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Abstract This paper is concerned with the semiparametric regression model yi =
xiβ + g(ti ) + σi ei , i = 1, 2, . . . , n, where σ 2

i = f (ui ), (xi , ti , ui ) are known fixed
design points, β is an unknown parameter to be estimated, g(·) and f (·) are unknown
functions, random errors ei are widely orthant dependent random variables. The p-th
(p > 0) mean consistency and strong consistency for least squares estimators and
weighted least squares estimators of β and g under some more mild conditions are
investigated. A simulation study is also undertaken to assess the finite sample perfor-
mance of the results that we established. The results obtained in the paper generalize
and improve some corresponding ones of negatively associated random variables.
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1 Introduction

Asweknown that semiparametric regressionmodels (or partially linearmodels) rely on
a dimension reduction assumption,while being still flexible enough due to the presence
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of a nonparametric term. In recent years, semiparametric regression models have
attracted a growing number of statisticians to study it. Based on the effect ofweather on
electricity demand, Engle et al. (1986) studied the following semiparametric regression
model,

Yi = X
′
iβ + g(Ti ) + ei , i = 1, 2, . . . , n. (1.1)

Hong (1991) studied the model (1.1), and gave the estimators β̂n and g∗
n of β and g

respectively by themethods of least squares and the nearest neighbor weight functions.
In addition, he also obtained the asymptotic normality for β̂n and the strong consistency
for g∗

n . Basedon the independent and identically distributed (i.i.d.) samples,Gao (1992)
proposed the kernel estimator ĝn(·) of g(·) and the least squares estimator β̂n of β in
the semiparametric regression model as follows,

Yi = Xiβ + g(ti ) + ei , i = 1, 2, . . . , n, (1.2)

and obtained some strong andweak consistencies and convergence rates for estimators
of β and g(·). Hu (1999) defined the least squares estimators β̃τ of β and the estimator
g̃τ (t) of g, respectively. In the case of the independent random errors, he established
some asymptotic properties for the estimators β̃τ and g̃τ (t), including the strong con-
sistency, uniform strong consistency, r -th (r > 2) mean consistency and r -th (r > 2)
mean uniform consistency. Pan et al. (2003) discussed the semiparametric model (1.2)
with Lq mixingale errors, and obtained r -th (r > 2) mean consistency and complete
consistency for estimators of β and g. Hu (2006) studied the model (1.2) with lin-
ear time series errors and obtained the r -th (r > 2) mean consistency and complete
consistency for the estimators β̂n and ĝn(t) of β and g, respectively. Based on model
(1.2), Gao et al. (1994) proposed a more general semiparametric regression model,

yi = xiβ + g(ti ) + σi ei , i = 1, 2, . . . , n, (1.3)

where σ 2
i = f (ui ), (xi , ti , ui ) are known fixed design points, β is an unknown param-

eter to be estimated, g(·) and f (·) are unknown functions defined on compact set
A ⊂ R, ei are random errors. Additionally, Gao et al. (1994) gave the least squares
estimators (LSE) and the weighted least squares estimators (WLSE) of β and g and
the estimator of f , and further proved the asymptotic normality for the two estimators
of β under i.i.d. random errors. Chen et al. (1998) investigated the strong consistency
for the two estimators of β if {ei , i ≥ 1} is i.i.d.. Based on negatively associated
random errors, Baek and Liang (2006) studied the strong consistency of estimators of
β, g and f , and the asymptotic normality of β; Zhou and Hu (2010) obtained p-th
(p > 2) mean consistency for LSE and WLSE of β and g. For more details about the
asymptotic properties of the estimators in semiparametric regression models, one can
refer to Chen (1988), Speckman (1988), Hamilton and Truong (1997), Mammen and
Van de Geer (1997), Aneiros and Quintela (2001), Zhou and Lin (2013) among others.

Inspired by the above literatures, we will study the p-th (p > 0) mean consistency
and strong consistency for LSE andWLSE of β and g in model (1.3) under the random
errors {ei , i ≥ 1} being zeromeanwidely orthant dependent randomvariables.Wewill
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give the details in Sect. 2. Now let us recall the definition of widely orthant dependence
structure.

Definition 1.1 For the random variables {Xn, n ≥ 1}, if there exists a finite real
sequence {hU (n), n ≥ 1} satisfying for each n ≥ 1 and for all xi ∈ (−∞,+∞),
1 ≤ i ≤ n,

P(X1 > x1, X2 > x2, . . . , Xn > xn) ≤ hU (n)

n∏

i=1

P(Xi > xi ),

then we say that the {Xn, n ≥ 1} are widely upper orthant dependent (WUOD, in
short); if there exists a finite real sequence {hL(n), n ≥ 1} satisfying for each n ≥ 1
and for all xi ∈ (−∞,+∞), 1 ≤ i ≤ n,

P(X1 ≤ x1, X2 ≤ x2, . . . , Xn ≤ xn) ≤ hL(n)

n∏

i=1

P(Xi ≤ xi ),

thenwe say that the {Xn, n ≥ 1} arewidely lower orthant dependent (WLOD, in short);
if they are bothWUODandWLOD, thenwe say that the {Xn, n ≥ 1} arewidely orthant
dependent, and hU (n), hL(n), n ≥ 1 are called dominating coefficients.

The concept ofWOD randomvariableswas firstly introduced byWang et al. (2013).
And they therein gave some examples to show that the class of WOD random vari-
ables includes some common negatively dependent random variables, some positively
dependent random variables and some others. Subsequently, various properties and
applications were obtained. For instance, Liu et al. (2012) gave the asymptotically
equivalent formula for the finite-time ruin probability under a dependent risk model
with constant interest rate, Shen (2013a) established the Bernstein type inequality for
WOD random variables and gave some applications, He et al. (2013) provided the
asymptotic lower bounds of precise large deviations with nonnegative and dependent
random variables, Wang et al. (2014) further established the complete convergence
for arrays of row-wise WOD random variables and gave its applications in non-
parametric regression models, Wang and Hu (2015a) studied the consistency of the
nearest neighbor estimator of the density function based onWOD samples, Shen et al.
(2016) provided some exponential probability inequalities for WOD sequence and
gave applications in complete convergence and complete moment convergence, Chen
et al. (2016) established a more accurate inequality of WOD random variables, and
obtained some limit theorems including the strong law of large numbers, the complete
convergence, the almost sure elementary renewal theorem and the weighted elemen-
tary renewal theorem, and so on.

Obviously, hU (n) ≥ 1, hL(n) ≥ 1, n ≥ 1. If hU (n) = hL(n) = M for any n ≥ 1, it
is easily seen that the random variables {Xn, n ≥ 1} are extended negatively dependent
(END, in short), where M is a positive constant. More particularly, if M = 1, then
the random variables {Xn, n ≥ 1} are called negatively orthant dependent (NOD, in
short). In other words, NOD is a special case of END. For details about NOD and END
sequence, one can refer to Volodin (2002), Asadian et al. (2006), Liu (2009), Wang
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and Wang (2013), Shen (2013b), Shen et al. (2015), Wang et al. (2015b), and so forth.
Furthermore, Joag-Dev and Proschan (1983) pointed out that negatively associated
(NA, in short) random variables are NOD. Meanwhile, Hu (2000) introduced the
concept of negatively superadditive dependence (NSD, in short) and pointed out that
NSD impliesNOD [see Property 2 ofHu (2000)]. By the above description, the class of
WODrandomvariables containsEND randomvariables,NODrandomvariables,NSD
random variables, NA random variables and independent random variables as special
cases. Thus, it is of practical significance to study the mean consistency and the strong
consistency of estimators in the semiparametricmodel (1.3) withWOD random errors.

The organization of the paper is as follows. In Sect. 2, we first present the LSE and
the WLSE of β and g(·), and some basic assumptions; and then we will establish the
main results, including the mean consistency and strong consistency for the LSE and
theWLSE of β and g(·); a numerical simulation to study the consistency of LSE for β
and g(·) is also carried out; finally, some important lemmas to prove the main results
are provided. In Sect. 3, we mainly give the proofs of the main results. In “Appendix”,
we present the proofs of Lemmas 2.4 and 2.5.

Throughout the paper, denote h(n) = max{hU (n), hL(n)}. an = O(bn) denotes
that there exists a positive constant C such that an ≤ Cbn . Let c, c1, c2, C , C1, C2,
. . . denote the positive constants whose values may vary at each occurrence.

2 Main results and lemmas

2.1 Estimators and basic assumptions

The LSE and the WLSE of β and g(·) given in Gao et al. (1994) are as follows:

β̂n = S−2
n

n∑

i=1

x̃i ỹi , ĝn(t) =
n∑

i=1

Wni (t)(yi − xi β̂n), (2.1)

β̃n = T −2
n

n∑

i=1

ai x̃i ỹi , g̃n(t) =
n∑

i=1

Wni (t)(yi − xi β̃n), (2.2)

where Wni (·) are weight functions only depending on the designed points ti (i =
1, 2, . . . , n), x̃i = xi −∑n

j=1 Wnj (ti )x j , ỹi = yi −∑n
j=1 Wnj (ti )y j , S2

n = ∑n
i=1 x̃2i ,

ai = 1
f (ui )

, T 2
n = ∑n

i=1 ai x̃2i .
In this paper, we will consider the following assumptions:

H1 (i) lim
n→∞

1
n(h(n))2r

∑n
i=1 x̃2i = � (0 < � < ∞), ∃ r ≥ 1;

(i)
′

lim
n→∞

1
n(h(n))r

∑n
i=1 x̃2i = � (0 < � < ∞), ∃ r > 0;

(i i) 0 < m0 ≤ min
1≤i≤n

f (ui ) ≤ max
1≤i≤n

f (ui ) ≤ M0 < ∞;

(i i i) g(·) and f (·) are continuous on compact set A.
H2 max

1≤ j≤n

∣∣∑n
i=1 Wni (t j ) − 1

∣∣ = o(1);

H3 max
1≤ j≤n

∑n
i=1 |Wni (t j )|I (|ti − t j | > a) = o(1), ∀ a > 0;

H4 max
1≤ j≤n

∑n
i=1 |Wni (t j )| = O(1);
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H5 max
1≤i, j≤n

|Wni (t j )| = O(n−s(h(n))−r ), ∃ s > 0, r ≥ 1;

H
′
5 max
1≤i, j≤n

|Wni (t j )| = O(n−s(h(n))−r ), ∃ s > 0, r > 0.

Remark 2.1 (H1)(i) (with h(n) = 1) (ii) are some regular conditions, which are
assumed in Gao et al. (1994), Chen et al. (1998), Baek and Liang (2006) and so on.
Moreover, it can be deduced from (H1)(i) (or (i)

′
) (ii) here that

S−2
n

n∑

i=1

|x̃i | ≤ C, T −2
n

n∑

i=1

|ai x̃i | ≤ C. (2.3)

Remark 2.2 Remark 2.3 in Baek and Liang (2006) mentioned that the following two
weight functions satisfy assumptions (H2)–(H5)with h(n) = log n, s = 1

2 and r = 1:

W (1)
ni (t) = 1

hn

∫ si

si−1

K

(
t − s

hn

)
ds,

W (2)
ni (t) = K

(
t − ti

hn

)⎡

⎣
n∑

j=1

K

(
t − t j

hn

)⎤

⎦
−1

,

where si = (ti + ti+1)/2, i = 1, 2, . . . , n − 1, s0 = 0, sn = 1, 0 ≤ t1 ≤ t2 ≤
· · · ≤ tn ≤ 1, K (·) is the Parzen-Rosenblatt kernel function, and hn is a bandwidth
parameter.

2.2 Consistency

Let {ei , i ≥ 1} be a sequence of mean zero WOD random errors with dominating
coefficient h(n), which is stochastically dominated by a random variable e, that is

P(|ei | > x) ≤ C P(|e| > x)

for all x ≥ 0, n ≥ 1 and some C > 0.

Theorem 2.1 (mean consistency) Let p > 0. Suppose that conditions (H1)(i, ii, iii)
and (H2)–(H5) hold. If Ee2 < ∞ for 0 < p ≤ 2 or E |e|p < ∞ for p > 2, then

lim
n→∞ E |β̂n − β|p = 0, (2.4)

lim
n→∞ E |β̃n − β|p = 0. (2.5)

In addition, if max1≤ j≤n
∣∣∑n

i=1 Wni (t j )xi
∣∣ = O(1), then

lim
n→∞ max

1≤i≤n
E |ĝn(ti ) − g(ti )|p = 0, (2.6)

lim
n→∞ max

1≤i≤n
E |g̃n(ti ) − g(ti )|p = 0. (2.7)
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In particular, if h(n) is a constant function, we can get the following corollary by
Theorem 2.1.

Corollary 2.1 Let p > 0. Assume that {ei , i ≥ 1} be a sequence of END random
errors with mean zero. Suppose that conditions (H1)–(H5) hold with h(n) = 1. If
supi Ee2i < ∞ for 0 < p ≤ 2 or supi E |ei |p < ∞ for p > 2, then (2.4) and (2.5)
hold. In addition, if max1≤ j≤n

∣∣∑n
i=1 Wni (t j )xi

∣∣ = O(1), then (2.6) and (2.7) hold.

Remark 2.3 Under the NA sequence and conditions (H1)–(H5) with h(n) = 1 and
s = 1/2, Zhou and Hu (2010) obtained results (2.4)–(2.7) under supi E |ei |p < ∞
for some p > 2, while Corollary 2.1 in our paper gives these results for some p > 0.
Since NA sequence is END, we extend Theorem 2.1 of Zhou and Hu (2010) to the
case of END sequence. Furthermore, s > 0 in condition (H5) of Corollary 2.1 is more
general than s = 1/2 in Theorem 2.1 of Zhou and Hu (2010).

The next theorem gives the strong consistency of estimators under some analogous
conditions.

Theorem 2.2 (strong consistency) Suppose that conditions (H1) (i
′
, ii, iii), (H2)–(H4)

and (H
′
5) hold. If Ee2 < ∞ and

∑n
i=1 i−s(h(i))−r = O(ns) for some s > 0 and

r > 0, then

β̂n → β a.s., n → ∞, (2.8)

β̃n → β a.s., n → ∞. (2.9)

In addition, if max1≤ j≤n
∣∣∑n

i=1 Wni (t j )xi
∣∣ = O(1), then

max
1≤i≤n

|ĝn(ti ) − g(ti )| → 0 a.s., n → ∞, (2.10)

max
1≤i≤n

|g̃n(ti ) − g(ti )| → 0 a.s., n → ∞. (2.11)

Remark 2.4 Since h(i) ≥ 1,
∑n

i=1 i−s(h(i))−r = O(ns) in Theorem 2.2 always
holds as long as s ≥ 1/2 and r > 0.

Particularly, if h(n) is a constant function and s = 1/2 in Theorem 2.2, we can get
the following corollary.

Corollary 2.2 Assume that {ei , i ≥ 1} be a sequence of mean zero END random
errors, which is stochastically dominated by a random variable e. Suppose that condi-
tions (H1)–(H5) hold with s = 1/2, h(n) = 1. If Ee2 < ∞, then (2.8) and (2.9) hold.
In addition, if max1≤ j≤n

∣∣∑n
i=1 Wni (t j )xi

∣∣ = O(1), then (2.10) and (2.11) hold.

Remark 2.5 Under mean zero NA random errors, Theorem 2.1 of Baek and Liang
(2006) gave the results (2.8)–(2.11) under the conditions (H1)–(H5) with s = 1/2,
h(n) = 1 and supi E |ei |p < ∞ for some p > 2. Compared with it, Corollary 2.2 (i)
extends the case of NA random variables to END random variables; (ii) lowers the
order of the moment from p > 2 to 2.
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2.3 Simulation

In this section, we will carry out a numerical simulation to study the consistency of
LSE for β and g(·). The data is generated from the model (1.3). Choose σi = 1, xi =
(−1)i i

n , i = 1, 2, . . . , n. We take random error vector (e1, e2, . . . , en)
′ ∼ N (0, �),

where 0 is a zero column vector, and

�=

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
2 + ν2 −ν 0 . . . 0 0 0
−ν 1

2 + ν2 −ν . . . 0 0 0
0 −ν 1

2 + ν2 . . . 0 0 0
...

...
...

...
...

...
...

0 0 0 . . . 1
2 + ν2 −ν 0

0 0 0 . . . −ν 1
2 + ν2 −ν

0 0 0 . . . 0 −ν 1
2 + ν2

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

n×n

, ν = 0.1.

It is obvious that e1, e2, . . . , en generated as the above method are NA by Joag-Dev
and Proschan (1983), which is a special case of WOD (h(n) = 1). Especially, we
choose the nearest neighbor weights to be weight functions Wni (·). Without loss of
generality, let A = [0, 1] and ti = i

n , i = 1, 2, . . . , n. For any t ∈ A, we rewrite
|t1 − t |, |t2 − t |, . . . , |tn − t | as follows

|tR1(t) − t | ≤ |tR2(t) − t | ≤ · · · ≤ |tRn(t) − t |,

if |ti − t | = |t j − t |, |ti − t | is permuted before |t j − t | if i < j . Let kn = 
n0.6� and
define the nearest neighbor weight functions as follows

Wni (t) =
{

1
kn

, if |ti − t | ≤ |tRkn (t) − t |,
0, otherwise.

For any t = ti , i = 1, 2, . . . , n, it is easily checked that

n∑

i=1

Wni (t) =
n∑

i=1

Wn Ri (t)(t) =
kn∑

i=1

1

kn
= 1,

max
1≤i≤n

Wni (t) = 1

kn
≤ Cn−0.6,

n∑

i=1

Wni (t)I (|ti − t | > a) ≤
n∑

i=1

Wni (t)
(ti − t)2

a2

≤
kn∑

i=1

(tRi (t) − t)2

kna2 ≤
kn∑

i=1

(i/n)2

kna2
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−

β

Fig. 1 Boxplots of β̂n − β with β = 2, t = 1/n, g(t) = t2

≤
(

kn

na

)2

≤ C

n0.8 ,

∣∣∣∣∣

n∑

i=1

Wni (t)xi

∣∣∣∣∣ ≤
n∑

i=1

Wni (t) = 1,

which imply that the assumptions in our results are satisfied. Next, we compute β̂n −β

and ĝn(t) − g(t) for 1000 times and obtain the corresponding boxplots by taking
t = 1

n , 100
n and the sample sizes n as 200, 400, 800, 1400, 3400 respectively when β

and g(t) are in two different forms.

Case 1 β = 2, g(t) = t2.
Case 2 β = 3, g(t) = sin t .

In Figs. 1, 2, 3, 4, 5, 6, 7 and 8, β̂n − β and ĝn(t) − g(t), regardless of the values
of t , fluctuate to zero and the variation ranges decrease markedly as the sample size n
increases. These verify the validity of our results.

3 Proof of main results

It is easy to see that

β̂n − β = S−2
n

⎡

⎣
n∑

i=1

σi x̃i ei −
n∑

i=1

x̃i

⎛

⎝
n∑

j=1

Wnj (ti )σ j e j

⎞

⎠ +
n∑

i=1

x̃i g̃(ti )

⎤

⎦ ,

(3.1)
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Fig. 2 Boxplots of ĝn(t) − g(t) with β = 2, t = 1/n, g(t) = t2
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Fig. 3 Boxplots of β̂n − β with β = 2, t = 100/n, g(t) = t2

β̃n − β = T −2
n

⎡

⎣
n∑

i=1

aiσi x̃i ei −
n∑

i=1

ai x̃i

⎛

⎝
n∑

j=1

Wnj (ti )σ j e j

⎞

⎠ +
n∑

i=1

ai x̃i g̃(ti )

⎤

⎦,

(3.2)

ĝn(ti ) − g(ti ) =
n∑

j=1

Wnj (ti )σ j e j − (β̂n − β)

n∑

j=1

Wnj (ti )x j − g̃(ti ), (3.3)
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Fig. 4 Boxplots of ĝn(t) − g(t) with β = 2, t = 100/n, g(t) = t2
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Fig. 5 Boxplots of β̂n − β with β = 3, t = 1/n, g(t) = sint

g̃n(ti ) − g(ti ) =
n∑

j=1

Wnj (ti )σ j e j − (β̃n − β)

n∑

j=1

Wnj (ti )x j − g̃(ti ), (3.4)

where g̃(ti ) = g(ti ) − ∑n
j=1 Wnj (ti )g(t j ).
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Fig. 6 Boxplots of ĝn(t) − g(t) with β = 3, t = 1/n , g(t) = sint
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Fig. 7 Boxplots of β̂n − β with β = 3, t = 100/n, g(t) = sint

Proof of Theorem 2.1 We only prove (2.5) and (2.7), as the proofs of (2.4) and (2.6)
are respectively analogous. Denote

H1n = T −2
n

n∑

i=1

aiσi x̃i ei , H2n = T −2
n

n∑

i=1

ai x̃i

⎛

⎝
n∑

j=1

Wnj (ti )σ j e j

⎞

⎠ ,

H3n = T −2
n

n∑

i=1

ai x̃i g̃(ti ).
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Fig. 8 Boxplots of ĝn(t) − g(t) with β = 3, t = 100/n , g(t) = sint

From (3.2) and Cr inequality, we have

E |β̃n − β|p ≤ C(E |H1n|p + E |H2n|p + E |H3n|p). (3.5)

Note that H1n = ∑n
i=1(T

−2
n aiσi x̃i )ei

.= ∑n
i=1 bni ei , and

max
1≤i≤n

|bni | ≤ max
1≤i≤n

|ai x̃i |
Tn

· max
1≤i≤n

σi · 1

Tn
= O(n−1/2(h(n))−r ), (3.6)

n∑

i=1

|bni | ≤
n∑

i=1

|ai x̃i |
T 2

n
· max
1≤i≤n

σi = O(1), (3.7)

by H1(i, i i) and (2.3). Hence, we obtain by Lemma A.1 that

lim
n→∞ E |H1n|p = 0. (3.8)

Observe that H2n = ∑n
j=1

(∑n
i=1 T −2

n ai x̃i Wnj (ti )σ j
)

e j
.= ∑n

j=1 dnj e j , and

max
1≤ j≤n

|dnj | ≤ max
1≤ j≤n

σ j · max
1≤i, j≤n

|Wnj (ti )| ·
n∑

i=1

|ai x̃i |
T 2

n
= O(n−s(h(n)−r )), (3.9)

n∑

j=1

|dnj | ≤
n∑

j=1

∣∣∣∣∣

n∑

i=1

T −2
n ai x̃i Wnj (ti )σ j

∣∣∣∣∣ ≤
n∑

i=1

n∑

j=1

σ j |Wnj (ti )| |ai x̃i |
T 2

n

≤ max
1≤ j≤n

σ j · max
1≤i≤n

n∑

j=1

|Wnj (ti )| ·
n∑

i=1

|ai x̃i |
T 2

n
= O(1), (3.10)
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by H1(i i), H5 and (2.3). Therefore, we have by Lemma A.1 that

lim
n→∞ E |H2n|p = 0. (3.11)

We now discuss H3n . It follows from H1(i i i), H2, H3 and H4 that

H3n ≤
(
max
1≤i≤n

|g̃(ti )|
)(

T −2
n

n∑

i=1

|ai x̃i |
)

and

max
1≤i≤n

|g̃(ti )| ≤ max
1≤i≤n

|g(ti )|
∣∣∣∣∣∣

n∑

j=1

Wnj (ti ) − 1

∣∣∣∣∣∣

+ max
1≤i≤n

n∑

j=1

|Wnj (ti )||g(ti ) − g(t j )|I (|ti − t j | > a)

+ max
1≤i≤n

n∑

j=1

|Wnj (ti )||g(ti ) − g(t j )|I (|ti − t j | ≤ a)

= o(1). (3.12)

So, we can obtain by (3.12) and (2.3) that

lim
n→∞ E |H3n|p = 0,

which, together with (3.5), (3.8) and (3.11), yields (2.5).
Now we turn to prove (2.7). It can be seen by (3.4) that

max
1≤i≤n

E |g̃n(ti ) − g(ti )|p

≤ C max
1≤i≤n

E

∣∣∣∣∣∣

n∑

j=1

Wnj (ti )σ j e j

∣∣∣∣∣∣

p

+ C max
1≤i≤n

∣∣∣∣∣∣

n∑

j=1

Wnj (ti )x j

∣∣∣∣∣∣

p

E |β̃n − β|p

+ C max
1≤i≤n

|g̃(ti )|p

.= Q1n + Q2n + Q3n . (3.13)

We can obtain from H1(i i), H4 and H5 that Q1n → 0, n → ∞ by applying
Lemma A.1. From (2.5) and the assumption max1≤ j≤n

∣∣∑n
i=1 Wni (t j )xi

∣∣ = O(1),
we can get Q2n → 0, n → ∞. Q3n → 0, n → ∞ follows from (3.12). Therefore,
the desired result (2.7) follows from (3.13) and Q1n → 0, Q2n → 0, Q3n → 0,
n → ∞. This completes the proof of the theorem. ��
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Proof of Theorem 2.2 Using the notations in the proof of Theorem 2.1, we know that

β̃n − β = H1n + H2n + H3n .

Applying Lemma A.2, we have by (3.6) and (3.7) that H1n → 0 a.s., n → ∞.

Likewise, by (3.9) and (3.10), H2n → 0 a.s., n → ∞. From (2.3) and (3.12), we can
easily obtain that

H3n ≤
(
max
1≤i≤n

|g̃(ti )|
)(

T −2
n

n∑

i=1

ai x̃i

)
→ 0, n → ∞.

So (2.9) is proved. It follows from (3.4) that

max
1≤i≤n

|g̃n(ti ) − g(ti )|

≤ C max
1≤i≤n

∣∣∣∣∣∣

n∑

j=1

Wnj (ti )σ j e j

∣∣∣∣∣∣
+ C max

1≤i≤n

∣∣∣∣∣∣

n∑

j=1

Wnj (ti )x j

∣∣∣∣∣∣
|β̃n − β|

+ C max
1≤i≤n

|g̃(ti )|
.= R1n + R2n + R3n . (3.14)

From H1(i i), H4 and H5, we obtain that R1n → 0 a.s., n → ∞ by applying
Lemma A.2. According to (2.9) and the assumption max1≤ j≤n

∣∣∑n
i=1 Wni (t j )xi

∣∣ =
O(1), we can get R2n → 0 a.s., n → ∞. R3n → 0, n → ∞ follows from
(3.12). Therefore, the desired result (2.11) follows from (3.14) and R1n → 0 a.s.,
R2n → 0 a.s., R3n → 0, n → ∞. The proof is completed. ��
Acknowledgements The authors are grateful to the Referee for carefully reading the manuscript and for
providing helpful comments and constructive criticism which enabled them to improve the paper.

Appendix

Lemma A.1 Let p > 0 and {Xn, n ≥ 1} be a sequence of zero mean WOD random
variables with dominating coefficient h(n), which is stochastically dominated by a
random variable X. Assume that {ani (·), 1 ≤ i ≤ n, n ≥ 1} is a function array
defined on compact set A satisfying

max
1≤ j≤n

n∑

i=1

|ani (z j )| = O(1) (3.15)

and

max
1≤i, j≤n

|ani (z j )| = O(n−α(h(n))−β), ∃ α > 0, β ≥ 1. (3.16)
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If E X2 < ∞ for 0 < p ≤ 2, then

lim
n→∞ max

1≤ j≤n
E

∣∣∣∣∣

n∑

i=1

ani (z j )Xi

∣∣∣∣∣

p

= 0. (3.17)

If E |X |p < ∞ for p > 2, then (3.17) still holds.

Remark A.1 LemmaA.1 also holdswhen themoment condition E X2 < ∞ is changed
to supi E X2

i < ∞, E |X |p < ∞ is changed to supi E |Xi |p < ∞ and the condition
of stochastic domination is deleted. Under the similar modification, Theorem 2.1 also
holds true.

Proof of Lemma A.1 Without loss of generality, we can assume that ani (z j ) > 0.
If 0 < p ≤ 2, by Jensen’s inequality, Marcinkiewicz-Zygmund-type inequality

(one can refer to Wang et al. (2014) for instance), (3.15), (3.16) and E X2 < ∞, we
have

max
1≤ j≤n

E

∣∣∣∣∣

n∑

i=1

ani (z j )Xi

∣∣∣∣∣

p

≤ C
(

E X2
)p/2

(
h(n) max

1≤i, j≤n
ani (z j )

)p/2
(

max
1≤ j≤n

n∑

i=1

ani (z j )

)p/2

≤ Cn−αp/2(h(n))(1−β)p/2 → 0, n → ∞.

If p > 2, we denote

X j
ni = n1/p(h(n))β/pani (z j )Xi ,

thus, we only need to prove

1

n(h(n))β
max
1≤ j≤n

E

∣∣∣∣∣

n∑

i=1

X j
ni

∣∣∣∣∣

p

→ 0, n → ∞.

For any t > 0, denote

Y j
ni = −t1/p I (X j

ni < −t1/p) + X j
ni I (|X j

ni | ≤ t1/p) + t1/p I (X j
ni > t1/p),

Z j
ni = (X j

ni + t1/p)I (X j
ni < −t1/p) + (X j

ni − t1/p)I (X j
ni > t1/p).

For fixed t > 0 and 1 ≤ j ≤ n, we can see that {Y j
ni , 1 ≤ i ≤ n, n ≥ 1} and

{Z j
ni , 1 ≤ i ≤ n, n ≥ 1} are both arrays of rowwise WOD random variables. Noting

that X j
ni = Y j

ni − EY j
ni + Z j

ni − E Z j
ni , we have
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1

n(h(n))β
max
1≤ j≤n

E

∣∣∣∣∣

n∑

i=1

X j
ni

∣∣∣∣∣

p

= 1

n(h(n))β
max
1≤ j≤n

[∫ nε

0
P

(∣∣∣∣∣

n∑

i=1

X j
ni

∣∣∣∣∣

p

> t

)
dt

+
∫ ∞

nε

P

(∣∣∣∣∣

n∑

i=1

X j
ni

∣∣∣∣∣

p

> t

)
dt

]

≤ ε + 1

n(h(n))β
max
1≤ j≤n

∫ ∞

nε

P

(∣∣∣∣∣

n∑

i=1

(
Y j

ni − EY j
ni

)∣∣∣∣∣ > t1/p/2

)
dt

+ 1

n(h(n))β
max
1≤ j≤n

∫ ∞

nε

P

(∣∣∣∣∣

n∑

i=1

(
Z j

ni − E Z j
ni

)∣∣∣∣∣ > t1/p/2

)
dt

.= ε + I1 + I2. (3.18)

First, we prove I2 → 0, n → ∞. Note that

max
1≤ j≤n

max
t>nε

∣∣∣∣∣t
−1/p

n∑

i=1

E Z j
ni

∣∣∣∣∣ ≤ Cn−1 max
1≤ j≤n

n∑

i=1

E |X j
ni |p I

(
|X j

ni | > (nε)1/p
)

≤ C(h(n))β max
1≤ j≤n

n∑

i=1

a p
ni (z j )E |Xi |p

≤ C E |X |p(h(n))β max
1≤i, j≤n

a p−1
ni (z j ) max

1≤ j≤n

n∑

i=1

ani (z j )

≤ Cn−α(p−1)(h(n))−β(p−2)E |X |p → 0, n → ∞.

Hence, for any t > nε and all n large enough, we have max1≤ j≤n

∣∣∣
∑n

i=1 E Z j
ni

∣∣∣ ≤
t1/p/4, which implies that for all n large enough,

I2 ≤ 1

n(h(n))β
max
1≤ j≤n

∫ ∞

nε

P

(∣∣∣∣∣

n∑

i=1

Z j
ni

∣∣∣∣∣ > t1/p/4

)
dt

≤ 1

n(h(n))β
max
1≤ j≤n

n∑

i=1

∫ ∞

nε

P
(
|X j

ni | > t1/p
)

dt

≤ 1

n(h(n))β
max
1≤ j≤n

n∑

i=1

E |X j
ni |p I (|X j

ni |p > nε)

≤ max
1≤ j≤n

n∑

i=1

a p
ni (z j )E |Xi |p ≤ C E |X |p max

1≤i, j≤n
a p−1

ni (z j ) max
1≤ j≤n

n∑

i=1

ani (z j )

≤ C E |X |pn−α(p−1)(h(n))−β(p−1) → 0, n → ∞. (3.19)
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Next, we will show that I1 → 0, n → ∞. Taking q > p, we have by Markov’s
inequality and Rosenthal-type inequality (one can refer to Wang et al. (2014) for
instance) that

I1 ≤ C

n(h(n))β
max
1≤ j≤n

∫ ∞

nε

t−q/p E

∣∣∣∣∣

n∑

i=1

(
Y j

ni − EY j
ni

)∣∣∣∣∣

q

dt

≤ C

n(h(n))β
max
1≤ j≤n

∫ ∞

nε

t−q/p
n∑

i=1

E |Y j
ni |qdt

+ Ch(n)

n(h(n))β
max
1≤ j≤n

∫ ∞

nε

t−q/p

(
n∑

i=1

E
(

Y j
ni

)2
)q/2

dt

.= I11 + I12. (3.20)

According to the definition of Y j
ni , we have

I11 ≤ C

n(h(n))β
max
1≤ j≤n

∫ ∞

nε

t−q/p
n∑

i=1

E |X j
ni |q I

(
|X j

ni | ≤ t1/p
)

dt

+ C

n(h(n))β
max
1≤ j≤n

∫ ∞

nε

n∑

i=1

P
(
|X j

ni | > t1/p
)

dt

.= I111 + I112. (3.21)

In view of the proof of I2, we can get that I112 → 0, n → ∞. Next, we estimate the
limit of I111 as n → ∞. It is easy to check that

I111 ≤ C

n(h(n))β
max
1≤ j≤n

∫ ∞

nε

t−q/p
n∑

i=1

E |X j
ni |q I

(
|X j

ni |p ≤ (n + 1)ε
)

dt

+ C

n(h(n))β
max
1≤ j≤n

∫ ∞

nε

t−q/p
n∑

i=1

E |X j
ni |q I

(
(n + 1)ε < |X j

ni |p ≤ t
)

dt

= C

n(h(n))β
max
1≤ j≤n

∫ ∞

nε

t−q/p
n∑

i=1

E |X j
ni |q I

(
|X j

ni |p ≤ (n + 1)ε
)

dt

+ C

n(h(n))β
max
1≤ j≤n

∫ ∞

(n+1)ε
t−q/p

n∑

i=1

E |X j
ni |q I

(
(n + 1)ε < |X j

ni |p ≤ t
)

dt

.= I
′
111 + I

′′
111. (3.22)
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Similar to the proof of (3.19), we have

I
′
111 ≤ C

n(h(n))β
max
1≤ j≤n

n∑

i=1

E |X j
ni |p I

(
|X j

ni |p ≤ (n + 1)ε
)

≤ C max
1≤ j≤n

n∑

i=1

a p
ni (z j )E |Xi |p → 0, n → ∞, (3.23)

and

I
′′
111 = C

n(h(n))β
max
1≤ j≤n

∞∑

m=n+1

∫ (m+1)ε

mε

t−q/p
n∑

i=1

E |X j
ni |q I ((n + 1)ε < |X j

ni |p

≤ t)dt

≤ C

n(h(n))β
max
1≤ j≤n

∞∑

m=n+1

m−q/p
n∑

i=1

E |X j
ni |q I ((n + 1)ε < |X j

ni |p ≤ (m + 1)ε)

= C

n(h(n))β
max
1≤ j≤n

∞∑

m=n+1

m−q/p
n∑

i=1

m∑

k=n+1

E |X j
ni |q I (kε < |X j

ni |p ≤ (k + 1)ε)

≤ C

n(h(n))β
max
1≤ j≤n

n∑

i=1

∞∑

k=n+1

k1−q/p E |X j
ni |q I (kε < |X j

ni |p ≤ (k + 1)ε)

≤ C

n(h(n))β
max
1≤ j≤n

n∑

i=1

E |X j
ni |p → 0, n → ∞, (3.24)

which imply that I111 → 0, n → ∞. Noting that p > 2, β ≥ 1 and E X2 < ∞, we
have

I12 ≤ Ch(n)

n(h(n))β
max
1≤ j≤n

∫ ∞

nε

t−q/p

(
n∑

i=1

E
(

X j
ni

)2
I
(
|X j

ni | ≤ t1/p
)

+
n∑

i=1

t2/p P
(
|X j

ni | > t1/p
))q/2

dt

≤ C

n
max
1≤ j≤n

∫ ∞

nε

t−q/p

(
n∑

i=1

E
(

X j
ni

)2
)q/2

dt

≤ C

n
n1−q/p max

1≤ j≤n

(
n∑

i=1

E
(

n1/p(h(n))β/pani (z j )Xi

)2
)q/2

≤ C(E X2)q/2n−αq/2(h(n))(1/p−1/2)βq → 0, n → ∞. (3.25)

The proof is completed. ��
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Lemma A.2 Let {Xn, n ≥ 1} be a sequence of zero mean WOD random variables with
dominating coefficient h(n), which is stochastically dominated by a random variable
X. Assume that {ani (·), 1 ≤ i ≤ n, n ≥ 1} is a function array defined on compact set
A satisfying

max
1≤ j≤n

n∑

i=1

|ani (z j )| = O(1) (3.26)

and

max
1≤i, j≤n

|ani (z j )| = O(n−α(h(n))−β), ∃ α > 0, β > 0. (3.27)

If E X2 < ∞ and
∑n

i=1 i−α(h(i))−β = O(nα) for some α > 0 and β > 0, then

max
1≤ j≤n

∣∣∣∣∣

n∑

i=1

ani (z j )Xi

∣∣∣∣∣ → 0 a.s., n → ∞. (3.28)

Proof Without loss of generality, we can assume that ani (z j ) > 0.
For any ε > 0, choose 0 < δ < α/2 and large N ≥ 1, which will be specialized

later. Denote Xni ( j) = ani (z j )Xi , and

Y (1)
ni ( j) = −n−δ(h(n))−β/4 I

(
Xni ( j) < −n−δ(h(n))−β/4

)

+ Xni ( j)I
(
|Xni ( j)| ≤ n−δ(h(n))−β/4

)

+ n−δ(h(n))−β/4 I
(

Xni ( j) > n−δ(h(n))−β/4
)

,

Y (2)
ni ( j) =

(
Xni ( j) + n−δ(h(n))−β/4

)
I
(

Xni ( j) ≤ − ε

N
(h(n))−β/4

)

+
(

Xni ( j) − n−δ(h(n))−β/4
)

I
(

Xni ( j) ≥ ε

N
(h(n))−β/4

)
,

Y (3)
ni ( j) =

(
Xni ( j) − n−δ(h(n))−β/4

)
I
(

n−δ(h(n))−β/4 ≤ Xni ( j) <
ε

N
(h(n))−β/4

)
,

Y (4)
ni ( j) =

(
Xni ( j) + n−δ(h(n))−β/4

)
I
(
− ε

N
(h(n))−β/4

)
< Xni ( j)

≤ −n−δ
(

h(n))−β/4
)

.

Then

max
1≤ j≤n

∣∣∣∣∣

n∑

i=1

ani (z j )Xi

∣∣∣∣∣ ≤ max
1≤ j≤n

∣∣∣∣∣

n∑

i=1

Y (1)
ni ( j)

∣∣∣∣∣ + max
1≤ j≤n

∣∣∣∣∣

n∑

i=1

Y (2)
ni ( j)

∣∣∣∣∣

+ max
1≤ j≤n

∣∣∣∣∣

n∑

i=1

Y (3)
ni ( j)

∣∣∣∣∣ + max
1≤ j≤n

∣∣∣∣∣

n∑

i=1

Y (4)
ni ( j)

∣∣∣∣∣
.= J1 + J2 + J3 + J4. (3.29)
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To prove (3.28), it suffices to show Ji → 0 a.s., n → ∞, i = 1, 2, 3, 4. We first
prove J1 → 0 a.s., n → ∞. For each j , we know that {Y (1)

ni ( j), 1 ≤ i ≤ n, n ≥ 1} is
still an array of rowwise WOD random variables. In view of E Xi = 0, (3.26), (3.27)
and E X2 < ∞, we get

max
1≤ j≤n

∣∣∣∣∣

n∑

i=1

EY (1)
ni ( j)

∣∣∣∣∣

≤ max
1≤ j≤n

n∑

i=1

[
E |Xni ( j)|I

(
|Xni ( j)| > n−δ(h(n))−β/4

)

+ n−δ(h(n))−β/4P
(
|Xni ( j)| > n−δ(h(n))−β/4

)]

≤ 2 max
1≤ j≤n

n∑

i=1

E |Xni ( j)|I
(
|Xni ( j)| > n−δ(h(n))−β/4

)

≤ C max
1≤ j≤n

nδ(h(n))β/4
n∑

i=1

E |Xni ( j)|2 I
(|Xni ( j)| > n−δ(h(n))β

)

≤ Cnδ(h(n))β/4 · max
1≤ j≤n

n∑

i=1

ani (z j ) · max
1≤i, j≤n

ani (z j ) · E X2

≤ Cnδ−α(h(n))−3β/4E X2 → 0, n → ∞.

Hence, for all n large enough, max
1≤ j≤n

∣∣∣
∑n

i=1 EY (1)
ni ( j)

∣∣∣ < ε
2 . Applying Markov’s

inequality and Rosenthal-type inequality, and taking

q > max

{
2(δ + 1) − α

δ
,
4

α
,
2

β
, 2

}
,

we have

∞∑

n=1

P

(
max
1≤ j≤n

∣∣∣∣∣

n∑

i=1

Y (1)
ni ( j)

∣∣∣∣∣ > ε

)

≤ C
∞∑

n=1

P

(
max
1≤ j≤n

∣∣∣∣∣

n∑

i=1

(
Y (1)

ni ( j) − EY (1)
ni ( j)

)∣∣∣∣∣ >
ε

2

)

≤ C
∞∑

n=1

n∑

j=1

P

(∣∣∣∣∣

n∑

i=1

(
Y (1)

ni ( j) − EY (1)
ni ( j)

)∣∣∣∣∣ >
ε

2

)

≤ C
∞∑

n=1

n∑

j=1

[
n∑

i=1

E
∣∣∣Y (1)

ni ( j)
∣∣∣
q + h(n)

n∑

i=1

(
E
∣∣∣Y (1)

ni ( j)
∣∣∣
2
)q/2

]

.= J11 + J12. (3.30)
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Note that

J11 ≤
∞∑

n=1

n∑

j=1

n∑

i=1

[
n−δq(h(n))−

βq
4 P

(
|Xni ( j)| > n−δ(h(n))−

β
4

)

+ E |Xni ( j)|q I
(
|Xni ( j)| ≤ n−δ(h(n))−

β
4

)]

≤ C
∞∑

n=1

n∑

j=1

n∑

i=1

n−δ(q−2)(h(n))−β(q−2)/4E |Xni ( j)|2

≤ C E X2
∞∑

n=1

n1−α−δ(q−2)(h(n))−β(q+2)/4 < ∞, (3.31)

and

J12 ≤ C
∞∑

n=1

n∑

j=1

h(n)

(
n∑

i=1

E |Xni ( j)|2
)q/2

≤ C(E X2)q/2
∞∑

n=1

n1−αq/2(h(n))1−βq/2 < ∞. (3.32)

We can see that J1 → 0 a.s., n → ∞ by (3.30)–(3.32) and the Borel–Cantelli Lemma.
Next we turn to estimate J2. It follows from (3.27) that

max
1≤ j≤n

∣∣∣∣∣

n∑

i=1

Y (2)
ni ( j)

∣∣∣∣∣ ≤ C max
1≤ j≤n

n∑

i=1

|Xni ( j)| I
(
|Xni ( j)| ≥ ε

N
(h(n))−β/4

)

≤ Cn−α(h(n))−β
n∑

i=1

|Xi |I
(
|Xi | ≥ Cnα(h(n))β(h(n))−β/4

)

≤ Cn−α(h(n))−β
n∑

i=1

|Xi |I (|Xi | ≥ Ciα). (3.33)

Hence, to prove J2 → 0 a.s., n → ∞, we only need to show

∞∑

i=1

i−α(h(i))−β |Xi |I (|Xi | ≥ Ciα) < ∞ a.s.. (3.34)

It can be checked by
∑n

i=1 i−α(h(i))−β = O(nα) and E X2 < ∞ that

∞∑

i=1

i−α(h(i))−β E |Xi |I (|Xi | ≥ Ciα)

≤ C
∞∑

i=1

i−α(h(i))−β
∞∑

n=i

E |X |I (Cnα ≤ |X | < C(n + 1)α)
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≤ C
∞∑

n=1

nα E |X |I (Cnα ≤ |X | < C(n + 1)α),

≤ C E X2 < ∞, (3.35)

which implies that (3.34) holds. Consequently, according to (3.33), (3.34) and Kro-
necker’s lemma, J2 → 0 a.s., n → ∞.

From the definition of Y (3)
ni ( j), we know that

0 ≤ Y (3)
ni ( j) <

ε

N
(h(n))−β/4 − n−δ(h(n))−β/4 <

ε

N
.

Therefore, by taking N > max
{

2
α−2δ ,

2
β

}
, we have

∞∑

n=1

P

(
max
1≤ j≤n

∣∣∣∣∣

n∑

i=1

Y (3)
ni ( j)

∣∣∣∣∣ > ε

)

≤
∞∑

n=1

n∑

j=1

P
(
there are at least N’s nonzero Y (3)

ni ( j)
)

≤
∞∑

n=1

n∑

j=1

∑

1≤k1<···<kN ≤n

P
(

Xn,k1( j) ≥ n−δ(h(n))−β/4, . . . , Xn,kN ( j) ≥ n−δ(h(n))−β/4
)

≤
∞∑

n=1

n∑

j=1

∑

1≤k1<···<kN ≤n

h(n)

N∏

i=1

P
(

Xn,ki ( j) ≥ n−δ(h(n))−β/4
)

≤
∞∑

n=1

n∑

j=1

h(n)

(
n∑

i=1

P
(
|Xni ( j)| ≥ n−δ(h(n))−β/4

))N

≤
∞∑

n=1

n∑

j=1

h(n)

(
n∑

i=1

n2δ(h(n))β/2E |Xni ( j)|2
)N

≤ C(E X2)N
∞∑

n=1

n1−(α−2δ)N (h(n))1−βN/2 < ∞.

Hence, from the Borel–Cantelli lemma, we can obtain J3 → 0 a.s. n → ∞. Note
that

− ε

N
< − ε

N
(h(n))−β/4 + n−δ/4(h(n))−β < Y (4)

ni ( j) ≤ 0.

Similar to the proof of J3, we have J4 → 0 a.s. n → ∞. This completes the proof of
lemma. ��
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