [μ1 μ2 · · · μt ]′,X = It⊗1v ,� = σ 2In , θ = σ 2,
G1 = In , L′ = [ It−1 −1t−1 ].

A.2 Calculations for the ANOVA testing problem

One can calculate, β̂ = [ ȳ1· ȳ2· · · · ȳt· ]′, �̂ = (σ̂ 2/v)It , ŵ11 = 2σ̂ 4/(n − t), P̂1 =
−(v/σ̂ 4)It , �̂ = (σ̂ 2/v)(It −t−11t1′

t ), A1 = 2(t−1)2/(n−t), A2 = 2(t−1)/(n−t),
B = (t + 5)/(n − t). Moreover, �̂A = �̂ by the following lemma.

Lemma 6 If the model satisfies Zyskind’s condition, then �̂A = �̂.

Note that every fixed-effects linear model satisfies Zyskind’s condition, because
the column space of �X = σ 2X is contained in the column space of X.

A.3 Proof of Lemma 6

Wecan show �̂ = 0 by showingQi j−Pi�P j = 0. Zyskind’s condition is equivalent to
the condition that �J = J� for all allowable � where J is the orthogonal projection
operator on the column space of X (Zyskind 1967, Theorem 2). The two technical
assumptions mentioned in Sect. 2 imply thatGiJ = JGi for all i . Moreover,�J = J�
implies �−1J = J�−1. Next, recall that the GLSE is (X′�−1X)−1X′�−1y and the
LSE is (X′X)−1X′y. It follows from the remark in Sect. 3 that Zyskind’s condition
is also equivalent to the condition that (X′�−1X)−1X′�−1 = (X′X)−1X′ for all
allowable �, which implies X�X′�−1 = X(X′X)−1X′ = J. Now

Pi�P j = X′�−1Gi�
−1X�X′�−1G j�

−1X

= X′�−1Gi�
−1JG j�

−1X = X′�−1Gi�
−1G j�

−1JX

= X′�−1Gi�
−1G j�

−1X = Qi j .

A.4 m# and �# in the ANOVA case

Quantities from A.2 above can be substituted into (4.1) to obtain E# and V # shown
in (5.2), which in turn can be used in (4.3) to obtain (5.3). The inequality in (5.3b)
holds because (m# − 2)(n − t + 2) = m#(n − t) + 2[m# − (n − t + 2)] > m#(n − t),
because formula (5.3a) implies m# > 4 + n − t , which is > n − t + 2.
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A.5 The Hotelling testing problem in Sect. 6 is a special case of Sect. 2

The one-sample Hotelling T-squared test in Sect. 6 is a special case of the testing
problem in Sect. 2 with y = [ y′

1 y′
2 · · · y′

v ]′, β = μ, X = 1v ⊗ Ip, � = Iv ⊗ � p,
� p = an arbitrary positive definite p× pmatrix, θ = an r×1 vector whose entries are
the entries on and above the main diagonal of � p = [σi j ]p×p. To express the linear
structure of the variance–covariance matrix it is convenient to use double subscripting:
� = ∑{σi j (Iv ⊗ Gpi j ) : 1 ≤ i ≤ j ≤ p} where Gpii = uiu′

i , Gpi j = uiu′
j + u ju′

i
for i �= j , ui = a p × 1 vector with a 1 in the i th position and 0’s elsewhere. Also,
L = Ip.

A.6 Calculations for the Hotelling testing problem

One can calculate β̂ = ȳ·, �̂ = (1/v)S, ŵi j, f g = (σ̂i f σ̂ jg + σ̂igσ̂ j f )/(v − 1)
where σ̂i j denotes an entry of the matrix S = �̂ pREML, P̂i i = −vS−1uiu′

iS
−1,

P̂i j = −vS−1(uiu′
j + u ju′

i )S
−1 for i < j , �̂ = (1/v)S, A1 = 2p/(v − 1),

A2 = p(p + 1)/(v − 1), B = (3p + 4)/(v − 1). In calculating A1 and A2 we use
the identities tr(uiu′

jS
−1) = u′

jS
−1ui = σ̂ j i = the ( j, i) entry of the matrix S−1 and∑p

j=1 σ̂i j σ̂
jg = δig = the Kronecker delta = the (i, g) entry of the matrix I (because

SS−1 = I). Lemma 6 implies �̂A = �̂ because the model satisfies Zyskind’s condi-
tion: the column space of�X = (Iv⊗� p)(1v⊗Ip) = 1v⊗� p = (1v⊗Ip)� p = X� p

is contained in the column space of X.

A.7 m# and �# in the Hotelling case

Quantities from A.6 above can be substituted into (4.1) to obtain E# and V # shown in
(6.2), which in turn can be used in (4.3) to obtain (6.3).

A.8 Proof of Lemma 1(a)

Suppose A1/A2 = � as in special case 1, which implies B = [(� + 6)A2]/(2�).
Formulas (7.2) and (7.3) were deliberately derived so that when A1/A2 = �, then
d = (� − 2, 2, 4)/(� + 6), hence dB = (� − 2, 2, 4)A2/(2�). Thus (7.4) becomes

V ∗ = 2

�

(
1 + �−2

2� A2
)

(
1 − 1

�
A2

)2 (
1 − 2

�
A2

) = 2(E∗)2

�

(
1 + �−2

2� A2
)

(
1 − 2

�
A2

) .

Via the formulas in (4.3) with superscripts # replaced by *, we obtain �ρ∗ = {1 +
[(� − 2)/(2�)]A2}/{1 − (2/�)A2}, m∗ = 2�/A2 and λ∗ = 1.

Formulas (8.2) and (8.3) give us e0 = 0, e1 = �+6,m† = (�+6)/(QA2) = 2�/A2.
Formula (9.3) yields m‡ = 2�(� + 2)/[(� + 2)A2] = 2�/A2. Thus m∗ = m† = m‡.
Because E∗ = E† = E‡, this implies λ∗ = λ† = λ‡.
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A.9 Proof of Lemma 1(b)

Suppose A1/A2 = 2/(� + 1) as in special case 2, which implies B = [(3� +
4)A2]/[�(� + 1)]. Formulas (7.2) and (7.3) were deliberately derived so that when
A1/A2 = 2/(� + 1), then d = (−1, � + 1, � + 3)/(3� + 4), hence dB =
(−1, � + 1, � + 3)A2/[�(� + 1)]. Thus (7.4) becomes

V ∗ = 2(E∗)2

�

[
1 − 1

�(�+1) A2

]
[
1 − �+3

�(�+1) A2

] .

Via the formulas in (4.3) with superscripts # replaced by *, we obtain �ρ∗ = {1 −
[1/[�(� + 1)]]A2}/{1 − [(� + 3)/[�(� + 1)]]A2}, and m∗ and λ∗ are as displayed in
the lemma.

Formulas (8.2) and (8.3) give us e0 = 1 − �, e1 = 3� + 4, m† = (1 − �) +
(3� + 4)/(QA2) = m∗. We have A1 = [2/(� + 1)]A2 and so formula (9.3) yields
m‡ = {2�(� + 2) + 2[2/(� + 1) − �]A2}/{[2/(� + 1) + 2]A2} = m∗. So we see
m∗ = m† = m‡, which then implies λ∗ = λ† = λ‡.

A.10 Proof of Lemma 2

It suffices to show tr(�Pi ) tr(�P j ) = tr(�Pi�P j ). For any p × p matrixM, L′ML
is a 1 × 1 matrix and hence is a scalar. Therefore

tr(�Pi�P j ) = tr[�L(L′�L)−1L′�Pi�L(L′�L)−1L′�P j ]
= (L′�L)−2 tr(�LL′�Pi�LL′�P j )

= (L′�L)−2 tr(L′�Pi�LL′�P j�L)

= (L′�L)−2L′�Pi�LL′�P j�L

= [(L′�L)−1L′�Pi�L][(L′�L)−1L′�P j�L] = tr(�Pi ) tr(�P j ),

because

tr(�Pi ) = tr[�L(L′�L)−1L′�Pi ] = (L′�L)−1 tr(�LL′�Pi )

= (L′�L)−1 tr(L′�Pi�L) = (L′�L)−1L′�Pi�L.

A.11 Proof of Lemma 3

It suffices to show tr(�Pi ) tr(�P j ) = � tr(�Pi�P j ). The assumptions of the lemma
imply

X′�−1X =
[
X′
1�

−1X1 0
0 f (θ)C

]
and � = (X′�−1X)−1 =

[∗ 0
0 f (θ)−1C−1

]
.
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We are assuming L′ = [ 0 L′
2 ], so

� = �L(L′�L)−1L′� = f (θ)−1
[
0 0
0 C−1L2(L′

2C
−1L2)

−1L′
2C

−1

]
.

Note thatPi in Sect. 3 can be expressed asPi = (∂/∂θi )(X′�−1X). Under the assump-
tions of the lemma,

Pi =
[
∗ 0
0 ∂ f

∂θi
(θ)C

]
and �Pi = gi (θ)

[
0 0
0 M

]

where gi (θ) = f (θ)−1(∂/∂θi ) f (θ) and M = C−1L2(L′
2C

−1L2)
−1L′

2. Now
tr(�Pi ) = gi (θ) tr(M) and tr(M) = tr[(L′

2C
−1L2)

−1L′
2C

−1L2] = tr(I�) = �.
Therefore tr(�Pi ) tr(�P j ) = �2gi (θ)g j (θ). Also,

�Pi�P j = gi (θ)g j (θ)

[
0 0
0 M2

]

and M2 = M, so tr(�Pi�P j ) = �gi (θ)g j (θ).

A.12 Proof of Theorem 2

The theorem follows from Lemmas 1(a) and 3, if we show that a BIBDmodel satisfies
the conditions of Lemma 3. First note that BB′ = kB(B′B)−1B′ = kPB where PB
denotes the orthogonal projection matrix on the column space ofB. Nowwe can write

� = (kσ 2
b + σ 2

e )PB + σ 2
e (In − PB) and

�−1 = (kσ 2
b + σ 2

e )−1PB + (σ 2
e )−1(In − PB).

Write T∗ = TU where U is the t × (t − 1) matrix obtained by subtracting the last
column of It from each of the first t − 1 columns of It . Then

X′
1�

−1X2 = (kσ 2
b + σ 2

e )−11′
nPBTU + (σ 2

e )−11′
n(In − PB)TU = 0,

because (1) 1′
nPB = 1′

n and (2) 1′
nTU = 0. (1) is true because 1n is in the column

space of B, and (2) is true because 1′
nT = r1′

t and 1′
tU = 0. Next write

�−1 = [(kσ 2
b + σ 2

e )−1 − (σ 2
e )−1]PB + (σ 2

e )−1In

= σ−2
e {In − [σ 2

b /(kσ 2
b + σ 2

e )]BB′}.
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It can be shown (Khuri et al. 1998, p. 176) that NN′ = (r − g)It + g1t1′
t. Then

X′
2�

−1X2 = σ−2
e {U′T′TU − [σ 2

b /(kσ 2
b + σ 2

e )]U′T′BB′TU},
U′T′TU = rU′U,

U′T′BB′TU = U′NN′U = (r − g)U′U,

and hence X′
2�

−1X2 = f (θ)C where f (θ) = σ−2
e {r − (r − g)σ 2

b /(kσ 2
b + σ 2

e )} and
C = U′U.

A.13 Proof of Lemma 5

We will assume that the REML estimator θ̂(y) can be characterized as the unique
solution of the REML equations (see Jiang 2007, p. 13):

tr{
[θ̂(y)]Gi } = y′
[θ̂(y)]Gi
[θ̂(y)]y for i = 1, . . . , r (*)

where 
 = 
(θ) = �−1 − �−1X�X′�−1. The REML estimator is known to be
location-invariant (Kackar and Harville 1984, p. 854); that is, θ̂(y + Xb) = θ̂(y)
for all b ∈ R

p. Moreover, it is scale-equivariant in the sense that θ̂(cy) = c2θ̂(y)
for c �= 0, which can be verified as follows. The estimate θ̂(cy) is the unique
solution to the REML equations (*) when the data vector is cy: tr{
[θ̂(cy)]Gi } =
(cy)′
[θ̂(cy)]Gi
[θ̂(cy)](cy). If we can show that c2θ̂(y) is also a solution, then
we can conclude θ̂(cy) = c2θ̂(y). So we want to show tr{
[c2θ̂(y)]Gi } =
(cy)′
[c2θ̂(y)]Gi
[c2θ̂(y)](cy). First note that 
(cθ) = c−1
(θ) because �(cθ) =
c�(θ) and �(cθ) = c�(θ). Now

(cy)′
[c2θ̂(y)]Gi
[c2θ̂(y)](cy) = c2y′c−2
[θ̂(y)]Gi c
−2
[θ̂(y)]y

= c−2y′
[θ̂(y)]Gi
[θ̂(y)]y by (*)= c−2 tr{
[θ̂(y)]Gi } = tr{
[c2θ̂(y)]Gi }.

For convenience one can combine the properties of location-invariance and scale-
equivariance in a single equation: θ̂(cy + Xb) = c2θ̂(y).

By its definition FKR = 1
�
[L′β̂(y)]′[L′�̂A(y)L]−1[L′β̂(y)]. To compare this with

FKR(cy + Xb), first observe that �̂(cy + Xb) = �[θ̂(cy + Xb)] = �[c2θ̂(y)] =
c2�[θ̂(y)] = c2�̂(y). Therefore

β̂(cy + Xb) = {X′[�̂(cy + Xb)]−1X}−1X′[�̂(cy + Xb)]−1(cy + Xb)

= {X′[c2�̂(y)]−1X}−1X′[c2�̂(y)]−1(cy + Xb)

= {X′[�̂(y)]−1X}−1X′[�̂(y)]−1(cy + Xb)

= c{X′[�̂(y)]−1X}−1X′[�̂(y)]−1y + {X′[�̂(y)]−1X}−1X′[�̂(y)]−1Xb

= cβ̂(y) + b
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and L′β̂(cy + Xb0) = L′[cβ̂(y) + b0] = cL′β̂(y) when L′b0 = 0.
Next check that �̂(cy + Xb) = c2�̂(y), P̂i (cy + Xb) = c−4P̂i (y), Q̂i j (cy +

Xb) = c−6Q̂i j (y), 
̂(cy + Xb) = c−2
̂(y). Recall that Ŵ = [ŵi j ]r×r = W̃[θ̂(y)]
where W̃ = [w̃i j ]r×r = I−1 and I is the expected information matrix. We can write
I = [w̃i j ]r×r and w̃i j = 1

2 tr(
Gi
G j ) (see (1.21) in Jiang 2007). One can see that

ŵi j (cy + Xb) = c−4ŵi j (y), ŵi j (cy + Xb) = c4ŵi j (y), �̂(cy + Xb) = c2�̂(y), and
�̂A(cy + Xb) = c2�̂A(y). Now

FKR(cy + Xb0) = 1

�
[L′β̂(cy + Xb0)]′[L′�̂A(cy + Xb0)L]−1[L′β̂(cy + Xb0)]

= 1

�
[cL′β̂(y)]′[L′c2�̂A(y)L]−1[cL′β̂(y)]

= FKR(y).

A.14 Tables of average values of simulatedm and �

The average values of the simulated m and λ are shown in Tables 4 and 5.

Table 4 The observed averages of the denominator degrees of freedom m#, m∗, m† and m‡ for the four
test procedures applied to the well-behaved data sets from among 10,000 data sets generated from each of
40 models (8 designs × 5 values of ρ)

D96 D60 D40 D21a D21b D18a D18b D12

ρ = 0.25

KRU 83.7 48.9 37.3 23.9 19.7 20.4 21.6 42.1

KR 72.6 39.3 28.5 13.4 7.8 10.8 8.1 4.2

KRA1 82.3 41.7 28.5 13.5 8.6 10.8 8.4 4.3

KRA2 74.7 40.2 28.5 13.4 8.2 10.8 8.2 4.3

ρ = 0.5

KRU 79.8 47.5 37.1 22.5 19.0 20.2 19.6 22.5

KR 69.0 38.5 28.3 12.7 7.7 10.6 7.8 4.2

KRA1 77.4 39.7 28.3 12.8 8.4 10.6 8.1 4.3

KRA2 70.9 38.9 28.3 12.8 8.2 10.6 8.0 4.3

ρ = 1

KRU 65.6 43.2 36.9 21.0 17.5 19.9 17.3 17.7

KR 55.9 34.7 28.1 11.3 7.3 10.3 7.2 4.2

KRA1 59.9 34.9 28.1 11.3 7.6 10.3 7.3 4.2

KRA2 57.0 34.7 28.1 11.3 7.6 10.3 7.3 4.3

ρ = 2

KRU 50.0 40.5 36.9 19.5 16.1 19.7 16.1 14.9

KR 41.3 32.1 28.0 9.8 6.6 10.1 6.5 4.2

KRA1 41.9 32.1 28.0 9.8 6.6 10.1 6.5 4.2

KRA2 41.5 32.1 28.0 9.8 6.6 10.1 6.5 4.3
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Table 4 continued

D96 D60 D40 D21a D21b D18a D18b D12

ρ = 4

KRU 43.7 39.7 36.8 18.9 15.6 19.7 15.7 21.9

KR 35.3 31.3 28.0 9.2 6.2 10.0 6.1 4.2

KRA1 35.3 31.3 28.0 9.2 6.2 10.0 6.1 4.2

KRA2 35.3 31.3 28.0 9.2 6.2 10.0 6.1 4.3

Table 5 The observed averages of the scale factors λ#, λ∗, λ† and λ‡ for the four test procedures applied
to the well-behaved data sets from among 10,000 data sets generated from each of 40 models (8 designs ×
5 values of ρ)

D96 D60 D40 D21a D21b D18a D18b D12

ρ = 0.25

KRU 0.995 0.989 0.987 0.940 0.813 0.935 0.850 0.683

KR 0.998 0.997 1.000 0.998 0.988 1.000 0.994 0.956

KRA1 0.995 0.995 1.000 0.997 0.958 1.000 0.982 0.945

KRA2 0.997 0.998 1.000 0.997 0.958 1.000 0.985 0.925

ρ = 0.5

KRU 0.995 0.992 0.987 0.942 0.842 0.933 0.886 0.694

KR 0.998 0.999 1.000 0.999 0.992 1.000 0.995 0.957

KRA1 0.995 0.998 1.000 0.998 0.968 1.000 0.987 0.946

KRA2 0.998 0.999 1.000 0.999 0.970 1.000 0.988 0.927

ρ = 1

KRU 0.995 0.991 0.987 0.936 0.871 0.931 0.879 0.709

KR 0.999 1.000 1.000 1.000 0.998 1.000 0.998 0.960

KRA1 0.997 1.000 1.000 1.000 0.986 1.000 0.995 0.949

KRA2 0.998 1.000 1.000 1.000 0.987 1.000 0.996 0.932

ρ = 2

KRU 0.993 0.990 0.987 0.925 0.874 0.929 0.871 0.713

KR 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.962

KRA1 0.999 1.000 1.000 1.000 0.997 1.000 0.999 0.951

KRA2 1.000 1.000 1.000 1.000 0.998 1.000 0.999 0.935

ρ = 4

KRU 0.992 0.990 0.987 0.919 0.886 0.928 0.864 0.705

KR 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.964

KRA1 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.955

KRA2 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.941
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