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Abstract

Consider N independent stochastic processes (X;(¢),t € [0,T]),i = 1,..., N,
defined by a stochastic differential equation with random effects where the drift term
depends linearly on a random vector ®; and the diffusion coefficient depends on
another linear random effect W;. For these effects, we consider a joint parametric
distribution. We propose and study two approximate likelihoods for estimating the
parameters of this joint distribution based on discrete observations of the processes
on a fixed time interval. Consistent and +/N-asymptotically Gaussian estimators are
obtained when both the number of individuals and the number of observations per
individual tend to infinity. The estimation methods are investigated on simulated data
and show good performances.
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1 Introduction

Longitudinal data are widely collected in clinical trials, epidemiology, pharmacoki-
netic pharmacodynamics experiments and agriculture. The interest may focus on
population effects among individuals and individual specific behaviour. In mixed
effects models, random effects are incorporated to accomodate variability among sub-
jects or inter-individual variability, while the same structural model rules the dynamics
of each subject. In stochastic differential equations with mixed effects (SDEMEs), the
structural model is a set of stochastic differential equations. The use of SDEMEs is
comparatively recent. It has first been motivated by pharmacological applications (see
Ditlevsen and De Gaetano 2005; Donnet and Samson 2008; Delattre and Lavielle 2013;
Leander et al. 2015; Forman and Picchini 2016 and many others) but also neurobiolog-
ical ones (as in Dion 2016 for example). The main issue in mixed-effects models is the
estimation of the parameters in the distribution of the random effects. This is generally
difficult in practice due to the intractable likelihood function. To overcome this prob-
lem, many methods based on approximate solutions associated with computationally
intensive numerical methods have been proposed (Picchini et al. 2010; Picchini and
Ditlevsen 2011; Delattre and Lavielle 2013). For general mixed models as well as
for SDEMESs, these methods, due to their iterative settings, lead to large computation
times for the estimation. Moreover, when the stuctural model is a stochastic differen-
tial equation, there is an additional problem which derives from the intractability of
the likelihood associated with discrete observations of one path.

The SDEME framework allows to take account of two sources of randomness in the
structural SDE model, random effects in the drift and random effects in the diffusion
coefficient, and the temptation to incorporate in this SDE model a joint distribution
for these two random effects is quite natural. This modeling has been proposed by
several authors: Picchini et al. (2010), Picchini and Ditlevsen (2011), Berglund et al.
(2001), Forman and Picchini (2016), Whitaker et al. (2017). But to our knowledge,
it has never been studied theoretically. However, it is well known that, for discretely
observed diffusion processes, estimation of parameters in the drift coefficient and
diffusion coefficient have different properties (see e.g., Kessler et al. 2012). Our aim
here is to investigate the statistical properties of such a situation according to n, the
number of observations per individual (or path), and the total number of individuals N.
The results of Nie and Yang (2005), Nie (2006, 2007) do not provide answers to these
questions, and all the numerical methods compulsory to the likelihood intractability,
are unable to tackle this problem. Understanding how estimation performs in these
kinds of models is an important issue, necessary to clarify what can be expected from
all the numerical methods widely used in this domain. Since the work of Ditlevsen
and De Gaetano (2005), where the special case of a mixed-effects Brownian motion
with drift is treated, the main contributions to our knowledge for a theoretical study
of parametric inference in SDEMESs, are from Delattre et al. (2013, 2015, 2017) and
Grosse Ruse et al. (2017).

In this paper, we consider discrete observations and simultaneous random effects
in the drift and diffusion coefficients by means of a joint parametric distribution. The
inclusion of random effects both in the drift and the diffusion coefficient raises new
problems which were not addressed in our previous works. We focus on specific dis-
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tributions for the random effects. They derive from a Bayesian choice of distributions
and lead to explicit approximate likelihoods (this choice indeed corresponds to explicit
posterior and marginal distributions for an n-sample of Gaussian distributions with a
specific prior distribution on the parameters).

More precisely, we consider N real valued stochastic processes (X;(¢),t > 0),i =
1, ..., N, with dynamics ruled by the following random effects stochastic differential
equation (SDE):

d X;(t) = ®;b(X;(1))dt + Vio (X; (1)) dW; (1), Xi(0)=x,i=1,...,N, (1)

where (Wy, ..., Wy) are N independent Wiener processes, ((®;, ¥;),i = 1,...N)
are N iid. R? x (0, 4+00)-valued random variables, ((®;, W;),i = 1,...,N)
and (Wy,..., Wy) are independent and x is a known real value. The functions
o():R— Randb(.) = (b1(),...,bs(.)) : R — R? are known. The notation X’
for a vector or a matrix X denotes the transpose of X. Each process (X; (f)) represents
an individual and the d 4+ 1-dimensional random vector (®;, ;) represents the (mul-
tivariate) random effect of individual i. In Delattre et al. (2013), the N processes are
assumed to be continuously observed throughout a fixed time interval [0, T], T > 0
and ¥; = y_l/ 2 is non random and known. When ®; follows a Gaussian distribution
Na(p, )/_ISZ), the exact likelihood associated with (X;(¢),t € [0,T],i =1,...,N)
is explicitely computed and asymptotic properties of the exact maximum likelihood
estimators are derived under the asymptotic framework N — 4o0. In Delattre et al.
(2015), the case of b(.) = 0 and ¥; = T';'/* with T; following a Gamma distribu-
tion G(a, }) is investigated; and Delattre et al. (2017) is concerned with estimation
of mixed effects either in the drift or in the diffusion coefficient from discrete obser-
vations. From now on, each process (X;(¢)) is discretely observed on a fixed-length
time interval [0, T'] at n times t; = jT /n and the random effects (®;, ¥;) follow a
joint parametric distribution. Our aim is to estimate the unknown parameters from the
observations (X;(t;),j = 1,...,n;i = 1,..., N). We focus on distributions that
give rise to explicit approximations of the likelihood functions so that the construction
of estimators is easy and their asymptotic study feasible. To this end, we assume that
(®;, ;) has the following distribution:

1
;= [i~G(a,)), andgiven T, =y, @; ~Ny(p,y~'R). (2)

Fil /2

Contrary to the common Gaussian assumption for random effects, the marginal
distribution of ®; is not Gaussian: ®; — u = Fi_l/zn,-, with n; ~ Ny(0, R), is a
Student distribution. We propose two distinct approximate likelihood functions which
yield asymptotically equivalent estimators as both N and the number 7 of observations
per individual tend to infinity. The first approximate likelihood (Method 1) is natural
but proving its existence raises technical difficulties (Proposition 1, Lemma 1). The
second one (Method 2) derives from Method 1 and has the advantage of splitting the
estimation of parameters in the diffusion coefficient and parameters in the drift term.
We obtain consistent and +/N-asymptotically Gaussian estimators for all parameters
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under the condition N/n — 0. For the parameters (1, a) of random effects in the
diffusion coefficient, we obtain that the weaker constraint N /n? is enough (Theorems
1,2). We prove that the estimators obtained with these two approximate likelihoods are
asymptotically equivalent (Theorem 3). We compare these results with the estimation
for N i.i.d. direct observations of the random effects (®;, ¥;).

The methods of the present paper and of the previous ones (Delattre et al. 2013,
2015, 2017) are now avalaible in the R package MsdeParEst (Delattre and Dion 2017)
for mixed Ornstein—Uhlenbeck and CIR.

The structure of the paper is the following. Some working assumptions and two
approximations of the model likelihood are introduced in Sect. 2. Two estimation
methods are derived from these approximate likelihoods in Sect. 3, and their respective
asymptotic properties are studied. Section 4 provides numerical simulation results
for several examples of SDEMEs and illustrates the performances of the proposed
methods in practice. Theoretical proofs are gathered in the “Appendix’. Some technical
proofs are given in an electronic supplementary material. Auxiliary results are given in
Sect. 7.

2 Approximate likelihoods
2.1 Framework and assumptions

Let (X;(t),t = 0),i =1,..., N be N real valued stochastic processes ruled by (1).
The processes (Wi, ..., Wy) and the r.v.’s (®;, ¥;),i = 1,..., N are defined on a
common probability space (2, F, P) and we set (F; = o (D;, ¥;, Wi(s),s <t,i =
1,...,N),t >0). We assume that:

(H1) The real valued functions x — b;(x), j =1,...,d and x — o(x) are C? on
R with first and second derivatives bounded by L. The function o2(.) is lower
bounded : 3 op # 0, Vx € R, az(x) > ag.

(H2) There exists a constant K such that, Vx € R, ||b(x)|| + |o(x)| < K.

Assumption (H1) corresponds to the usual linear growth condition and regularity
assumptions on b(.), o (.) which ensure the existence and uniqueness of strong solu-
tions of Eq. (1). However, we need here, for the accurate study of discretizations (see
Sect. 7.2), that X;(¢) has finite moments. For stochastic differential equations, the
property { E (XI.ZP (1)) < oo} holds if the initial condition satisfies { £ (X l.2p (0)) < o0}.
This does no longer hold here, even if { E(||®;| |27 4 \If?p) < 00} (see Sect. 7.1). We
have either to assume that (®;, ¥;) belongs to a bounded set or (H2). To circumvent
this last assumption, we could think of applying a localization device (see Jacod and
Protter 2012, Chapter 4.4.1). However, while it is straightforward to apply this method
for one path, the extension to N paths X; (.) simultaneously, is complex, especially as
X; () has possibly no finite moments (see Sect. 7.1).

The processes (X; (¢)) are discretely observed with sampling interval A, on a fixed
time interval [0, T'] and for sake of clarity we assume a regular sampling on [0, T']:
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T . .
AnZAZZa Xi,nZXiZ(Xi(tj,n)’ tj,nztjz‘]T/"h j=1....,n). (3

Let ¥ denote the unknown parameter and ® the parameter set with

0=, a, pn, R) 4

The canonical space associated with one trajectory on [0, T'] is defined by
((Rd X (0, +00) x C7), Py) where Cr denotes the space of real valued continu-
ous functions on [0, T], Py denotes the distribution of (®;, ¥;, (X;(t),t € [0, T]))
and ¢ the unknown parameter. For the N trajectories, the canonical space is
I—[fvzl (R4 x (0, +00) x C7), Py = ®[N:1P§). Below, the true value of the parameter
is denoted vy.

We introduce the statistics and the assumptions

)

1 (Xi@t)) — Xi(tj—l))2
Si n =
' A 12:21 o2(Xi(tj-1))

n

Vig = ZAbk(Xi(tj—l))be(Xi(tj_l))

, 5
< o2(Xi(tj-1) ®
J= 1<k, t<d
2 b (X (1) (Xi () — Xi(tj-1)
Uin = 6
' X_; o2(Xi(tj-1)) ©
J= I<k<d
(H3) The matrix V;(T) is positive definite a.s., where
T . .
VA(T) = (/ b (Xi (;))W(Xl (S))ds> . N
0 o“(X;(s)) 1<k,t<d

(H4) The parameter set ® satisfies that, for constants £g, ¢, g, a1, m, cg, 1, 0 <
bo <A =<4, O<ap<a=<ag |l <m, co < Anax(R) < c1, where
Amax (2) denotes the maximal eigenvalue of €.

Assumption (H3) ensures that all the components of ®; can be estimated. If the
functions (b / o2) are not linearly independent, the dimension of ®; is not well defined
and (H3) is not fulfilled. Note that, as n tends to infinity, the matrix V; , defined in
(5) converges a.s. to V;(T') so that, under (H3), for n large enough, V; , is positive
definite. Assumption (H4) is classically used in a parametric setting. Under (H4), the
matrix £ may be non invertible which allows including non random effects in the drift
term.

2.2 First approximation of the likelihood

Let us now compute our first approximate likelihood £, (X; ,, ¥) of X; ,, with ¥
defined in (4). The exact likelihood of the i-th vector of observations is obtained by
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computing first the conditional likelihood given ®; = ¢, W; = ¥, and then integrating
the result with respect to the joint distribution of (®;, ¥;). The conditional likelihood
given fixed values (¢, ¥), i.e. the likelihood of (X;p’w(tj), j = 1,...,n) being not
explicit, is approximated by using the Euler scheme likelihood of

dX2V () = ¢'b(XPV )dt + Yo XV @) dW ), XxPVO0) =x.  (8)

Setting ¥ = y‘l/z, the exact likelihood of (X;‘w(tj),j = 1,...,n) is replaced
by the likelihood of (Y; j, j =1, ..., n):

Yij—Yij—1=A¢'b(Y; j—1) + VA Y o(Yi j-1) € j,

Wi(tj))—Wiltj—1) .

with Y; 0 = x and ¢; ; = i.i.d. N(0, 1). Therefore, this yields the

approximate conditional likelihood:

4
Lo v.9) = La(Xi. v, 0) = v exp [~ 2 (Si + ¢ Viwo = 20'Ui) | ©)

where this formula ignores multiplicative functions which do not contain the unknown
parameters.

The unconditional approximate likelihood is obtained integrating with respect to
the joint distribution vy (dy, dg) of the random effects (I'; = W;” 2, D;).

For this, we first integrate L,(X;, v, ¢) with respect to the Gaussian distribution
Ny(u, y~'). Then, we integrate the result w.r.t. the distribution of I';. At this point, a
difficulty arises. This second integration is only possible on the subset E; ,(¢}) defined
in (12).

Let I; denote the identity matrix of RY and set, fori = 1,..., N, under (H3)

Rin =V, + =V s+ Via® = L+ Vi)V, (10)
Tin(p, ®) = (o =V, Ui) R (e =V, Ui) = UL Vi Ui, (11)

Ein(®) ={Sin + Trn(pt, @) > 0}); En,(®) =N/ Ei,(9). 12)

Proposition 1 Assume that, fori = 1,..., N, (®;, ;) has distribution (2). Under
(H1) and (H3), an explicit approximate likelihood for the observation (X; p,i =
I,...,N)isontheset Ey ,(9) (see 12),

N
Lna@) =[] LaXin,®), where (13)
i=1

AT (a + (n/2)) 1

Lo(Xin, ®) = - )
’ , _ T(/2) : 172
I'a) (x " Ssn n 'n,n(;,sz)) (det(1g + Vi n2))

(14)

Note that this approximate likelihood also ignores multiplicative functions which
do not contain the unknown parameters. We must now deal with the set Ey (). For
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each i, elementary properties of quadratic variations yield that, as n tends to infinity,
Sin/ntendstoI'; Uin probability. On the other hand, the random matrix V; , tends a.s.
to the integral V;(7") and the random vector U; , tends in probability to the stochastic

integral
T .
Ui(T) = (/ DXi () v (s)) . (15)
0

Uz(Xi(S)) 1<k<d

Therefore T; , (., ) /n tends to O (see 11). This implies that, foralli =1,..., N
and for all (dy, ¥), Py, (E; »,(})) — 1 as n tends to infinity. However, we need the
more precise result

VY, Do, Pyy(Ena(D)) — 1.

Moreover, the set on which the approximate likelihood is considered should not
depend on ¥.
To this end, let us define, for « > 0, using the notations of (H4),

M; , = max{cy + 2, 2m*}(1 + | Ui |1);
Fi,n = {Si,n - Mi,n > Ot\/ﬁ}; FN,n = ﬁlNlei,n- (16)

Lemma 1 Assume (HI)-(H4). For all ¥ satisfying (H4) and all i, we have F; , C
E; ,(?).Ifap > 4and as N,n — oo, N = N(n) is such that N/n2 — 0, then,

Vo, PﬁO(FN,n) — 1.

For this, we prove that, if ag > 4,
. 1
Py, (F{ ) S pux (17)

where < means lower than or equal to up to a multiplicative known constant which
does not depend on . This explains the constraint N /n? — 0.

For this proof, the condition cy < X4, (£2) of (H4) is not required.

The condition @y > 4 is a moment condition for ¥; required by the proof. It is
equivalent to the fact that IE\IJl8 = IEIT4 = Ag/(ao —1)(ap—2)(ap—3)(ap—4) < +o0.
Note that Ellll2 =Kl I = Ao/ (ap—1) so that the random effect takes moderate values
which is reasonable.

Asaconsequence of Lemma 1, forall &, Py, (En ,(¢)) — 1and (13)is well defined
on the set Fy , which is independent of ¥ and has probability tending to 1. The proof
of Lemma 1 is surprisingly technical and detailed in an electronic supplementary
material.
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2.3 Second approximation of the likelihood

Formulae (13)—(14) suggest another approximation of the likelihood which is simpler.
We give the heuristics for this approximation. We can write:

Ln(Xin, ) = LYK, 0, 9) x LP(Xi 0, 9)

LOX; 0, 9) = LO (X0 @) = AT (a + (n/2))

S: a+(n/2)
T'(a) (x+%)
& \a+n/2)
2) ()\_‘_%) 1
LO(X; 4, 0) = . (8
w (Xin: 0) Sin | Tinw,@\OT/2 (det (g + Vi, 2))'/? (18)
(h+ S 4 TnlpD) :

The first term £fl]) (Xi n, ¥) only depends on (A, a) and is equal to the approximate
likelihood function obtained in Delattre et al. (2015) forb = 0 and I'; ~ G (a, )). For
the second term, we have:

1 T; ,
IOgEISZ)(Xi’n,ﬁ):_(a_i_z)log 14— in(p, )

2 A Sin
" (25 + T)
1
—Elog (det(Ig + Vi nR)).

As for n tending to infinity, 7; ,(u, ) tends to a fixed limit and S; ,/n tends to
F;l, this yields:

(@+%) Tia(n,
Si,u
TG

n

log L2 (X, 0) ~ —

1
— 5 log(det(ly + Vin))

n
28in

~ —

1
Tin(pe, S2) — 5 log (det(1q + Vi nS2)).

Now, the above expression only depends on (p, ). Morevover, as the term

Ul./’n Vl_nl Ui ninT; ,(p, R) does not contain parameters, we can forget it and set:

ViXin,9) =V Xi hoa) + VO (X, . ) with

S.
Vf,l)(Xi,n’ A,a) =alogh —logT'(a) — (a + g) log (A + ;")
+ logI'(a + (n/2)),

VO (x, Q) =__" ~1y. YR “1y.
n (Xin, p, ) = T3 (n— Vi,n Uin) Ri,n (n— Viﬁ Uin)
in
1
5 log (det(Ig + Vi nS2)), (19)
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and define the second approximation for the log-likelihood: Vy ,(¢) = ZzN=1

Vu(Xin, U). Thus, estimators of (A, a) and (u, ) can be computed separately. It
is noteworthy that this second approximation overcomes the difficulties encountered
in Lemma 1.

3 Asymptotic properties of estimators

In this section, we study the asymptotic behaviour of the estimators based on the two
approximate likelihood functions of the previous section. To serve as a baseline, the
estimation when an i.i.d. sample (®;,I";),i = 1,..., N is observed is presented in
Sect. 7.4.

3.1 Estimation based on the first approximation of the likelihood

We study the estimationof & = (A, a, u, ) using the approximate likelihood Ly , (9)
given in Proposition 1 on the set FN p studied in Lemma 1 (see 13, 14, 16). Let

_ A+ Sin/2) + Tin(e, 2)/2)

Z; AL, R) = Z;
l,n(a I, 2) i l1+l’l/2

(20)

By (H4), using notations (16), we have A+S; ,,/24T; , (1, )/2 > (S; n—M; ) /2.
We refer to the supplementary material (proof of Lemma 1), where we give a proof
of the nontrivial property that, if N/n? tends to 0, with probability tending to 1,
Tin(p,R)>—M; ,foralli=1,...,N.

More precisely, on the set F; ,,, Z;, > a/(y/n + 2(a1/+/n)) > 0 where «; is
defined in (H4). Instead of considering log £, (X, ©") on F; p, to define a contrast, we
replace log Z; , by 1f, , log Z; , and set Uy, (¥}) = Zf\’:l U, (X;, 9), with

Un(Xin, 0) =alogh —logI'(a) +logl'(a + (n/2)) — (a + (n/2)) log(a + (n/2))

1
3 logdet(1g + Vi nR) — (a + (n/2))1F, , log Z; .

Define the pseudo-score function and the associated estimators z~9N, 0

Gnn(@) = VoUn 1 (9), Gy a(Pn.n) = 0. (21)

To investigate their asymptotic behaviour, we need to prove that Z; , defined in
(20)iscloseto I';” ! and that lf, Z; ,1 is close to I';. For this, we introduce the random
variable

"W W 2
(t:) — (ti_ 1
s =50 =w?d Witp) = Wiltj-0)" _ 1 - (22)

A IV
j=1 '

which corresponds to S; , when b(.) = 0,0 (.) = 1. Then, we split Z; , — ITI into
s g

Zipg— =t 4 2T ! and study successively the two terms. The second term has
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M
i,n

term is treated below. We proceed analogously for 15, , Z;~ ,: —I; introducing n/ Si(ln) .

explicit distribution as C; ) has x2(n) distribution and is independent of I';. The first

Lemma 2 Assume (HI)—(H4). For all p > 1, we have

s P

in

Zi,n -

1
Wi =9, @; =§0) S n7(1+¢2p+w2”

+ Yt P Py?r), (23)

-1 n

p
1 _ _
e g, (W= @i =0 | S — A+ A+ @?P) (2P + )
’ S(l) np
i,n

Using (5), (6), (10), we set

+o™ 4yt gty (24)

Ain = g+ Vin®) ™ Uin = Vinm)
= Bin(V,,'Uin —m) where B;, = B;,(®) =R, (25)

Let Y (1) = T

(20), (25),

and F° denote the complementary set of F'. We obtain,using

N
3UN,,, a -1
or @) = Z (X - Zi,n 1F,-v,,> ’
i=1

=
aUn
da

@) =N Wa+n/2)—log(a+n/2) —y(a)+logi)

N
_ Z (11:1.’” log Z; , — 1].’iL:n) ,

i=1

N N
1 _ _
ViUNa @) = =5 3 Vh, Ziy VuTin (. ) = D Lk Ziy Ain
i=1 i=1
N
VoUna @) = =5 3 (B + 15,7 VaTin(n. 2)
i=1

N =

1

3 (1F,~,an,,f AinAl, — Bi,,,) .

i=1

N =

Using (7), (15), we set

Bi(T;:2) = (Vi)™ + @7, AT: p, ) = B{(T; )(Vi(T)"'Ui(T) — )
(26)
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and let J (1) denote the covariance matrix of

< C1A(T; 1, S2) ) @7
STIANT; p, R)A|(T; 1, ) — BI(T; Q)
The Fisher information matrix associated with the direct observation (I'¢, ..., I'y)
(see Sect. 7.4) is
a _ 1
lh(r,a) = (*2 > ) (28)
V'@

We now state:

Theorem 1 Assume (HI)—(H4), a > 4, and that n and N = N(n) tend to infinity.
Then, for all v,

. /
e IfN/n*> - 0, N~1/2 (alg#(l?), ME],Z’” (19)) converges in distribution under Py

to the Gaussian law N5(0, In(x, a)).
e lf N/n — 0, N~1/2vy, Un (D) converges in distribution under Py to
N0, T(9)) (g =2+d +d(d+ 1)/2) where

(I a)| 0
j(ﬂ)_( 0 J(z?))

with J (), lo(A, a) defined in (27), (28).

e Define the opposite of the Hessian of Uy ,(V) by Iy () = —VgUN,n(ﬂ).
Then, if a > 6, as n and N = N(n) tend to infinity, %JN,n(z?) converges in
Py -probability to J (V).

Remark 1 The constrainta > 6 might seem too stringent. Noting that E(T";” h= ﬁ,
itis indeed an assumption on the quadratic variations of (X; (¢)) anda > 6 corresponds

to moderate quadratic variations.

Remark 2 In the case of univariate random effect ®; ~ A (i, w?), J () writes,

J ()
EpTB1(T; »?) EpT1A1(T; 1, ) BI(T; %)
T\ Bomia @ D BT o) By (T AYT 1 0 BI(T: 0?) = JBRT: 0?) )
(29)

For the proof, we use that A;, (resp. B;,) converges to A;(T; p, ) (resp.
B;(T; R)) as n tends to infinity and that Zl_n1 1f,, is close to I'; for large n. Note

that Io(X, a) is invertible for all (1, a) € (0, +oo)2 (see Sect. 7.4). We conclude:

Theorem 2 Assume (HI)—(H4), ay > 6, that n and N = N (n) tend to infinity with
N /n — 0 and that J (V) is invertible. Then, with probability tending to 1, a solution
51\/," to (21) exists which is consistent and such that VN (2~9N,,, — ) converges in
distribution to Nq 0, 7! (D0)) under Py, for all ¥y.

For the first two components, the constraint N /n> — 0 is enough.
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964 M. Delattre et al.

The proof of Theorem 2 is deduced standardly from the previous theorem and omitted.

The estimators of (A, a) are asymptotically equivalent to the exact maximum likeli-
hood estimators of the same parameters based on the observationof (I';,i = 1, ..., N)
under the constraint N/n?> — 0. There is no loss of information for parameters
coming from the random effects in the diffusion coefficient. For the parameters
(., ), which come from the random effects in the drift, the constraint is N/n — 0
and there is a loss of information (see 49 in Sect. 7.4) w.r.t. the direct observa-
tion of ((®;,I';),i = 1,..., N). For instance, consider a univariate random effect
® ~ N(u, ®?). Then, if w? is known, one can see that

EyTi1Bi(T; 0*) <EyTiw 2 = 4
Aw?

Ifforalli, I'; = y is deterministic, there is no loss of information for the estimation of
(u, a)z), with respect to the continuous observation of the processes (X; (¢), t € [0, T'])
(see Delattre et al. 2013).

3.2 Estimation based on the second approximation of the likelihood

Now, we consider the second approximation of the loglikelihood (19). We set

g At Sin/2)
YT a2

VIO(X; 0.k, a) = alogh —logT(a) +logT'(a + (n/2))

—(a+ (n/2))log(a + (n/2)) — (a + (n/2))log&; ». (30)

, so that

We do not need to truncate &; ,, as it is bounded from below. For the second term

Vﬁlz) (Xi.n, ik, ), we need a truncation to deal with n/S; , and make a slight modifi-
cation. Let, for k a given constant,

n _ — _
Wo X, b, R) = —— 1, o a0 = Vi Uin) Ry (= Vi Ui )
i,n
1
5 log (det(1g + V; 1)), (31)

and Wy o (i, ) = 10 Wo (Xi. it Q).
We define the estimators 9, , by

Hyn(@®) = (VaaVy, (@), Vi oWy (i, ). Hya(@%,) =0.  (32)

We have the following result.

Theorem 3 Assume (HI)—(H4), ay > 6, that n and N = N (n) tend to infinity with
N /n — 0 and that J (¥y) is invertible. Then, with probability tending to 1, a solution
19;/,,1 to (32) exists which is consistent and such that VN (z?lf,’n — U9) converges in
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distribution to Ny (0, J —1(90)) under Py, for all ¥y (see (29), (28) and the statement
of Theorem 2). For the first two components, the constraint N /n? — 0 is enough.
The estimators z??{,_y , and Uy, are asymptotically equivalent.

This equivalence result is quite important: it could be expected that Method 1, being a
natural approximation of the likelihood, would lead to better asymptotic results. This
is not the case. Implementing Method 2 to compute the estimators is numerically easier
because it splits the estimation of random effect parameters in the diffusion coefficient
and those in the drift coefficient. On simulated data, both methods are comparable even
for reasonably small sample sizes.

4 Simulation study

We illustrate and assess the properties of the parameter estimators. Model parameters
are estimated by the two approximations of the likelihood. We found little difference
between results of both methods, and so we only report results for Method 2.
Several models are simulated:
Model 1 Mixed effects Brownian motion:

dX;(t) =®;dt + T ?dW; (1), X:(0) = 0

Iy ~ G2, @Il =y ~ N, ylo?)
Jd.

1

Model 2 A model satisfying (H1)—-(H2) with constant o (-):

d; X (1 _
i lz()dt—i—l“ 12
1+ X2(1)

Li ~ Gla,2), @i =y ~ N(u, v lo?)

dX(t) = dW;(t), X;(0) =0

i

Model 3 A model satisfying (H1)—-(H2) with non constant o (-):

D; 1 X (1) X (1) ~12
X (1) = [ 120 4 g, 1+ =27 ) (1), X:(0) = 0.1,
dX;(t) (1 n Xl-z(t) + ,2> dt + ( + . Xiz(t)) ; dW;(t) 0 =0

Ti~G(a,2), ®; = (i1, ®i2)[Ti =y ~ No(p, y~' Q) with p = (w1, n2)’ and
Q= diag(a)%, a)%)
Model 4 Mixed Ornstein—Uhlenbeck process:

—1/2
i

dXi(t) = (P; 1 X;(t) + P; 2)dt + T, "“dW;(t), X;(0) =0,

Ti~Gla,A), ® = (01, D 2) [T =y ~ Na(n, y~'R) with g = (u1, o) and
Q = diag(o?, »3).
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Table 1 Empirical mean and (empirical s.d.) of estimators for different values of N and n, truncation
k=0.1,m=a/rt =1vy(a)—logr

Model 1: dX; (1) = ®;dt + T 2aw; (1), X;(0) = 0

T ~G(a. 2, &[T =y ~N(uy lo?)

Parameter True value N =50 N =100
A =0.025 A =0.005 A =0.025 A = 0.005
(n =200) (n = 1000) (n = 200) (n = 1000)
n —0.50 —0.49 (0.06) —0.51 (0.06) —0.48 (0.05) —0.50 (0.05)
w? 0.50 0.45 (0.11) 0.49 (0.12) 0.44 (0.09) 0.48 (0.10)
m 4.00 3.85(0.22) 3.96 (0.23) 3.87(0.14) 3.97 (0.14)
t 1.32 1.24 (0.06) 1.30 (0.06) 1.24 (0.04) 1.30 (0.04)

Table 2 Empirical mean and (empirical s.d.) of estimators for different values of N and n, truncation
k=0.1,m=a/rt =1vY(a)—logi

Model 2: dX; (1) = ®; X; (1/(1 + X2(t)dt +T; ' 2dW; (1), X;(0) = 0
T ~Ga. 1), &0 =y ~ N(u, y~'w?)

Parameter True value N =50 N =100
A = 0.025 A = 0.005 A =0.025 A = 0.005
(n =200) (n = 1000) (n = 200) (n = 1000)
n —2.00 —1.97 (0.16) —2.03(0.16) —1.93(0.11) —1.99 (0.12)
w? 0.50 0.53 (0.64) 0.61 (0.64) 0.41 (0.39) 0.49 (0.42)
m 4.00 4.09 (0.22) 4.00 (0.21) 4.10 (0.14) 4.02 (0.13)
t 1.32 1.30 (0.05) 1.31 (0.05) 1.30 (0.03) 1.32 (0.03)

Note that Model 4 does not fulfill assumptions (H1)—-(H2) but it is widely used in
practice and the estimation results show that the estimation methods still perform well.

For each SDE model, 100 data sets are generated with N subjects on the same time
interval [0, T'], T = 5. Each data set is simulated as follows. First, the random effects
are drawn, then, the diffusion sample paths are simulated with a very small discretiza-
tion step-size § = 0.001. Exact simulation is performed for Models 1 and 4 whereas
a Euler discretization scheme is used for Models 2 and 3. The time interval between
consecutive observations is taken equal to A = 0.025 or 0.005 with a resulting number
of observations n = 200, 1000 and fixed time interval [0, 5]. The model parameters
are then estimated by using the second approximation of the likelihood from each
simulated dataset. The empirical mean and standard deviation of the estimates are
computed from the 100 datasets (Tables 1, 2, 3 and 4). For Gamma distributions, the
parameters m = a/X and t = ¥ (a) — log(X) have unbiased empirical estimators and
are easier to estimate. This is why we present the estimates of m and ¢ rather than
the estimates of a and A which are highly biased even for direct observations. The
estimation procedure requires a truncation (see 31), we use k = 0.1.
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Table 3 Empirical mean and (empirical s.d.) of estimators for different values of N and n, truncation
k=0.1,m=a/rt =1vy(a)—logr

v [(PiaXi) | X\ p=1/2 50 0y —
Model 3: dX; (1) = ( ool <1>,,2> dt + (1 + 1+Xi2(t)> I 2aw; ), X;(0) = 0

Tj ~ G, 1), & = (9. 9;2)IT; =y ~ Nop(u,y ') with p = (i1, 1)’ and
2 = diag(0?, ©3)

Parameter True value N =50 N =100

A =0.025 A = 0.005 A =0.025 A = 0.005

(n = 200) (n = 1000) (n =200) (n = 1000)
1 —2.00 —1.95(0.18) —1.99 (0.19) —1.92(0.14) —1.97 (0.14)
7% —1.00 —0.96 (0.08) —0.99 (0.09) —0.96 (0.06) —0.98 (0.06)
w% 0.25 0.37 (0.45) 0.38 (0.43) 0.26 (0.32) 0.28 (0.32)
a)% 0.25 0.21 (0.09) 0.23 (0.08) 0.22 (0.08) 0.23 (0.08)
m 4.00 3.93(0.18) 3.97 (0.17) 3.97 (0.14) 4.00 (0.15)
t 1.32 1.26 (0.05) 1.30 (0.04) 1.27 (0.04) 1.31 (0.04)

Table 4 Empirical mean and (empirical s.d.) of estimators for different values of N and n, truncation
k=0.1,m=a/rt =1y(a)—logr

Model 4: dX; (1) = (@71 X; (1) + ®; )dt + T, /2dW; (1), X;(0) = 0
Ty ~ Ga,2), & = (1, ®;2) [T =y ~ Nop(p,y~'®) with p =
(11, p2) and @ = diag(@], ©3)

Parameter True value N =50 N =100

A =0.025 A = 0.005 A =0.025 A = 0.005

(n =200) (n = 1000) (n = 200) (n = 1000)
1 —0.50 —0.48 (0.07) —0.49 (0.07) —0.49 (0.04) —0.50 (0.04)
7% 1.00 0.97 (0.11) 0.99 (0.11) 0.97 (0.06) 0.99 (0.06)
w]2 0.10 0.09 (0.06) 0.09 (0.06) 0.09 (0.05) 0.10 (0.05)
w% 0.50 0.49 (0.20) 0.52(0.23) 0.48 (0.13) 0.50 (0.13)
m 4.00 3.96 (0.22) 4.00 (0.21) 3.95(0.12) 4.00 (0.12)
t 1.32 1.27 (0.06) 1.31 (0.05) 1.26 (0.03) 1.31(0.03)

We observe from Tables 1, 2, 3 and 4 that the estimation method has satisfactory
performances overall. The parameters are estimated with very little bias whatever the
model and the values of n and N. The bias becomes smaller as both N and n increase.
The standard deviations of the estimates are small, they become smaller when N
increases and they do not depend on n. These results are in accordance with the the-
ory since the asymptotic distribution of the estimates is obtained when N /n — 0 or
N /n? — Orespectively, and the rate of convergence is VN. Although forn = 200, we
don’t have N /n very small in our simulation design, the results in this case are quite
satisfactory which encourages the use of this estimation method not only for high but
also moderate values of numbers of observations per path n. In all the examples below,
the Gamma distribution parameters are a = 8, A = 2. The associated theoretical s.d.
for m and ¢ for direct observations are respectively 0.2, 0.05 for N = 50 and 0.14, 0.04
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Table5 Empirical mean and standard deviation from 100 datasets; theoretical s.d. of estimators for different
valuesof Nya =8, A =2, m=a/rt =1vy(a)—logh

Direct observations of N iid. (®;,T;) s.t. T; ~ G(a, 1), ®;|T; = y ~ Nao(m, y_lSI) with
#= (i1, 12) and @ = diag(w?, w3)

Parameter True value N =50 N =100
Mean s.d. Theor. s.d. Mean s.d. Theor. s.d.

"1 —0.50 —0.50 0.02 0.02 —0.50 0.01 0.02
n2 1.00 1.00 0.05 0.05 1.00 0.03 0.04
w% 0.10 0.10 0.02 0.02 0.10 0.01 0.01
w% 0.50 0.51 0.11 0.10 0.50 0.07 0.07
m 4.00 4.01 0.21 0.20 4.01 0.12 0.14
t 1.32 1.33 0.05 0.05 1.33 0.03 0.04

for N = 100 (see 7.4 and Table 5). This agrees with the results obtained in Examples
14 for (a, A) .

5 Concluding comments

In this paper, we have addressed the new problem of estimating parameters when
having discrete observations and simultaneous random effects in the drift and in the
diffusion coefficients by means of a joint parametric distribution. We have considered
N paths and n observations per path. For linear random effects and a specific joint
distribution for these random effects, we have proved that the model parameters in
the drift and in the diffusion can be estimated consistently and with a rate +/N under
the condition N /n — 0. For the parameters in the diffusion coefficient, the constraint
is weaker (N /n?> — 0). We have proposed two methods for the estimation leading
to asymptotically equivalent properties. The second one is now implemented in a R
package (MsdeParEst). Including random effects both in the drift and in the diffusion
coefficient of SDE has been proposed in several data applications but to our knowledge,
it had not been studied from a theoretical point of view.

Our results are obtained for a regular sampling but could be easily extended to non
regular ones. They are derived in an asymptotic framework. An important issue would
be to study non asymptotic properties. It would also be interesting to consider more
general SDEMEs where fixed and random effects are no longer linear and different
distributions for the random effects.

6 Appendix
6.1 Proof of Proposition 1

For the likelihood of the i-th vector of observations, we first compute the conditional
likelihood given ®; = ¢, ¥; = 1, and then integrate the result with respect to the joint
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distribution of (®;, ¥;). We replace the exact likelihood given fixed values (¢, ),
i.e. the likelihood of (X;p’w(t i), j =1,...,n) by the Euler scheme likelihood of (8).
Setting ¥ = y~1/2, it is given up to constants by:

4
Lo(Xins 7 9) = La(Xi, 7, 0) = ¥ exp [ =2 (Sin + 0/ Vg = 20'Us) |- 33)

The unconditional approximate likelihood is obtained integrating with respect to
the joint distribution vy (dy, dg) of the random effects (I'; = W;~ 2, ®;). For this, we
first integrate L, (X;, y, ¢) with respect to the Gaussian distribution Ny (i, y’l Q).
Then, we integrate the result w.r.t. the distribution of I';. This second integration is
only possible on the subset E; , (%) defined in (12).

Assume first that  is invertible. Integrating (33) with respect to the distribution
N(w, y~') yields the expression:

12

. _ /2 Y
MK s 1 @) = 7" exp (=380 ) a7
1
X/ exp (y (w’Ui,n - —w’%w))
]Rd 2
y o
X exp (—E(w -w)'e g - u))dw

1/2
P exp (=L, (44 i) s
= " exp 25,,n)< o) P (5T @)

where
Tin(p, @) =p/'Q 'p—m) =7 'm; (34)

and
Tia=QU+ Vi omy, =%, U+ ).

Computations using matrices equalities and (5), (6), (10) yield that 7; ,, (., 2) is equal
to the expression given in (11), i.e.:

Tin(, ®) = ( =V, Uin) R (= Vi Uiw) = U],V Ui,

i,n'in
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Noting that d;;(z}(:sii;l) = (det(Iy + Vi ,R))~!, we get

AnKions v 1 ®) = 7" (det (T + Vin®) ™2 exp |2 (Sin + T, @)
(35)

Then, we multiply A,(X; ., y, n, ) by the Gamma density (A¢/ [(a))y* !
exp (—Ay), and on the set E; ,(¢) (see 12), we can integrate w.r.t. to ¥ on (0, +00).
This gives L, (Xi n, V).

At this point, we observe that the formula (14) and the set E; ,(¢) are still well
defined for non invertible 2. Consequently, we can consider £,,(X; ,, ¥) as an approx-
imate likelihood for non invertible £2. O

6.2 Proof of Theorem 1

For simplicity of notations, we consider the case d = 1 (univariate random effect in
the drift, i.e. © = p, > = ). The case d > 1 does not present additional difficulties.

Proof of Lemma 2 We omit the index n but keep the index i for the i-th sample path.
We have (see 20):

1 1 !
s _ (si s,-”) 2a_ 5" | 2t Tiw o)
n n

n 2a +n non _2a+n7 2a +n

Therefore, using definition (22) and the notations introduced in (H4) (bounds on the
parameter set),

(1) (1) (1) 2
S S, S 2 C. 2¢ T; (,
Zi— < |2 +ﬂ\yi21_+_l+M (36)
n n n n n n n
Note that, using (11):
V; U\* U? 2y,
T, o) = ————(n— ) — b= L
1+ ?V)) Vi Vi (d+oV)
(1)2Ul~2 U;
(37

— -2 .
I +a?Vi) U+ w0V

Thus, using (H4) and the fact that x + xZ < 2(1 + x2) forall x > 0,

2 2
" m
T (, 0?)| < el + W?U? +2|u|U;| < o + c1U? + 2m|U;|
2
<

T 2max{er, 2m}(1 + U?) < 1+ U2,
(€]
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By the Holder inequality, we obtain using (6), (36) and (37):

p C-(l) p
EERA BT 7o e R
n

Now, we apply Lemmas (7) and (5) of Sect.7.2 and (48) of Sect. 7.3 and this yields
inequality (23) of Lemma 2.
For the second inequality, we write:

(1
gl gt (S,
i s T T M\ y !
1 1
O WA
i Sl'(l) Si(l) Sl'(l) n i
2 2 2
— n 271 Si(l) 7. n Si(l) 7
“\sm) e ) o) e )

On F;, Z; > c/+/n, so:

P s, s®

!

n n

™
1

2 1) 2
n —4 \/ﬁ Si ] S
1

n

z!

P TSm !
Si

Consequently, by the Holder inequality,

(1) p

i

p 2p (1) 2p
15 S L1 \I’i_4p n?’? S Zi)] + &
c n

n
o
Si

z7 - 2

i

(38)
Now, we take conditional expectation w.r.t. ¥; = i, ®; = ¢ and apply the Cauchy—
Schwarz inequality. We use that, for n large enough, (see (48) of Sect.7.3):

4p 4p
n n
Es |\ =) Wi=v.@i=9¢|=E|—5 = 0(1).
C; C.

1

And, we apply inequality (23) to get (24). O

Now, we start proving Theorem 1. Omitting the index n in A; ,,, B; ,, we have [see
(21), (25), (26)]
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N

—120UNn _ 172 a

NSO =N Y (ST + R
i=1

N
@) =N""2>"(~y(a) +logh +logi) + Ry + R,

i=1

N-1/2 aUnNn
a

N N
aU
N*l/zﬁ(ﬁ) =N""2Y TiAi + Ry = N2 "D AT ) + Ry + Ry
i=1 i=1
N
_1p0Uy —12l
NI ) = N2 S (1A - B) + Ry
@ i=1
1 N
= N_1/2§ > (iAX(T: p. ) — Bi(T, ) + Ry + Ry,
i=1

The remainder terms are:

N N
Ri=N"'"23"(i—Zz7"15). Ry=N""> (ogz; ' 15, —logl),

i=1 i=1

N
Ry = N'"2(Y(a+ (n/2)) —log(a+ (n/2) + N2y " 1pe,
i=1
N 1 N
— —1 —-1/2 2, 7—1
Ry=N"'"23" Az "1, —=Ti), Ry=N"" EZAI- (Z7"1F — T,

i=1 i=1

~

N
Ry=N"'"23"Ti(Ai — A{(T; i, %),

i=1

N
il
Ry = N"25 37 (B = BT, ) = T4} = A}(T: o).
i=1

The most difficult remainder terms are Ry, Ry, R3, R4. They are treated in Lemma 3
below. For the term Ré, we use that (¥ (a + (n/2)) —log (a + (n/2))) = O~ (see
47) and that, for a > 4, Py(F¢) < n=2 (see 17) to get that Ry = Op(+/N/n).
Using Lemma 5 in Sect. 7.2, it is easy to check that R} and R} are Op (/N /n).
Therefore, there remains to find the limiting distribution of:

N2y (=T

N—1/2 ZzN=1 (=¥ (a) +logh +1logT;),
N2 N T AT 1, 0?),

N=2LS N (Bi(T, 0?) — TiAX(T; , 02))
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The first two components are exactly the score function corresponding to the exact
observation of (I';,i = 1, ..., N) (see Sect. 7.4). Hence, the first part of Theorem 1
is proved.

The whole vector is ruled by the standard central limit theorem. To compute the
limiting distribution, we use results from Delattre et al. (2013) which deals with the
case of I; = y fixed and ®; ~ N (i, y ~'w?). It is proved in this paper that

Ep(Ai(T; i, )|y = y) =0, Ep(Bi(T,0*) — ;A (T; u, 0?)|I; = y) = 0.

This result is stated for y = 1 in Proposition 5, p. 328 of Delattre et al. (2013)
with (unfortunately) different notations: A; (T'; u, w?) is denoted yi(0) and B; (T, ®?)
is denoted I; (w?) (formula (11) of this paper). It can be extended for any value of y
using formula (35) and the regularity properties of the statistical model. Hence, the
third and fourth component are centered and the covariances between the first two
components and the last two ones are null. Moreover, it is also proved (in the same
Proposition 5) that

YEs (AX(T; 1, )Ty = y) = By (Bi(T; 0*)|T; = y),
1

2
Ey <Z (yA,-Z(T; 1, %) — Bi(T; wz)) Il = V)

1
= 3Eo (20 AXT: 1, ) B(T: ) — BAT3 o)) = )

1
Ey <§(VA,'2(T; w, w?) — Bi(T; ©*)Ai (T; w, 0*)|T; = y>
=Ey (4i(T: 1, o)) BT, oIy = y),

Hence, the covariance matrix of the last two components is equal to J (¢}) defined
in (29).

The proof of the last item (second order derivatives) relies on the same tools with
more cumbersome computations but no additional difficulty. It is detailed in the elec-
tronic supplementary material. Note that this part only requires that N, n both tend to
infinity without further constraint. So the proof is complete. O

Lemma 3 Recall (20). Then, for a > 4, (see (16) for the definition of F; ), R1, R2
are Op(max{1//n, Y}), Ry, Ry are op(\/g).
Proof The proof goes in several steps. We have introduced

1 n
1 l_r-
s = g? E (Wi(t)) — Witj—n)> =T; 'V

We know the exact distribution of Si(l): Cl.(l) is independent of I'; and has distribu-

tion x2(n) = G(n/2,1/2). By exact computations, using Gamma distributions (see
Sect.7), we obtain:
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2
n 2 n
Ey|——-1]= , By | ——1
<Ci(]) ) n—2 (Ci(l) )

— ﬂ — 0(,1—1),
n—2)(n—4)

Ey(log C{'/2) — log (n/2) = ¥/(n/2) — log (n/2) = O(n™"),
Vary (log C\V /2) = ¢/ (n/2) = 0(n™).

Thus,

1 n 1 N 1 n
— — —T;j)l=o0 — ), — log — — log T
N Z (Sl.(l) 1) P <max { ﬁ " }) ~ Z <0g Sl,(l) og l)

i=1 i=1
1 «/N
= Op (max[ﬁ,7}> (39)

Let us detail the first computation. Note that (I';,i = 1,..., N) and (Cl.(l),i =
1, ..., N) are independent. Thus,

) 2
a n
B TR PO
@+D " \c

[12 n ?
o (= g )

=0mn "+ O0W/n?) = O@max{n~", N/n?}).

The second computation is similar.
Then, we have to study

N
1 _ n 1 _ n
\/_N E (Zl 11Fi — W) s ﬁ E <10g (Zl I)IFI — IOg W) . (40)

1

2y
F — Fl-C‘
S0
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Fora > 4,Py(Ff) < n~2 (see 17). We have, applying the Cauchy—Schwarz inequal-
ity:

e

LN 172
( Z S(l) F > < \/_N Z (Ez}rz Eﬁ(C(l))z Pg(Ff)) <

i=l i

Next, apply Lemma 2,

Ey

N
1 -1
WL
i=
VN

S =K, (14 (1 + D2+ 0 + f + 0+ ol

As noted above, ¥; = T, -1/ Eﬁ(\IJi_q) < 400 for all ¢ > 0. We can write ®; =

w+ oWV;e; with ¢; a standard Gaussian variable independent of ;. We have

By ®7 W% = By (W' + w8)* < +oo,
Ep@7W " = By (u¥, % + oW, 'e;)? < 400, andfora > 2,
Ep®! S1+EgW} =1+Eyl % < +o0.

Thus, fora > 4,

N
Z<211 ;”) op(g) (41)

Joining (39) (left)-(40) (left) and (41), we obtain that, for ¢ > 4, Ry =
Op(max{n~'2, /N/n}).
Analogously,

- n
(log(Zl. )1F, — log (1)> = (log (z;~ h— log (1)> Ip — 1pe log W
i

As above, we can prove

N
1 n N
O —E log ——1p¢
(VNizl Si(l) l)

=0 (—) , for a > 4. 42)

n
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And:

(1)
_ n i
log (Z; Y —log Pl = log‘T —log Z;
i

(1 1
=<Si__zi)/ds S S
" 0 ST (1—9)Z; 2
)]
1 (S
=W(’7—Zf)

i
n
n

1 2
L[5 1 (1—5)
T\ A 4w .
=1 O st (1-9)Z

OI] F,',
1
(1—ys) 1 _n
f ds 0 <Z = o
O st (1-9)Z
Therefore,
(H ()
_ n 1 S n S;
log () —log =55 | = = ¥;° ( S _gzlem S Zi)z) . 43)
Si Cl_ n C n
n

Now, we take conditional expectation w.r.t. ®; = ¢, ¥; = i, and apply first the
Cauchy—Schwarz inequality and then Lemma 2. This yields:

< %<1+w—2<1+¢2>+w2(1+¢>4>+¢2+¢4+w6>. (44)

n
s

1

log (Zi_l) — log

|P; = o, V; =1ﬂ)

We have to check that the expectation above is finite. The worst term is Ey \IJ? =
EyI'; 3 which requires the constraint @ > 3. Thus, for a > 3, we have:

o).

Therefore, we have proved that Ry, Ry are Op (max{%ﬁ, */Tﬁ}).

1
Eq——
"UN |5

N

> (og(Z7") ~log )1,
S

i=1 i
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For R3, R4, we proceed analogously but we have to deal with the terms A;, A?. We
write again:

Zl-_llF,' —I; = <Zi_1 _%) 1F,' —%lFic+%—Fi.
s s s

Using Lemma 6 and the Cauchy—Schwarz inequality, we obtain:

\/_ZA ( o ri) 5\/W (r|d>|+r‘/2) 0( %)

N N
E, S\ =By (Tl + 1)) = 0( —>.
n n
Applying now Lemma 2, we obtain:

ligrtd)

Ey(|D;|(1 + W 4+ W) + 20, + W; + w2 4+ w?),

Ey

1 n
(€)) i
N =S

:| ﬁ\

S

This requires the constraint E» \I‘?Eg I“l._3/2 < +00,i.e.a > 3/2.Note that Ey (\l/i_4p)
is finite for any p. This is why these moments are omitted.

We proceed analogously for R4 and find that R4 = Op(/N/n) for a > 2. The
different constraint on a derives from the presence of Al.2 in R4 which requires higher

moments for r; I O

6.3 Proof of Theorem 3

We only give a sketch of the proof and assume d = 1 for simplicity. We compute
Hy n(9) (see 32) and set G, , = {S; , > k+/n}. We have:

(1

S g = i(% &)

=

)
M =N 2) —1 2 log A 1
” = N (¥(a+n/2) —log(a+n/2) — ¥(a) +logh) — Y log&i,
i=1
W n
Nn )_ZIG’”S i,ns
n

N
IWn 1 2
= = 1 A, —Bin).
o (@) 2Z<’mn i

i=1
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We can prove that, under (H1)-(H2), if ap > 2, Py, (Gf’n) < n~2 under analogous
and simpler tools as in Lemma 1. The result of Lemma 2 holds with &; ,, instead of
Z; n and without 1, . This allows to prove that:

-1/2 GVE\})H -1/2 = (a
NP E Gl = NN (S
i=1

—1/28V§$)n -1/2 s
NT2—SE G a) = N > (logTi — yr(a) +log2) + 12
i=1

where rq and r are OP(\/N/n).
The result of Lemma 2 holds with S; ,,/n instead of Z; , and G; , instead of F; ,
(and the proof is much simpler). This implies that:

N
(1, %) = N™V2 Y T AT, 0%) + 13,

i=1

n-1/290WNn
au
N
N—l/zaUN,n 2 —1/21 2. 2 2
— 3 (@) = NT122 Y (AN 1, 0%) = Bi(T, o) + 14,

i=1

and we can prove that 3 and r4 are Op (N /n).

7 Auxiliary results

In Sect. 7.1, we explain why Assumption (H2) is required. Results on discretizations
are recalled in Sect. 7.2. Sections 7.3 and 7.4 contain results on Gamma distributions
and estimation from direct observations of the random effects.

7.1 Preliminary results for SDEs with random effects

SDEME:s have specific features that differ from usual SDEs. The discussion below
justifies our setup and assumptions. Consider (X (¢), t > 0) a stochastic process ruled
by:

dX(t) =b(X(@), P)dt +o(X(@), ¥)dW(t), XO0)=x (45)
where the Wiener process (W (¢)) and the r.v.’s (®, W) are defined on a common prob-
ability space (€2, F, P) and independent. We set (F; = o (D, W, W(s),s <t),t > 0).
To understand the properties of (X (¢)), let us introduce the system of stochastic dif-
ferential equations:

dX(1) = b(X (1), D(1))dt + o (X(1), ¥(1)dW (@), X(O)=x
do(t) =0, ®0) =
dU(t) =0, W(0) =WV.
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Existence and uniqueness of strong solutions is therefore ensured by the classical
assumptions:

(A1) The real valued functions (x, ¢) € RxR? — b(x, @) and (x, ) € RxRY —
o(x,y)are CL.

(A2) There exists a constant K such that, Vx, ¢, ¥ € R x R? x R4, (II.]| is the
Euclidian norm):

Ib(x, )l = KA+ x|+ llel), o, ¥l = KA+ x|+ 1vID

If the following additional assumption holds:
(A3) Ther.v.’s ®, W satisfy E(||®|?? + |¥]*?) < +oo

then, under (A1)-(A2), for all T, sup, .y EX 2P (1) < 400.

To deal with discrete observations, moment properties are required to control error
terms. Here, we consider a simple model for the drift term, b(x, ¢) = ¢’b(x), and
for the diffusion coefficient, o (x, V) = Yo (x), with ¢ € R4, Y € R. The common
assumptions on b and o should be that b, o are C!(R) and have linear growth w.r.t.
x. Then, for all fixed (¢, ¥) € R? x (0, +00), the stochastic differential equation

dX?V (1) = o'b(X*V (1)) dt + Yo (XY (1) dW (1), XV (0)=x (46)

admits a unique strong solution process (X eV (), 1t > 0) adapted to the filtration (F;).
Moreover, the stochastic differential equation with random effects (1) admits a unique
strong solution adapted to (F;) such that the joint process (&, W, X (¢), ¢t > 0) is strong
Markov and the conditional distribution of (X (¢)) given ® = ¢, ¥ = v is identical to
the distribution of (46). We need more than this property. Indeed, moment properties
for X (¢) are required. Let us stress that, with b(x, ¢) = ¢'b(x), o (x, ¥) = Yo (x),
(A2) does not hold even if b, o have linear growth. In particular, (A3) does not ensure
that X (¢) has moments of order 2p. Let us illustrate this point on an example.

Example Consider the mixed effect Ornstein—Uhlenbeck process d X (1) = ® X (¢)dt+
t

WdW(t), X(0) = x. Then, X(¢) = xexp (®r) + Wexp (Pr) fexp (—Ds) dW(s).
0

The first order moment of X (¢) is finite iff E exp (®¢) < +oc and E [|\II|((exp 2d1)
—1)/2®)!/?] < 400 which is much stronger than the existence of moments for &, W.
When (®, W) has distribution (2), E exp (®1) = exp (ut)E(exp (w’1?/T)) = +00.

In a more general setup, the existence of moments is standardly proved by using
the Gronwall lemma. In this case, it would lead to an even stronger condition such as
E(exp (P%1) + exp (¥21)) < 400.

Hence, stronger assumptions than usual are necessary. Indeed, (A2) holds for model
(1) either if ¢ and ¥ belong to a bounded set, or if b and o are uniformly bounded.

We could think of using a localisation device to get bounded b and o. The problem
here is to deal with N sample paths (X;(¢)),i = 1,..., N which have possibly no
moments. The localisation device is here complex.
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7.2 Approximation results for discretizations

The following lemmas are proved in Delattre et al. (2017). In the first two lemmas,
weset X1(7) = X(t), P = D, ¥ = W.

Lemma4 Under (HI)-(H2), fors <tandt—s <1, p > 1,
Es(I1X(1) — X($)|P|® = ¢, ¥ =) S KP(t — )P (ol +¢P).

For t — H(t, X.) a predictable process, let V(H; T) = fOT H(s, X.)ds and
UH;T) = fOT H(s, X.)dX(s). The following results can be standardly proved.

Lemma5 Assume (HI)-(H2) and p > 1. If H is bounded, Ey (|(U(H; T)|?|® =
o,V =1) < lplP +y7.

Consider f : R — Randset H(s, X.) = f(X(s)), Hy,(s, X.) = Z’}:] fFXW(j—
DANL(j—1)a,ja)(s). If f is Lipschitz,
Ey(|V(H; T) = V(Hy; TP |® = 9, W =) S AP (lg|” + 7).
If f is C2 with f', f" bounded
Ey(U(H; T) — U(Hy; TP |@=¢, U=y) S APP2(9* + |p|Py” + §°P + 37F).

Lemma 6 Recall notations (25)—(26). Under (HI1)—(H2),

Ep(1Bin — Bi(T; 0H)IP|®; = ¢, W; = ¥) < AP (|p|? + ¢ P)
Ep(1Ain — Ai (T3 i1, 0)|P|®; = ¢, W; = ¥) < AP 4 ¢3F)
Ep (1A (T; p, )71 = ¢, W; = ¥) < lol” + ¢P.

Let

G _ ii(Wf(t,-)—Wi(r,-_o)z
in T Fi = A '

Lemma?7 Then, forall p > 1,

p
1D =@, W =y | S AP@PPQ* + yP 4 ¢?P).

(L
Sim _ Pin

Ey
n n

7.3 Properties of the Gamma distribution

The digamma function ¥ (a) = I''(a)/ ' (a) admits the following integral represen-
tation: ¥ (z) = —y + fol(l — 171/ = t)dt (where —y = (1) = I'/(1)). For all
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01 110 &L t9=1dt. Consequently, using an integration

by parts, —ayy'(a) = —1 — fo t%g(t)dt, where g(t) = (logt/(1 — t))'. A simple
study yields that #g(¢) is integrable on (0, 1) and positive except at t = 1. Thus,
1 —ay’(a) # 0. The following asymptotic expansion as a tends to infinity holds:

positive a, we have ¥'(a) = —

w(a)zloga—i+0(i2>, w/(a)=l+0(i2>. 47)
2a a a a

If X has distribution G(a, 1), then X has distribution G(a, 1). For all integer k,
EQX)f = Het0 Fora > k, Ea.X) ™ = H2. Moreover, Elog (AX) = y(a),
Var [log (A X)] = ¥/(a).

In particular, if X = 27:1 siz where the ;s are i.i.d. N'(0, 1), then X ~ x2(n) =

G(n/2,1/2). Therefore, EX™? < +oo forn > 2p and as n — +00,

n

)4
E (5) — o). E (%)p = o). (48)

7.4 Direct observation of the random effects

Assume that a sample (®;, [';),i = 1,..., N, is observed and that d = 1 for simplic-
ity. The Gamma distribution with parameters (a, A) (a > 0, A > 0) G(a, 1), has den-
Sity yg.a(x) = (AY/ F(a))x“_le_“]l(o,jLoo) (x), where I'(a) is the Gamma function.
We set ¥ (a) = I"(a)/ T'(a). The log-likelihood £ (%) of the N-sample (®;, I';), i =

. . /!
I, N has score function Sy () = (#tn (®) 2w (@) Ftv(®) Fztn(®))
given by

0 Y ja 0 Y
AN =3 ($-1). v = (Y@ +logh +1ogT,

N
—zN(m—w‘zZF(@ W, sty ) = %Z(Fi@i—mz—wz).

i=1

dw?

By standard properties, we have, under Py, N_1/2SN(19) —p Ni(0, Jo()), where

(I, @) 0
‘70(19)_< 0 Jo(k,a,u,w2)>

a 1 4_ 0
Io(k,a)=<f% w,*(g)), Jo(k,a,u,a)z):(éwz 1). (49)

207

Using properties of the di-gamma function (av/'(a) — 1 # 0), Ip(a, 1) is invertible for
all (a, 1) € (0, +00)2. The maximum likelihood estimator based on the observation
of (&;,I';,i =1,...,N), denoted 9y = Oy (P;,I;,i = 1,...,N), is consistent
and satisfies \/ﬁ(z?N — 1) —p Ny (0, Jofl (¥)) under Py as N tends to infinity.
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In the simulations presented in Sect. 4, we took @ = 8 and observed that estimations
of a are biased with a large standard deviation. This can be seen on [, ! (A, a):

PN M2y'(a) ay'(a)
IO ()\,, a) = W (Al//’(a) a ) . (50)

If a large, a/(ay/'(a) — 1) = O(a?).

However, natural parameters for Gamma distributions are m = a/A,t = Y (a) —
log A with unbiased estimators i = N~' Y% T, 7 = N~V logI'; such that
the vector /N (i — m,f — t) is asymptotically Gaussian with limiting covariance
matrix

|

1
* (51)
¥'(a)

The asymptotic variance of 7 is ¥/ (a) = O(a~") and both parameters (m, t) are well
estimated.

>l
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