
Metrika (2018) 81:423–443
https://doi.org/10.1007/s00184-018-0649-0

An algebraic generalisation of some variants of simple
correspondence analysis

Eric J. Beh1 · Rosaria Lombardo2

Received: 11 June 2017 / Published online: 12 March 2018
© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Abstract For an analysis of the association between two categorical variables that are
cross-classified to form a contingency table, graphical procedures have been central to
this analysis. In particular, correspondence analysis has grown to be a popular method
for obtaining such a summary and there is a great variety of different approaches that
one may consider to perform. In this paper, we shall introduce a simple algebraic gen-
eralisation of some of the more common approaches to obtaining a graphical summary
of association, where these approaches are akin to the correspondence analysis of a
two-way contingency table. Specific cases of the generalised procedure include the
classical and non-symmetrical correspondence plots and the symmetrical and isomet-
ric biplots.
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1 Introduction

When analysing the association between two categorical variables that form a contin-
gency table, there are typically two important aspects that one should consider. Firstly,
the analyst can identify the strength of the association between the variables. This may
be conducted by considering standard statistical tests such as Pearson’s chi-squared
test of independence. Secondly, where a statistically significant association is detected,
one may determine those categories within and between the variables that are simi-
lar or different in terms of the conditional distribution of the cell counts. Graphical
summaries provide a very simple and intuitive way to view these two characteristics.
However different types of graphical summaries used to visualise this association (or
lack of it) can lead to different conclusions about the way in which the variables are
related.

There aremany relatively sophisticatedways to visualise the association in two-way
contingency tables. Some of the more popular approaches include using various types
of biplots. One may consider, for example, the relatively recent extensive discussions
of biplots by Gower et al. (2011) and Greenacre (2010a). One may also construct plots
from any one of the many members of the correspondence analysis family; see Beh
and Lombardo (2012, 2014) and Nishisato (2007) for an extensive and diverse list of
such members.

In this paper, a simple algebraic generalisation is proposed that incorporates, as spe-
cial cases, many aspects of correspondence analysis. Specifically, the generalisation
involves decomposing the matrix of standardised residuals, but can also be extended
to decompose other residuals and to incorporate other measures of association includ-
ing the tau index of Goodman and Kruskal (1954) and the Freeman–Tukey statistic
of Freeman and Tukey (1950). The most popular method of decomposition used is
singular value decomposition (SVD) and it is this method of decomposition that is
considered in this paper.However, there are others that can be incorporated into the pro-
posed algebraic generalisation including the bivariate moment decomposition (BMD)
used for graphically depicting the association between ordinal categorical variables;
see Beh (1997, 1998), Best (1995), Best et al. (1999, 2000), Lombardo et al. (2007,
2016). Another type of decomposition is the hybrid of SVD and BMD discussed by
Beh (2001) which Beh (2008) used to graphically analyse nominal-ordinal two-way
contingency tables.

Irrespective of the method of decomposition used, the purpose of decomposing the
residuals is to provide a mechanism for selecting a sub-set of dimensions from the
optimal number required to visualise the relationship between the variables. This is
achieved while maximising the association structure between the variables. Generally
one, two or at most three dimensions are enough for a simple visualisation of the
association structure. For a two-dimensional view of multi-dimensional data, many
graphical procedures can be used, including Andrew’s Curve Andrews (1972), Cher-
noff’s face Chernoff (1973), cobweb diagrams (Upton 2000, 2016) and the mosaic
display (Friendly 1994, 1999). Onemay also consider methods of constructing ellipti-
cal regions for simple correspondence analysis that can include information contained
in dimensions higher than the second; see Beh (2010). Alternatively, bootstrap tech-
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niques can be used for constructing such regions (Linting et al. 2007; Lombardo and
Ringrose 2012; Markus 1994; Ringrose 2012).

We must point out that discussing generalisatons in the context of correspondence
analysis are not new. For example, one may consider Choulakian (1988), De Leeuw
(1993), Lorenzo-Seva et al. (2009),Velden andKiers (2005) andYanai (1986) as exam-
ples of such generalisations. What makes these contributions to the correspondence
analysis literature different from what is described in this paper is that, in the past,
generalisations have focused on showing how viewing correspondence analysis from
a variety of perspectives leads to similar row/column scoring solutions. Our approach
provides a broad, yet relatively simple, algebraic generalisation that incorporates, as
special cases, the growing diversity of mathematical and graphical perspectives that
have been developed over the past few decades.

To derive the simple algebraic generalisation of visualising categorical variables,
this paper is divided into seven further sections. Section 2 defines the notation used
throughout the paper and describes the application of SVD on the matrix of stan-
dardised residuals, yielding the classic approach to correspondence analysis. An
unbalanced generalised framework for the analysis of two-way contingency tables
is given in Sect. 3 and special cases of these are described in Sect. 4. A balanced
generalised framework is discussed in Sect. 5 and special cases of it are looked at in
Sect. 6. Section 8 provides some further insight into how these generalisations may
be implemented. Some concluding remarks are made in Sect. 9.

2 Simple correspondence analysis

To begin our algebraic generalisation, we shall first briefly highlight some of the key
features of the correspondence analysis of a two-way contingency table. There are
a number of variations of correspondence analysis that can be considered, and our
generalisation incorporates some of the commonly used approaches.

For a r × c two-way contingency table N, denote its grand total by n. Also, denote
the matrix of joint proportions by P so that P = N/n. Let r be the vector of row
marginal proportions and c be the vector of column marginal proportions. Denote Dr

as the diagonal matrix of rowmarginal proportions such thatDr = diag (r). Similarly,
let Dc = diag (c).

Consider the decomposition of Pearson’s matrix of standardised residuals

Z = D−1/2
r

(
P − rc′)D−1/2

c = D∗ (Dλ, U, V) . (1)

The right hand side of (1), D∗ (•), denotes the type of decomposition used. For this
paper we will focus on the case where D∗ (•) is the SVD of Z, however other decom-
position methods may be considered. Two such alternatives are the Bivariate Moment
Decomposition (BMD) commonly used for two ordinal variable or theHybrid Decom-
position (HD) for a singly ordered two-way contingency table that combines specific
features of SVD and BMD into a single decomposition. When the standardised resid-
uals are considered, the total variation in the table can be quantified by
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X2 = n trace
[
ZZ′] = n trace

[
Z′Z

]
(2)

and has a chi-squared distribution with (r − 1) (c − 1) degrees of freedom. Note that,
for (1), P− rc′ is the difference between the observed proportions, P, and its expected
value under complete independence.

It is well known that the chi-squared statistic is proportional to the sample size. That
is, even if the association structure between the row and column variables remains
unchanged, the chi-squared statistic increases as the sample size increases. Therefore,
correspondence analysis focuses on X2/n as a measure of the strength of association
between the variables and refers to it as the total inertia of the contingency table.

To determine the subspace needed to visually represent the association between the
row and column variables, correspondence analysis is undertaken by applying SVD
to the matrix of standardised residuals such that

D∗ (Dλ, U, V) = UDλV′. (3)

Here U is a r × M matrix and V is a c × M matrix where M = min (r, c) − 1. These
matrices contain column vectors which are row and column generalised basic vectors,
respectively, and have the property

U′ U = IM V′ V = IM (4)

where IM is an M × M identity matrix. The matrix Dλ is a M × M diagonal matrix
with elements λ1, . . . , λM that are real and positive. They are the first M singular
values of Z and are arranged in descending order so that

1 ≥ λ1 ≥ λ2 ≥ · · · ≥ λM > 0.

To obtain a graphical summary of the association using simple correspondence analy-
sis, the variation between the row and column categories can be made by considering
the matrix of coordinates

F = D−1/2
r UDλ G = D−1/2

c VDλ

such that

X2

n
= trace

(
F′DrF

) = trace
(
G′DcG

) = trace
(
D2

λ

)
.

Therefore row and column coordinates situated at some distance from the origin will
coincide with large singular values, and hence a large total inertia. Similarly, a small
total inertia will mean that the row and column coordinates will lie close to the centroid
of the graphical display. This finding is consistent with all special cases considered in
this paper.

Other types of graphical procedures may be considered, including the variety of
different biplots that are available to the analyst. The following section provides
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a generalised framework whereby this approach to correspondence analysis, non-
symmetrical correspondence analysis and biplot analysis are special cases.

3 The unbalanced generalisation

3.1 The decomposition

The graphical representation of the association between the row and column responses
in a low dimensional space is of interest here. Therefore we shall denote the r × M
matrix of the row coordinates by F (as we did above). Similarly, denote the c × M
matrix of column coordinates byG.We can generalise the decomposition (1) by noting
that D∗ can be alternatively expressed in terms of these coordinates such that

Z = D (Dλ,F, G; α, β) = W−1
r FD1−(α+β)

λ G′W−1
c (5)

for some value of α, and β where F and G may be expressed by

F = Wr UDα
λ , (6)

G = Wc VDβ
λ (7)

respectively. For (5),Wr is a r × r diagonal matrix of row weights and, depending on
the analysis under consideration, may be specified as, for example, D−1/2

r or by the
identity matrix Ir . SimilarlyWc is a c × c diagonal matrix. The assignment of α and
β can be chosen to be any value, or have any relationship, for example, α + β = 1.
Although α and β typically will be chosen so that 0 ≤ α ≤ 1 and 0 ≤ β ≤ 1. As we
shall see, typically, α (say) will be chosen to be either 0, 0.5 or 1 since the graphical
display from such specifications will yield interpretable distances between row and
column points.

By rearranging (6) and (7) and substituting them into (3) Z can be expressed in
terms of F, or G, such that

Z = W−1
r FD1−α

λ V′ = UD1−β
λ G′W−1

c . (8)

Therefore, using (2) and (8), the total inertia is expressed in terms of F and G by

X2

n
= trace

[
D1−α

λ F′W−2
r FD1−α

λ

]
(9)

= trace
[
D1−β

λ G′W−2
c GD1−β

λ

]
. (10)

In fact, by substituting F and G, as defined by (6) and (7), back into (9) and (10), we
can see that

X2

n
= trace

(
D2

λ

)
.
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That is, the total inertia of the contingency table is measured as the sum of squares
of the singular values obtained from the SVD of the matrix of standardised residuals,
Z. This result also shows that, irrespective of the choice of α, β,Wr and Wc, the

mth principal axis of the graphical display will account for 100 ×
(
λ2m/ X2

n

)
% of the

variation that exists in the contingency table. So from a descriptive point of view the
interpretation of the axes will be identical, but the relative position, and configuration,
of the row and column coordinates will depend on the choice of α, β,Wr and Wc.

Consider the matrix of row coordinates, F, given by (6). We can expressU in terms
of this matrix such that

U = W−1
r FD−α

λ

so that, from its orthogonality property, we obtain the result

D2α
λ = F′W−2

r F. (11)

Therefore, since the right hand side of (11) is diagonal, the total inertia may be
expressed in terms of F by

X2

n
= trace

[(
F′W−2

r F
)1/α]

(12)

for α = 1. When the total inertia of the contingency table remains unchanged, and
keeping Wr constant, if α increases then (12) shows that the configuration of row
coordinates in the low-dimensional space will be situated some distance from the
centre of the display, called the centroid. If, on the other hand, α is relatively small
(close to zero, say) then the row coordinates will be drawn towards the centroid.
Similarly, when β = 1, by using the orthogonality property of V, the total inertia can
be expressed in terms of the column coordinates G by

X2

n
= trace

[(
G′W−2

c G
)1/β]

and so the configuration of column coordinates relative to the centroid will depend on
the choice of β.

3.2 Reconstituting P

An important feature of the generalisation (5) is that the matrix of joint proportions,
P can be reconstituted from the row and column coordinates, the generalised basic
vectors and the singular values.

If thematricesU,V andDλ are of full rank, then the values ofP can be reconstituted
exactly by

P = rc′ + D1/2
r ZD1/2

c .
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This is termed the saturated reconstitution formula and can be alternatively expressed
in terms of the matrices of row and column coordinates, F and G, by

P = rc′ + W̃rFD1−(α+β)
λ G′W̃c (13)

where W̃r = D1/2
r W−1

r and W̃c = W−1
c D1/2

c . Therefore W̃rFD1−(α+β)
λ G′W̃c mea-

sures the deviation from complete independence of the cell proportions. Complete
independence between the two categorical variables will result when all λm = 0
regardless of the choice of α or β. When this is the case, by (11), the row coordinates
will be situated at the centroid. Similarly, the column coordinates will also exist at the
centroid.

The advantage of the reconstitution formula is that, even if a subset of axes are
selected to graphically depict the association, the joint proportions in P can be approx-
imately reconstituted. This is helpful when a test of the number of dimensions needed
to construct the plot is required. For example, Escoufier (1988) looks at this issue
using a special case of (13) for correspondence analysis; see Sect. 6.3

Suppose F(k) and G(k) contain the first k column vectors of F and G, respectively,
so that they are the row and column coordinates for the first k < M dimensions of a
joint plot. Also suppose that Dλ(k) is the k × k diagonal matrix of the first k singular
values. Then P can be approximated by the unsaturated reconstitution model

P ≈ P(k) = rc′ + W̃rF(k) D
1−(α+β)

λ(k) G′
(k)W̃c . (14)

3.3 Transition formula

Another special property of the general decomposition (5) is that one can obtain the
row coordinates from the column coordinates, denoted byG → F, and vice versa, that
is F → G. Formulae which describe such transitions are called transition formulae.

By rearranging (6) and (7), the transition formula for G → F is

F = WrZW−1
c GDα−β−1

λ

while the formula for F → G is

G = WcZ′W−1
r FDβ−α−1

λ .

As a result of these formulae, cells with a large standardised residual will result in the
row and column responses that cross-classify that cell to be at close proximity to one
another.

Let’s consider some popular coordinate systems that are specific cases of these
generalisations.
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4 Special unbalanced cases

4.1 Wr = Ir,Wc = Ic and α + β = 1

With this specification of Wr ,Wc, α and β we obtain the matrix of residuals

Z = FG′

which is the factorisation, for categorical data, used for the construction of the biplot;
see Gabriel (1971). Thus, the row and column coordinates are

F = UDα
λ

G = VD1−α
λ .

Coordinates of this form were described by, for example, Aitchison and Greenacre
(2002) andGoodman (1996, pp. 422–424). Different values of α will produce different
coordinates. The choice of α, and therefore β, is made depending on the variable
of interest. This is an important issue when meaningful interpretations are required
and depend on the variable of interest. For example, for the analysis of quantitative
variables (Gabriel 1971, p. 458) describes three sets coordinates which coincide with
α = 1/2, α = 1 and α = 0 so that β = 1/2, β = 0 and β = 1 respectively. In the
case of categorical variables, the assignment of these values have also been described
as symmetric, row isometric and column isometric factorisations, respectively; refer to
Lombardo et al. (1996). The case where α = 0 and β = 1 was discussed by Grassi and
Visentin (1994) who refer to their graphical displays using these sets of coordinates
as “a symmetric β-plots”.

Special characteristics of this analysis include expressing the total inertia by

X2

n
= trace

[
D1−α

λ F′FD1−α
λ

]
= trace

[
Dα

λG
′GDα

λ

]
.

Also, the matrix of joint probabilities P can be reconstituted by

P = rc′ + D−1/2
r FG′D−1/2

c (15)

while the transition formulae are

F = D−1/2
r PD−1/2

c GD2(α−1)
λ

G = D−1/2
c P′D−1/2

r FD−2α
λ .

Thus, for the row isometric factorisation F = D−1/2
r PD−1/2

c G and, for the column
isometric factorisation, G = D−1/2

r P′D−1/2
r F.

123



An algebraic generalisation of some variants of simple. . . 431

If we considered instead the specificationWr = D−1/2
r andWc = D−1/2

c , then the
row and column principal coordinates are defined as

F = D−1/2
r UDα

λ

G = D−1/2
c VD1−α

λ

and have been the subject ofmuch discussion in the correspondence analysis literature.
These coordinates are described by Lorenzo-Seva et al. (2009) and Velden and Kiers
(2005) where their focus was on the rotation of the configuration of points to yield
the most interpretable display. Just as others have done in similar situations, Lorenzo-
Seva et al. (2009) andVelden andKiers (2005) described the advantages of considering
specific values of α; those being α = 0, α = 1 and α = 1/2. Such a generalisation
(irrespective of the choice ofα) leads to the same type of biplots described above and so
the reader is invited to consider these articles for amore indepth discussion of the issue.
For a general discussion of the role of biplots in correspondence analysis onemay refer
to Greenacre (1993), Gower et al. (2011, 2014). See also Section 4.5.3 of Beh and
Lombardo (2014) for an overview of a variety of biplot displays for correspondence
analysis.

4.2 Wr = n−1/2D−1/2
r ,Wc = D1/2

c , α = 1 and β = 0

For this combination of values, the row and column coordinates are

F = n−1/2D−1/2
r UDλ (16)

G = D1/2
c V (17)

which is the coordinate system used for the column metric preserving (CMP) biplot
for categorical variables; see Gabriel and Orodoff (1990, p. 483). In this case, the
matrix of standardised residuals may be expressed in terms of F and G by

Z = n−1/2D1/2
r FG′D−1/2

c

which leads to the singular value decomposition of the centred rowprofilesD−1
r P−1c′.

For a CMP analysis, the saturated reconstitution formula is

P = rc′ + n−1/2DrFG′

and the transition formulae G → F and F → G are

F = n−1/2D−1
r PD−1

c G

G = n1/2P′FD−2
λ

respectively. Note that, for F → G,D−1
r PD−1

c is just the matrix of Pearson ratio’s;
see Beh (2004), Beh and Lombardo (2014) and Goodman (1996). For such ratio’s,
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complete independence between the row and column variables will arise when all the
elements of D−1

r PD−1
c are equal to 1. Therefore in this case we get, under complete

independence, P = rc′, as expected.

5 A balanced generalisation

A generalisation that leads to other popular approaches is when, for (5), α = β.
Since, for our general framework, only the matrix of row and column coordinates, F
and G, involve α and β, such a result means that the association that exists between
the variables forming a contingency table is being represented equally by the row
and column categories. Therefore one may consider such a framework to be balanced.
The nature of the representation of the row and column coordinates may be considered
through the specification ofWr andWc. Abalanced analysismay further be considered
by specifying these matrices such that Wr = Dr and Wc = Dc, or Wr = Ir and
Wc = Ic, say.

By imposing the constraint α = β, the matrix of standardised residuals, Z, can be
expressed by

Z = D (Dλ,F, G; α) = W−1
r FD1−2α

λ G′W−1
c (18)

for 0 ≤ α ≤ 1, so that the row and column coordinates are

F = Wr UDα
λ (19)

G = Wc VDα
λ (20)

respectively. Using these results, the total inertia can be expressed by

X2

n
= trace

[
D1−α

λ F′W−2
r FD1−α

λ

]

= trace
[
D1−α

λ G′W−2
c GD1−α

λ

]

= trace
(
D2

λ

)
. (21)

For the balanced generalisation the reconstitution of P can be made so that

P = rc′ + W̃rFD1−2α
λ G′W̃c

and the transition formulae for G → F and F → G are

F = WrZW−1
c GD−1

λ

G = WcZ′W−1
r FD−1

λ

respectively. Thus, for the balanced generalisation, the transition formulae do not
depend on the value of α, but only rely on the choice of Wr and Wc.
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6 Special balanced cases

6.1 Wr = D−1/2
r ,Wc = D−1/2

c , α = 0

One of the most simple coordinate system that we can use is whenWr = D−1/2
r ,Wc

= D−1/2
c and α = 0. The matrix of standardised residuals is

Z = D1/2
r FDλG′D1/2

c

where the row and column coordinates are

F = D−1/2
r U

G = D−1/2
c V

respectively. These coordinates are commonly referred to as standard coordinates since
each of the axes that are used to construct the plot have an equal weight of 1; see, for
example, Beh and Lombardo (2014) and Greenacre (1984). This is evident since, by
setting α = 0 in (11),

D2α
λ = F′DrF = U′U = IM .

In this case the saturated reconstitution formulae is

P = rc′ + DrFDλG′Dc

= rc′ (1 + FDλG′)

where here 1 is an r × c matrix of 1’s.

6.2 Wr = D−1/2
r ,Wc = D−1/2

c and α = 1

For this combination of Wr ,Wc and α, the matrix of residuals may be decomposed
so that

Z = D1/2
r FD−1

λ G′D1/2
c

where the row and column coordinates can be expressed by

F = D−1/2
r UDλ

G = D−1/2
c VDλ

respectively. These coordinates are those obtained from the classical version of the
simple correspondence analysis of a two-way contingency table; see, for example,
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Beh (2004), Beh and Lombardo (2014), Greenacre (1984) and Greenacre (2010b).
Therefore, the total inertia can be expressed in terms of F and G such that

X2

n
= trace

[
F′DrF

] = trace
[
G′DcG

]

which is the trace of the simple weighted Euclidean distances between the row coor-
dinates (and column coordinates). The reconstitution formula is, as it is for simple
correspondence analysis,

P = rc′ + DrFD
−1
λ G′Dc (22)

= rc′ (1 + FD−1
λ G′) (23)

and is also referred to as correspondence model by Goodman (1986) and Greenacre
(1984). It was pointed out by Gilula et al. (1988) that there are important differences
between the interpretation of the elements of Dλ for the correspondence model and
the Goodman RC model. Refer to these authors for more details. This highlights that
careful interpretation of the configuration of points is needed when looking at different
choices of weights in (5) and (18).

Using this combination of α,Wr and Wc leads to the transition formulae

F = D−1
r PGD−1

λ

G = D−1
c P′FD−1

λ .

Note that this approach to performing simple correspondence analysis is equivalent to
considering Pearson’s contingencies D−1

r PD−1
c − 1; see Goodman (1996). However,

in this case Wr = D−1/2
r ,Wc = D−1/2

c and α = 1/2.

6.3 Wr = Ir,Wc = Ic, α = 1/2

When Wr = Ir ,Wc = Ic, α = 1/2, the decomposition of the matrix of standardised
residual takes the form

Z = FG′

and is a special case of the biplot generalisation of (5) where α = β = 1/2 so that
α + β = 1. Therefore row and column coordinates

F = UD1/2
λ

G = VD1/2
λ

are balanced factorisations of the matrix of residual, while the saturated reconstitution
formulae is given by (15). These coordinates can be confirmed by substitutingα = 1/2
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into (19) and (20). For this case the total inertia may be expressed in terms of the row
and column coordinates by

X2

n
= trace

[
DλG′G

] = trace
[
DλF′F

]

Also the matrix of singular values can be expressed as

Dλ = F′F = G′G

so that (21) is verified. For this specification ofWr ,Wc and α, the transition formulae
are

F = D−1/2
r PG

G = D−1/2
r P′F .

Therefore, a relatively large cell value will mean that the row and column categories
that share this cell will be drawn close together in the display.

7 Simple demonstration

7.1 The data

We now consider a simple demonstration of the generalisation using the data sum-
marised in the two-way contingency table given by Table 1. These data were used
as a motivating example in the exploration of correspondence analysis by Beh and
Lombardo (2014). It cross-classifies 1117 insulation workers in metropolitan New
York by the number of years they have been exposed to asbestos and the severity
of asbestosis they were diagnosed with. This contingency table appears in Beh and
Smith (2011) but is from a more comprehensive study of the the impact of asbestos
on health by Selikoff (1981). We note that Beh and Lombardo (2014) did not examine
the association between the two variables of Table 1 in the context of any generalised
form of correspondence analysis. Therefore, we compare the results of the analysis of
Table 1 under the following two special cases:

– Unbalanced caseWr = Ir ,Wc = Ic, α = 0.9 and β = 0.1, which coincides with
the special unbalanced case outlined in Sect. 4.1 (for a specific value of α and β

where α + β = 1)
– Balanced case Wr = D−1/2

r ,Wc = D−1/2
c and α = 1, which coincides with the

special balanced case outlined in Sect. 4.2.

Any of the other special cases could also have been considered but we restrict our
attention to these two cases for the sake of brevity. The two analyses performed here
is made using the R function gensimpleca() given in the electronic supplemen-
tary material that accompanies this paper. Before we consider the application of the
generalisation outlined above, we briefly examine the association between the vari-
ables. For Table 1, the chi-squared statistic, X2 is 648.812 and has a p-value that is
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Table 1 Selikoff’s data for 1117 New York workers with occupational exposure to asbestos

Occupational
exposure (years)

Asbestos grade diagnosed Total

None Grade 1 Grade 2 Grade 3

0–9 310 36 0 0 346

10–19 212 158 9 0 379

20–29 21 35 17 4 77

30–39 25 102 49 18 194

40+ 7 35 51 28 121

Total 575 366 126 50 1117

less than 0.0001. Therefore, there is a statistically significant association between the
number of years of occupational exposure to asbestos and the severity of asbestosis
that a worker contracts. From a correspondence analysis perspective, the total inertia is
648.812/1117 = 0.581. The nature of the association can be explored using the tradi-
tional approach to simple correspondence analysis. Althoughwe shall instead consider
here the two special cases of the generalisation presented above, where the second case
is equivalent to simple correspondence analysis. To visualise the association between
the row and column categories of Table 1, the optimal number of dimensions from the
generalisation is min (5, 4)− 1 = 3 and so the total inertia can be partitioned to yield
a contribution that each axis makes. We shall show that, from a practical perspective
using the two cases described above, both yield identical numerical summaries of the
total inertia and principal inertia values and many other features.

7.2 Unbalanced case: Wr = Ir,Wc = Ic, α = 0.9 and β = 0.1

For this specification of parameters, the two-dimensional display is given by Fig. 1.
This plot suggests that workers who were exposed to asbestos for no more than 10
years are likely to not be diagnosed with any form of asbestosis, while those with more
than 40 years of exposure are linked to the highest levels of severity.

From a numerical perspective, the overall association can be quantified by the total
inertia of the contingency table using (12). Doing so gives X2/n = 0.581 which is
equivalent to the total inertia calculated in Sect. 7.1; see also the numerical output
summarised in the Appendix.

For each axis of the optimal three-dimensional plot, Table 2 provides a summary
of the principal inertia values, their percentage contribution to the total inertia and
the cummulative inertia. It shows that a three-dimensional plot, defined by speci-
fying the above combination of Wr ,Wc, α and β, visually represents 100% of the
association between the variables- this should be of no surprise. It also shows that the
two-dimensional plot of Fig. 1 accounts for 99.567% of this association - whichmakes
it a very good quality visual summary of the association. We can also reconstitute the
cell frequencies of the contingency table using the reconstitution formula (14), where
k = 2. Doing so gives expected cell frequencies summarised in Table 3.
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Fig. 1 A two-dimensional display of the association between the variables of Table 1 where Wr =
Ir ,Wc = I, α = 0.9 and β = 0.1

Table 2 Summary of the
principal inertia, its percentage
contribution to the total inertia
and the cummulative percentage
contribution to the total inertia

Axis Inertia % Inertia Cumm. % inertia

1 0.489 84.215 84.215

2 0.089 15.352 99.567

3 0.003 0.433 100.000

Table 3 Two-dimensional reconstitution of Table 1

Occupational
exposure (years)

Asbestos grade diagnosed Total

None Grade 1 Grade 2 Grade 3

0–9 309.807 36.644 − 1.498 1.047 346.000

10–19 212.471 158.433 12.645 − 2.549 379.000

20–29 20.699 36.003 14.666 5.632 77.000

30–39 24.837 102.541 47.741 18.880 193.999

40+ 7.187 35.379 52.445 26.990 121.001

Total 575.001 366.000 125.999 50.000 1117.000

7.3 Balanced case: Wr = D−1/2
r ,Wc = D−1/2

c and α = 1

Suppose we now consider the specification of parameters described in Sect. 4.2. That
is, substitute Wr = D−1/2

r , Wc = D−1/2
c and α = 1 into (18)–(20). In doing so we
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Fig. 2 A two-dimensional display of the association between the variables of Table 1 where Wr =
D−1/2
r ,Wc = D−1/2

c and α = 1

obtain the same total inertia value and principal inertia values calculated in Sect. 7.2.
Therefore, the two special cases yield identical percentage contributions to the total
inertia for each of the three axes; see Table 2 for these summaries.While these numeri-
cal summaries are equivalent to those given in Sect. 7.2, this specification of parameters
yields the same two-dimensional reconstituted cell frequencies that appear in Table 3.
However, since the scaling of the row and column points are different (due to the
different specification ofWr ,Wc and α) the two-dimensional visual display provides
a slightly different configuration of points when compared with Fig. 1; Fig. 2 provides
a two-dimensional display that is just the traditional two-dimensional correspondence
plot obtained from performing simple correspondence analysis on Table 1.

8 Other issues

8.1 Non-symmetrical correspondence analysis

Further generalisations can be made by considering other residuals or decompositions
of Z. For example, they can be modified to include as a special case non-symmetrical
correspondence analysis (NSCA); see, for example, D’Ambra and Lauro (1989, 1992)
and Kroonenberg and Lombardo (1998). In the case where the column categories are
treated as responses to an explanatory variable and the row categories comprising of
the response variable, the matrix of standardised residuals, (1), can be modified to
consider NSCA by considering
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Z̃ = (
P − rc′)D−1/2

c = UDλV′ .

As a result, Nτ = n trace
[
Z̃′Z̃

]
is the numerator of the Goodman-Kruskal tau index,

Goodman and Kruskal (1954), and represents the absolute increase in predictability
of a row response given the knowledge of a column category. Therefore, NSCA can
be viewed as an example of the column isometric factorisation of Z̃ (where Wr =
Ir ,Wc = Ic, α = 0 and β = 1) so that F = U and G = VDλ and Nτ = trace

[
D2

λ

] =
trace

[
G′G

]
; see also Sect. 4.1. This suggests that a further generalisation may be

considered by replacing Z with Z̄ in (1) where

Z̄ = D−φ/2
r

(
P − rc′)D−ψ/2

c . (24)

Therefore, if we let Ẑ = Ẑ(φ,ψ) the general total inertia of the contingency table may

be expressed as trace
(
Ẑ′

(φ,ψ)Ẑ(φ,ψ)

)
. The value of the inertia depends on the analysis

conducted and therefore depends on the specification of φ and ψ . For example, the
following specifications of φ and ψ lead to the following types of analyses

– φ = 1 and ψ = 1 - the correspondence analysis, or biplot analysis, of the matrix
of standardised residuals,

– φ = 0 and ψ = 1 - the NSCA of a contigency table where the rows are response
categories and the columns are explanatory categories,

– φ = 1andψ = 0 - theNSCAof a contingency tablewhere the rows are explanatory
categories and the columns are response categories.

Theway inwhich the graphical depiction of association is representedmay be obtained
using those specifications of Wr ,Wc, α and β given above.

8.2 Analysis of adjusted residuals

As we have discussed throughout this paper, typically, the graphical display of asso-
ciation using methods akin to correspondence analysis and biplots, involves the SVD
of Pearson’s standardised residuals; see (1). However, Agresti (2002, p. 81) points out
that the asymptotic variance of the residuals are less than 1, and Haberman (1973)
notes that the variance of the (i, j)th cell of n−1/2Z is (1 − pi•)

(
1 − p• j

)
where pi•

and p• j are the (i, i)th and ( j, j)th element of Dr and Dc respectively. Therefore,
one may consider the matrix of adjusted residuals

Ẑ = D−1/2
r (Ir − Dr )

−1/2 (
P − rc′) (Ic − Dc)

−1/2 D−1/2
c

which can also be incorporated into the generalisation. Recently, Beh (2012) consid-
ered the application of correspondence using adjusted residuals. Therefore, such an
adaptation of correspondence analysis may be incorporated into the general frame-
work discussed here by considering the SVD of the adjusted residuals a special case
of
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Ẑ = D−φ/2
r (Ir − Dr )

−γ /2 (
P − rc′) (Ic − Dc)

−δ/2 D−ψ/2
c (25)

where φ = ψ = γ = δ = 1. Decompositions akin to (5) and (18) may therefore be
adopted by considering Ẑ instead of Z. One may note that if γ = δ = 0, then (25) is
just the matrix of residuals given by (24).

8.3 Freeman–Tukey residual

Yet another generalisation of our approach is that, rather than considering the stan-
dardised residual, or its adjusted version, correspondence analysis can be performed
through the SVDof the Freeman–Tukey residual. Thematrix of Freeman–Tukey resid-
uals is of the form

Z̆ = 2
(
P1/2 − (

rc′)1/2)

so that the total inertia using the Freeman–Tukey statistic (Freeman and Tukey 1950)
is

T 2

n
= trace

[
Z̆′Z̆

]
= trace

[
Z̆Z̆′] .

The role of this statistic in correspondence analysis was briefly described by Beh and
Lombardo (2014, Section 9.3). So, the residual Z̆ can be built into the general residual
of (25) by

Ẑ = 2θ−1
[
D−φ/2
r (Ir − Dr )

−γ /2
]θ−1 (

Pθ/2 − (
rc′)θ/2

)

×
[
(Ic − Dc)

−δ/2 D−ψ/2
c

]θ−1
.

When θ = 2 this expression reduces to (25) while the matrix of Freeman–Tukey
residuals when θ = 1.

8.4 Multiple correspondence analysis

The algebraic generalisations given in this paper have been described with the analysis
of two categorical variables in mind. However, the same generalisations can also be
applied to the analysis of multiple categorical variables in certain cases. These cases
are when the traditional approach to multiple correspondence analysis is performed
and this arises when themulti-way contingency table is converted to either its indicator
matrix form or Burt matrix form, then simple correspondence analysis is applied to
these matrices. For more information on multiple correspondence analysis, see, for
example, Beh and Lombardo (2014), Greenacre (1984, 1990) and Greenacre and
Blasius (2006).
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9 Discussion

This paper presents a simple algebraic generalisation that unifies the growing number
of variations and features of the correspondence analysis of a two-way contingency
table. These approaches are reflected by the unbalanced equation (5) and its balanced
version (18). By considering (25), the association structure of the row and column cat-
egories may be investigated by considering the departure from complete independence
via the more general result

P = rc′ + W̄rFD
1−(α+β)
λ G′W̄′

c

where

W̄r = Dφ/2
r (Ir − Dr )

γ /2 W−1
r

W̄c = Dψ/2
r (Ic − Dc)

δ/2 W−1
c .

For such a specification, the row and column categoriesmay be graphically represented
by considering their matrix of coordinates

F = WrUDα
λ ,

G = WcVD
β
λ

respectively.
A key issue of this framework then is to decide on the specification of

α, β, γ, δ, φ,ψ,Wr and Wc. By considering specific quantifications of these, one
can undertake a variety of known analyses that fall within the correspondence analy-
sis (and related biplot) family of techniques. One may consider, for example, any one
of the special cases described above. The framework described in this paper also opens
up the possibility of considering previously unexplored options such as implementing
NSCA using an adaptation of adjusted residuals (although the benefits of doing so
will not be investigated here).

Our generalisation, andmuch of the literature that discusses the construction, choice
and interpretation of biplots, focuses on specific values ofα andβ; namely, forα,α = 0
and α = 1. These values of α lead to interpretations of these asymmetric biplots that
are relatively simple. This is because the categories of one variable are depicted using
the traditional principal coordinates while the other variable is depicted using standard
coordinates. Such specifications of α allow for row/column distances to bemeaningful
and, through the principal coordinates, for the reconstruction of the total inertia of the
contingency table. However, there is no reasonwhy alternative specifications of α (and
β) can not be made, although in such cases the total inertia may well be an unknown
measure of association. We, therefore, leave further investigations of this topic for
future consideration.

The generalisation described above are not confined to the implementation of SVD.
Othermethods of decomposition can be considered as long as the properties associated
with U and V are preserved. For example, Bivariate Moment Decomposition (BMD),
which is especially applicable for ordinal categories, may be considered in the cor-
respondence analysis of a two-way contingency table; see, for example, Beh (1997,
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1998) and Lombardo et al. (2007). Alteratively, a Hybrid Decomposition (HD) utilis-
ing features of SVD and BMD may be considered; Beh (2001, 2008) and Lombardo
et al. (2011).
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