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Abstract In this paper, we propose a new approach to the empirical likelihood infer-
ence for the parameters in heteroscedastic partially linear single-index models. In the
growing dimensional setting, it is proved that estimators based on semiparametric
efficient score have the asymptotic consistency, and the limit distribution of the empir-
ical log-likelihood ratio statistic for parameters (β�, θ�)� is a normal distribution.
Furthermore, we show that the empirical log-likelihood ratio based on the subvector
of β is an asymptotic chi-square random variable, which can be used to construct
the confidence interval or region for the subvector of β. The proposed method can
naturally be applied to deal with pure single-index models and partially linear models
with high-dimensional data. The performance of the proposed method is illustrated
via a real data application and numerical simulations.

Keywords Empirical likelihood · High-dimensional data · Heteroscedasticity ·
Partially linear single-index model · Semiparametric efficiency

1 Introduction

Consider the partially linear single-index model

Yi = X�
i β + g

(
Z�
i θ
)

+ εi , (i = 1, . . . , n) , (1)
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where Xi ∈ R
p and Zi ∈ R

r are random variables with dimensions p and r
respectively, Yi is a response variable, β and θ are unknown parameters, g(·) is an
unknown function, εi ’s are independent random errors with E(εi |Xi , Zi ) = 0 and
Var(εi |Xi , Zi ) = v(Xi , Zi ) > 0, v(X, Z) is a function of (X, Z) representing pos-
sible heteroscedasticity. For identifiability, we assume that the first component of θ is
1, and we use Z−1 to denote the last r −1 components of Z . An interesting problem is
statistical inference about (β�, θ�)� in partially linear single-index models, whereas
all the other unknown components of model (1), such as the unknown function g(·)
and the unspecified function v(X, Z), are termed nuisance parameters. Model (1) was
proposed by Carroll et al. (1997), and is a natural extension of the partially linear
model and the single-index model (See Engle et al. 1986; Xia et al. 1999). The para-
metric component X�

i β provides a simple summary of covariate effects which are
of the main scientific interest. The index Z�

i θ enables us to simplify the treatment
of the multiple auxiliary variables, and the smooth baseline component g(·) enriches
model flexibility. Since the partially linear single-index model was introduced, it has
been broadly and deeply studied by many authors in various disciplines. For example,
Yu and Ruppert (2002) proposed a penalized spline estimation procedure; Xia et al.
(2002) integrated the dimension reduction idea and minimum average variance esti-
mation; Xia and Härdle (2006) showed semiparametric estimation of partially linear
single-indexmodels; Lai andWang (2014) studied semiparametric efficient estimation
with responses missing at random. Although, such as Yu and Ruppert (2002), they
did not explicitly make an equal variance assumption for ε, they did not account for
the heteroscedasticity of model (1). Therefore, these estimators are not efficient when
heteroscedasticity is present.

In practice, many variables are introduced to reduce possible modeling biases. In
the early days, the value for the number of parameters p is in the ranges 10–500, and
sample size n is in the ranges 100–10,000. From problems in X-ray crystallography,
Huber (1973) noted that in a variable selection context the number of parameters is
often large and should be modeled as pn , which tends to ∞. Afterwards, with the
development of technology and huge investment in various forms of data gathering,
Donohn (2000) demonstrated with web term-document data, gene expression data and
consumer financial history data, large sample sizeswith high dimensions are important
characteristics. He also found that even in a classical setting such as the Framingham
heart study, the sample size is as large as n = 25,000 and the dimension is p = 100,
which can be modeled as p = O(n1/3) or p = O(n1/2). Recently, high-dimensional
data becomes more and more popular in many areas, such as financial and statistical
applications, hyperspectral imagery, internet portals, high-throughput genomic data
analysis andother areas of computational biology; see, e.g., Bai andSaranadasa (1996),
Ledoit andWolf (2002), Hjort et al. (2009), Zhang et al. (2012) andMa andZhu (2013).
Zhang et al. (2012) integrated the dimension reduction idea and variable selection in
partially linear single-index models with high-dimensional covariates, Ma and Zhu
(2013) proposed efficient estimators for heteroscedastic partially linear single-index
models allowing high-dimensional covariates. For model (1), although they allowed
high-dimensional covariates, the dimension of covariates is fixed, and can not tend to
infinity as the sample size n → ∞.
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The method of empirical likelihood introduced in Owen (1988, 1990, 1991, 2001)
might be useful for the purpose of making inference for model (1). To the best of
our knowledge, there is not much literature on this model by using empirical likeli-
hood method, although it has been successfully applied to various models, see, e.g.,
linear models (Owen 1991), generalized linear models (Kolaczyk 1994), partially lin-
ear models (Shi and Lau 2000), heteroscedastic partially linear models (Lu 2009),
single-index models (Xue and Zhu 2006), partially linear single-index models (Zhu
and Xue 2006), general estimating equations (Qin and Lawless 1994), quantile esti-
mation (Chen and Hall 1993), errors-in-covariables models (Wang and Rao 2002),
Cox regression models(Qin and Jing 2001), additive risk models (Lu and Qi 2004).
Empirical likelihood has also been applied to some high-dimensional problems and
its asymptotic behavior under the setting where n and p both tend to infinity has also
been carefully studied. Hjort et al. (2009) derived the limit distribution of the EL
ratio statistic based on p-dimensional estimating equations when p → ∞ with n at
the rate p = o

(
n1/3

)
; Chen et al. (2009) improved upon the rate restriction in Hjort

et al. (2009) and established a nondegenerate limit distribution of the EL ratio statistic,
allowing p = o

(
n1/2

)
under suitable regularity conditions.

Zhu and Xue (2006) investigated likelihood confidence regions in a partially linear
single-index model. In their paper, empirical likelihood was constructed from the
components of a semiparametric inefficient estimating equation.We think that it might
bemore informative if we use semiparametric efficient score to construct the empirical
likelihood. Furthermore, Zhu and Xue (2006) assumed that dimensions p and r for β

and θ are fixed. Their results may not be valid when dimensions p → ∞ and r → ∞,
as n → ∞. Motivated by the empirical likelihood method for high-dimensional data
in Hjort et al. (2009), in this paper, we propose a new approach to the empirical
likelihood inference about (β�, θ�)� for heteroscedastic partially linear single-index
models with high-dimensional data based on the semiparametric efficient score, where
dimensions p → ∞ and r → ∞, as n → ∞. We will show that the limit distribution
of the empirical log-likelihood ratio for β is a normal distribution. Furthermore, we
will show that the empirical log-likelihood ratio based on a k-dimensional (k < p)
subvector of β is an asymptotically standard chi-square random variable, which can
be used to construct confidence intervals or regions for the k-dimensional subvector
of β.

The remainder of this paper is organized as follows. In Sect. 2, we introduce
the empirical likelihood method for the inference of heteroscedastic partially lin-
ear single-index models and present our main results. The pure single-index model
and the partially linear model, as the special examples, are discussed in Sect. 3. In
Sect. 4, we report the results from simulation studies, and a real data example is pre-
sented in Sect. 5. Finally, the technical proofs of the main results are given in the
“Appendix”.

2 Methodology and main results

Firstly, we introduce the efficient estimation method of Ma and Zhu (2013) for the
parameter (β�, θ�)� in the heteroscedastic partially linear single-index model (1),
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and propose the empirical likelihood method for (β�, θ�)�. To estimate (β�, θ�)�,
Ma and Zhu (2013) reviewed the following class of weighted estimating equations:

1√
n

n∑
i=1

w (Xi , Zi )
{
Yi − X�

i β − f
(
Z�
i θ
)}

[a (Xi , Zi )

− Ẽ
{
a (X, Z) |Z�

i θ
)}]

= 0, (2)

where f (Z�
i θ) is a given function of Z�

i θ which may or may not equal g(Z�
i θ),

Ẽ{·|Z�
i θ)} denotes a function of Z�

i θ that may or may not be the true E{·|Z�
i θ)},

wi = w(Xi , Zi ) = var(εi |Xi , Zi )
−1 and a(·, ·) ∈ R

p+r−1 is an arbitrary function of
X and Z . They pointed out that consistent estimator (β̂�, θ̂�)� can be obtained by
(2) if wi and f (·) can be consistently estimated or is completely known. However, the
doubly robustness and efficiency property of (β̂�, θ̂�)� is lost. In order to develop
estimators for (β�, θ�)� with the doubly robustness and efficiency property, Ma and
Zhu (2013) proposed an improved class of weighted estimation equations:

⎧⎪⎪⎨
⎪⎪⎩

1√
n

n∑
i=1

ε̃i ŵ (Xi , Zi )

[
Xi − Ê

{
ŵ(X,Z)X |Z�

i θ
}

Ê
{
ŵ(X,Z)|Z�

i θ
}
]

= 0,

1√
n

n∑
i=1

ε̃i ŵ (Xi , Zi ) ĝ′ (Z�
i θ
) [

Z−1,i − Ê
{
ŵ(X,Z)Z−1|Z�

i θ
}

Ê
{
ŵ(X,Z)|Z�

i θ
}
]

= 0,
(3)

where ε̃i = Yi − X�
i β − ĝ(Z�

i θ), wi = w(Xi , Zi ) = E(ε2i |Xi , Zi )
−1, ĝ(Z�

i θ),

ĝ′(Z�
i θ), Ê{ŵ(X, Z)|Z�

i θ}, Ê{ŵ(X, Z)X |Z�
i θ} and Ê{ŵ(X, Z)Z−1|Z�

i θ} are the
nonparametric estimators via kernel estimation. We assume that ηi = η(Xi , Zi ) is a
low dimensional variable such that var(εi |Xi , Zi ) = var(εi |ηi ) and η has a known
form. For example, η can be ZTθ or XTβ, whichmeans that the error variance depends
on the covariates through ZTθ or XTβ only. Certainly, it can also be a combination
of these two or can have any other form. Let Kh(·) = h−1K (·/h), where Kh(·) is a
kernel function with bandwidth h → 0. For bandwidths h1, h2 and h3, we set

ĝ
(
Z�
i θ

)
=
∑
j �=i

Kh1

(
Z�
i θ − Z�

j θ
) (

Y j − X�
j β
)

/
∑
j �=i

Kh1

(
Z�
i θ − Z�

j θ
)

,

ĝ′ (Z�
i θ

)
= h−1

1

⎧
⎨
⎩
∑
j �=i

K ′
h1

(
Z�
i θ − Z�

j θ
) (

Y j − X�
j β
)∑

j �=i

Kh1

(
Z�
i θ − Z�

j θ
)
⎫
⎬
⎭

−
∑
j �=i

Kh1

(
Z�
i θ − Z�

j θ
) (

Y j − X�
j β
)

×
∑
j �=i

K ′
h1

(
Z�
i θ − Z�

j θ
)
⎫
⎬
⎭
/⎧

⎨
⎩
∑
j �=i

Kh1

(
Z�
i θ − Z�

j θ
)
⎫
⎬
⎭

2

,

ŵ (Xi , Zi ) =
∑
j �=i

Kh2
(
ηi − η j

)
/
∑
j �=i

Kh2
(
ηi − η j

)
e2j ,
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Ê
{
ŵ (X, Z) |Z�

i θ
}

=
∑
j �=i

Kh3

(
Z�
i θ − Z�

j θ
)

ŵ
(
X j , Z j

)
/
∑
j �=i

Kh3

(
Z�
i θ − Z�

j θ
)

,

Ê
{
ŵ (X, Z) X |Z�

i θ
}

=
∑
j �=i

Kh3

(
Z�
i θ − Z�

j θ
)

ŵ
(
X j , Z j

)
X j/

∑
j �=i

Kh3

(
Z�
i θ − Z�

j θ
)

,

Ê
{
ŵ (X, Z) Z−1,i |Z�

i θ
}

=
∑
j �=i

Kh3

(
Z�
i θ − Z�

j θ
)

ŵ
(
X j , Z j

)
Z−1, j/

∑
j �=i

Kh3

(
Z�
i θ − Z�

j θ
)

.

The algorithm in calculating the estimators of (β�, θ�)� can be found in Ma and
Zhu (2013).

Ma and Zhu (2013) proved that, under some mild conditions, the semiparametric
efficient score is

Sef f = wε

(
X� − E(wX�|Z�θ)

E(w|Z�θ)
, g′(Z�θ)

{
Z�−1 − E

(
wZ�−1|Z�θ

)

E(w|Z�θ)

})�
, (4)

and estimators (β̂�, θ̂�)� by solving (3) are doubly robust and efficient. In Ma and
Zhu (2013), although they allowed high-dimensional covariates, the dimension of
covariates is fixed, and can not tend to infinity as the sample size n → ∞.

We first extend the fixed-dimensional results in Ma and Zhu (2013) to cases with
diverging dimensionality, i.e., p, r → ∞ as n → ∞. Let Bn ∈ R

(p+r−1)×q with fixed
q. B�

n Se f f represents a projection of the diverging dimensional vector Sef f to a fixed
dimension q.

Definition 1 Assume that Sef f is a diverging dimensional semiparametric score, and
B�
n Se f f represents a projection of the diverging dimensional vector Sef f to a fixed

dimension q. We say that the diverging dimensional semiparametric score is a semi-
parametric efficient score if the fixed dimensional projection B�

n Se f f of Sef f is a
semiparametric efficient score.

Similar to Proposition 1 of Ma and Zhu (2013), we can prove that, for any fixed
q, the projection B�

n Se f f of the diverging dimensional semiparametric score Sef f is
a semiparametric efficient score. Therefore, according to Definition 1, we say that the
diverging dimensional semiparametric score Sef f is a semiparametric efficient score.

The following theorem shows the theoretical properties of high-dimensional esti-
mator based on the semiparametric score.

Theorem 2.1 Let (β�
0 , θ�

0 )� be the true value of parameter vector (β�, θ�)�, under
Assumptions 1–9, then

√
nAV 1/2

{(
β̂�, θ̂�)� −

(
β�
0 , θ�

0

)�} L→ N (0,G) ,
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where
L→ stands for convergence in distribution, A1 ∈ Rq1×p and A2 ∈ Rq2×r are

q1 × p and q2 × r matrixes respectively, AA� → G and G is a (q1 + q2)× (q1 + q2)
matrix with fixed q1 and q2,

A =
(
A1 0
0 A2

)
, V =

(
V11 V12
V21 V22

)
,

V11 = E

{
wXX� − E(wX |Z�θ)E(wX�|Z�θ)

E(w|Z�θ)

}
,

V12 = E

[
g′(Z�θ)

{
wX Z�−1 − E(wX |Z�θ)E(wZ�−1|Z�θ)

E(w|Z�θ)

}]
,

V21 = E

[
g′(Z�θ)

{
wZ−1X

� − E(wZ−1|Z�θ)E(wX�|Z�θ)

E(w|Z�θ)

}]
,

V22 = E

[
g′(Z�θ)2

{
wZ−1Z

�−1 − E(wZ−1|Z�θ)E(wZ�−1|Z�θ)

E(w|Z�θ)

}]
.

Theorem 2.1 extends the fixed-dimensional results in Ma and Zhu (2013) to cases
with diverging dimensionality. Furthermore, in Theorem 2.1, A represents a projection
of the diverging dimensional vector to a fixed dimension q1 +q2, and the limiting dis-
tribution of the projected vector of {(β̂�, θ̂�)� − (β�

0 , θ�
0 )�} is a multivariate normal

distribution. This theorem provides the consistency and normality of the projected
vector of the estimator (β̂�, θ̂�)� for heteroscedastic partially linear single-index
models.

Next, we introduce an auxiliary randomvector by using the semiparametric efficient
score. Let

ξi (β, θ) = wiεi

(
X�
i − E

(
wX�|Z�

i θ
)

E(w|Z�
i θ)

, g′ (Z�
i θ
){

Z�−1,i − E
(
wZ�−1|Z�

i θ
)

E(w|Z�
i θ)

})�
.

Note that E{ξi (β, θ)} = 0 for i = 1, . . . , n, if (β�, θ�)� is the true parameter.
According to this fact, we apply the empirical likelihood method of Owen (1988,
1990) to make inference about (β�, θ�)�. Let π = (π1, · · · , πn) be a probability
vector, satisfying

∑n
i=1 πi = 1 πi ≥ 0 for i = 1, . . . , n. The traditional empirical

likelihood function for (β�, θ�)� is defined as follows:

L(β, θ) = sup

{
n∏

i=1

(nπi ) :
n∑

i=1

πi = 1, πi ≥ 0,
n∑

i=1

πiξi (β, θ) = 0

}
. (5)

Because (5) contains unknown functions w(Xi , Zi ), g(Z�
i θ), E{w(X, Z)|Z�

i θ},
g′(Z�

i θ), E{w(X, Z)X |Z�
i θ} and E{w(X, Z)Z−1|Z�

i θ}, it cannot be used directly
to make inference on (β�, θ�)�. To solve this problem, a natural method is to
replace those by their estimators ŵ(Xi , Zi ), ĝ(Z�

i θ), ĝ′(Z�
i θ), Ê{ŵ(X, Z)|Z�

i θ},
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Ê{ŵ(X, Z)X |Z�
i θ} and Ê{ŵ(X, Z)Z−1|Z�

i θ} given above. Define an estimated
empirical likelihood function for (β�, θ�)� as

L̃(β, θ) = sup

{
n∏

i=1

(nπi ) :
n∑

i=1

πi = 1, πi ≥ 0,
n∑

i=1

πi ξ̂i (β, θ) = 0

}
, (6)

where

ξ̂i (β, θ) = ŵi ε̃i

(
X�
i − Ê

(
ŵX�|Z�

i θ
)

Ê
(
ŵ|Z�

i θ
) , ĝ′ (Z�

i θ
){

Z�−1,i −
Ê
(
ŵZ�−1|Z�

i θ
)

Ê
(
ŵ|Z�

i θ
)

})�
,

and ε̃i = Yi − X�
i β − ĝ(Z�

i θ). The estimated empirical log-likelihood ratio is

l̃(β, θ) = − 2
{
log{L̃(β, θ)} − n log(n)

}
. (7)

According to Tsao (2004), when the dimension p+r is moderately large but fixed,
the distribution of empirical likelihood ratio l̃(β, θ) has an atom at infinity for fixed
sample size n: the probability of l̃(β, θ) = ∞ is nonzero. Based on the paper of Tsao
(2004), the dimension p + r and the sample size n increase at the same rate such that
p/n ≥ 0.5, the probability of l̃(β, θ) = ∞ converges to 1 since the probability of
(β�, θ�)� being contained in the convex hull of the sample converges to 0. These
reveal the effects of the dimension p + r on the empirical likelihood from another
perspective. In this paper, we analyze the empirical likelihood for heteroscedastic
partially linear single-index models with high-dimensional data, which p, r and n
increase at the mild rate in order to ensure the empirical likelihood ratio l̃(β, θ) having
definition.

By using the Lagrange multiplier method, {πi }ni=1 in (6) are

πi = 1

n

1

1 + λ�ξ̂i (β, θ)
,

with the restriction on λ that is

1

n

n∑
i=1

ξ̂i (β, θ)

1 + λ�ξ̂i (β, θ)
= 0. (8)

Therefore, the estimated empirical log-likelihood ratio function for (β�, θ�)� defined
in (7) is given by

l̃(β, θ) = − 2
{
log{L̃(β, θ)} − n log(n)

}
= 2

n∑
i=1

log
{
1 + λ�ξ̂i (β, θ)

}
. (9)

The following theorem gives the asymptotic distribution of l̃(β, θ).
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Theorem 2.2 Let (β�
0 , θ�

0 )� be the true value of parameter vector (β�, θ�)�, under
Assumptions 1–9, l̃(β0, θ0) has an asymptotic standard normal distribution, i.e.,

{
2(p + r − 1)}−1/2{l̃(β0, θ0) − (p + r − 1)

}
L→ N (0, 1).

Therefore, Theorem 2.2 can be used to test the hypothesis

H0 :
(
β�, θ�)� =

(
β�
0 , θ�

0

)�
vs H1 :

(
β�, θ�)� �=

(
β�
0 , θ�

0

)�
,

andon the other hand, it also canbeused to construct confidence regions for (β�, θ�)�.
Let

Iα(β, θ) =
{
(β�, θ�)� :

∣∣∣l̃(β, θ) − (p + r − 1)
∣∣∣ ≤ zα/2

√
2(p + r − 1)

}
,

where zα/2 is the upper α/2−quantile of the standard normal distribution, then by
Theorem 2.2, Iα(β, θ) gives an approximate confidence region for (β�, θ�)� with
asymptotically correct coverage probability 1 − α, i.e.,

P((β�, θ�)� ∈ Iα(β, θ)) = 1 − α + o(1).

Remark 1 Theorem 2.2 gives the asymptotic distribution of l̃(β, θ) with diverging
dimensionality, i.e., p, r → ∞ as n → ∞. When p and r are fixed and do not diverge
with n, l̃(β0, θ0) is asymptotically a standard chi-square random variable, and it is
easy to see from the proof of Theorem 2.2 in “Appendix” that

l̃(β0, θ0)
L→ χ2

p+r−1,

where χ2
k denotes the chi-square distribution with (p + r − 1) degrees of freedom.

In practice, it is rarely the case that confidence regions for the entire parameter
vector will be sought, because as soon as dimension p > 3, it is hard to visualize
or represent the confidence region. Usually one will only be interested in a one or
two-dimensional subvector of parameter. Assume (β�, θ�)� = (β(1)�, β(2)�, θ�)�,
where β(1) is k-dimensional (k is fixed and does not diverge with n) for which the
confidence interval/region is to be constructed. The true parameter vector can be
partitioned as (β�

0 , θ�
0 )� = (β

(1)�
0 , β

(2)�
0 , θ�

0 )�, and Xi and Zi can be similarly
partitioned.

We can obtain, with fixed β(1), estimators for the rest of the parameters by solving
(3), denoted by β̂(2) and θ̂ . Define

ˆ̃
ξi (β

(1)) = ŵi

{
Yi − X (1)�

i β(1) − X (2)�
i β̂(2)

− ĝ
(
Z�
i θ̂
)}

⎛
⎝X (1)

i −
Ê
(
ŵX (1)|Z�

i θ̂
)

Ê
(
ŵ|Z�

i θ̂
)

⎞
⎠
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The estimated empirical log-likelihood for β(1) is given by

l̃(β(1)) = 2
n∑

i=1

log
{
1 + λ(1)� ˆ̃

ξi (β
(1))

}
. (10)

Theorem 2.3 Under the same assumptions as in Theorem 2.2,

l̃
(
β

(1)
0

)
L→ χ2

k .

Based on Theorem 2.3, a confidence interval or region for β(1) can be easily con-
structed. For any given 0 < α < 1, there exists cα such that P(χ2

k > cα) = α,
then

Iα(β(1)) =
{
β(1) ∈ Rk : l̃(β(1)) ≤ cα

}

is the confidence interval or region of the β(1) with asymptotically correct coverage
probability 1 − α.

Remark 2 Based on Tsao (2004), in high dimensional setting, the dimension will
have non-ignorable effect on coverage probabilities of empirical likelihood confi-
dence regions. Therefore, coverage probabilities of empirical likelihood confidence
regions may be less than the nominal significance level. We hope to consider how to
improve coverage probabilities of empirical likelihood confidence regions under the
high dimensional situations in future communications.

3 Two special cases: partially linear models and single-index models

In this section, we present the empirical likelihood inference for β or θ of two special
cases in model (1). First we consider the heteroscedastic partially linear model with
a diverging number parameters, meaning that single-index component in model (1)
does not contain parameters, and the model can be written as

Yi = X�
i β + g(Zi ) + εi , (i = 1, . . . , n). (11)

The weighted estimating equations for model (11) become

n−1/2
n∑

i=1

ŵ(Xi , Zi )
(
Yi−X�

i β−ĝ(Zi )
)[

Xi− Ê{ŵ(X, Z)X |Zi }
Ê{ŵ(X, Z)|Zi }

]
= 0. (12)

The estimator β̂ can be obtained by solving semiparametric efficient score equations
(12). Rewrite the auxiliary random vector

ξ̂i (β) = ŵi

{
Yi − X�

i β − ĝ(Zi )
}{

Xi − Ê(ŵX |Zi )

Ê(ŵ|Zi )

}
.
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Therefore, the estimated empirical log-likelihood ratio function for β is

l̃1(β) = 2
n∑

i=1

log
{
1 + λ�ξ̂i (β)

}
. (13)

Assume β = (β(1)�, β(2)�)�, where β(1) is a k-dimensional (k is fixed and does
not diverge with n) component of β. The true parameter vector can be partitioned as
β0 = (β

(1)�
0 , β

(2)�
0 )�, and Xi can be similarly partitioned. We can obtain, with fixed

β(1), estimators for the rest of the parameters by solving (12), denoted by β̂(2). Define

˜̃
ξi (β

(1)) = ŵi

{
Yi − X (1)�

i β(1) − X (2)�
i β̂(2) − ĝ(Zi )

}{
X (1)
i − Ê(ŵX (1)|Zi )

Ê(ŵ|Zi )

}
.

The estimated empirical log-likelihood for β(1) is given by

˜̃l(β(1)) = 2
n∑

i=1

log
{
1 + λ(1)� ˜̃

ξi (β
(1))

}
. (14)

In high-dimensional setting, there are some theoretical properties for model (11)
as follows.

Theorem 3.1 Let β0 be the true value of parameter vector β, under Assumptions 1–9,
then

(1)
√
nAnV

−1/2
1 (β̂ − β0)

L→ N (0,G),

(2) (2p)−1/2
{
l̃1(β0) − p

}
L→ N (0, 1),

(3) ˜̃l(β(1)
0 )

L→ χ2
k ,

where An ∈ Rq×p is a q × p matrix such that An A�
n → G and G is a q × q matrix

with fixed q, and

V1 =
[
E

{
wXX� − E(wX |Z)E(wX |Z)�

E(w|Z)

}]−1

.

Theorem 3.1(1) extends the fixed-dimensional results in Ma et al. (2006) to cases
with diverging dimensionality. Theorem 3.1(2) can be used to construct empirical
likelihood confidence regions for β. A (1− α)100% confidence region for β is given
by

Iα(β) =
{
β :

∣∣∣l̃1(β) − p
∣∣∣ ≤ zα/2

√
2p
}

.
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When p is fixed and does not diverge with n, l̃1(β0) has the asymptotic chi-square
distribution, and this corresponds to the empirical likelihood method considered by
Lu (2009) for heteroscedastic partially linear models. Theorem 3.1(3) can be used
to construct the confidence interval or region of subvector of parameter β. Based on
Theorem 3.1(3), for 0 < α < 1, the confidence interval or region for β(1) can be given
by

Ĩα(β(1)) =
{
β(1)| ˜̃l(β(1)) ≤ χ2

k (α)
}

.

For high-dimensional data, we now consider the heteroscedastic pure single-index
model

Yi = g
(
Z�
i θ
)

+ εi , (i = 1, . . . , n). (15)

It means that there is no linear component in model (1). The weighted estimating
equations can be written as

n−1/2
n∑

i=1

ŵ
{
Yi−ĝ

(
Z�
i θ
)}

ĝ′ (Z�
i θ̃
)⎡⎣Z−1,i−

Ê
{
ŵZ−1|Z�

i θ̃
}

Ê
{
ŵ|Z�

i θ̃
}

⎤
⎦ = 0, (16)

where θ̃ is the solution of the following equations

n−1/2
n∑

i=1

ŵ
{
Yi − f

(
Z�
i θ
)} {

a(Zi ) − Ẽ
{
a(Z)|Z�

i θ)
}}

= 0.

The estimator θ̂ can be got by solving semiparametric efficient score equations (16).
Similarly, redefine the auxiliary random vector

ξ̂i (θ) = ŵi

{
Yi − ĝ

(
Z�
i θ
)}

ĝ′ (Z�
i θ
){

Z−1,i − Ê
(
ŵZ−1|Z�

i θ
)

Ê
(
ŵ|Z�

i θ
)

}
.

and the estimated empirical log-likelihood ratio is

l̃2(θ) = 2
n∑

i=1

log
{
1 + λ�ξ̂i (θ)

}
.

Theorem 3.2 Under Assumptions 1–9, if θ0 is the true parameter value, then

(1)
√
nAnV

−1/2
2 (θ̂−1 − θ0,−1)

L→ N (0,G),

(2) {2(r − 1)}−1/2
{
l̃2(θ0) − (r − 1)

}
L→ N (0, 1),
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where An ∈ Rq×(r−1) is a q × (r − 1) matrix such that An A�
n → G and G is a q × q

matrix with fixed q, and

V2 = E

[
g′(Z�θ)2

{
wZ−1Z

�−1 − E(wZ−1|Z�θ)E(wZ�−1|Z�θ)

E(w|Z�θ)

}]
.

The theoretical properties of θ̂ is givenbyTheorem3.2(1).When r is fixed, l̃2(θ0)
L→

χ2
r−1. According to Theorem 3.2(2), a (1 − α)100% empirical likelihood confidence

region for θ is

Iα(θ) =
{
θ :

∣∣∣l̃2(θ) − (r − 1)
∣∣∣ ≤ zα/2

√
2(r − 1)

}
.

4 Simulation studies

Firstly, we describe how to approach the optimization problems posed by the empirical
likelihood method. Due to the nonconvexity, computing the empirical likelihood ratio
is nontrivial. We can use the following algorithm to obtain the estimated empirical
likelihood ratio defined by (7).

Step1Obtain ĝ(Z�
i θ), ĝ′(Z�

i θ), ŵ(Xi , Zi ), Ê{ŵ(X, Z)|Z�
i θ}, Ê{ŵ(X, Z)X |Z�

i θ}
and Ê{ŵ(X, Z)Z−1|Z�

i θ} described above by using the fixed values of (β�, θ�)�.
Step 2 Obtain the auxiliary random vector ξ̂i (β, θ).
Step 3 Obtain λ̂ by using the Newtons method to minimize (9) over λ.
Step 4 Obtain l̃(β, θ) defined by (9) based on ξ̂i (β, θ) and λ̂.

Next, we present some Monte Carlo experiments to compare the finite sample
performance of EL with normal approximation that is based on the doubly robust and
efficient method (DRE) in Ma and Zhu (2013). Throughout these simulations, we use
the Epanechnikov kernel K (t) = 3/4(1 − t2)+ in all the nonparametric regression
procedures and use the cross validation method to choose the optimal bandwidth hopt
satisfyingAssumption 6.We consider the heteroscedastic partially single-indexmodel
(1). In our simulations, (X1, . . . , X p, Z1, . . . , Zr )

� are generated from a multivariate
normal distribution with mean 0 and covariance matrix (σi j )(p+r)×(p+r) where σi j =
0.5|i− j |, and Y are generated from a normal distribution with mean X�β +exp(Z�θ),
and variance function |Z�θ |. Furthermore, β = (1, 0.5,− 1, 1, 0.5,− 1, . . .)� and
θ = (1, 0.25,− 0.25, 0.25, 0, . . . , 0)�. We use the dimensions p = 10, 20, 30 and
the corresponding dimension r = 10.

In the first simulation, we consider the confidence interval for β1 constructed by
using empirical likelihood and results for other parameters are similar and not pre-
sented here. For comparison, we also construct the confidence interval for β1 by using
the doubly robust and efficient method in Ma and Zhu (2013). In each case we repeat
the simulation 1000 times, and the nominal confidence level 1−α is taken to 0.95. The
results are presented in Table 1. In addition, the column of time in Table 1 denote the
computing cost of the simulation. For example, the value of 2.6s in Table 1 means the
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Table 1 The coverage probability (CP) and average length (AL) for β1

(p,r) n EL DRE

CP AL Time (s) CP AL Time (s)

(10,10) 200 0.939 0.351 2.6 0.927 0.367 4.2

400 0.947 0.318 7.3 0.941 0.342 9.7

600 0.953 0.282 14.5 0.948 0.324 15.4

(20,10) 400 0.932 0.423 15.4 0.916 0.451 17.1

600 0.941 0.376 19.7 0.932 0.409 20.6

800 0.946 0.354 22.1 0.937 0.385 24.3

(30,10) 600 0.915 0.447 23.9 0.903 0.483 27.5

800 0.926 0.419 27.8 0.912 0.458 31.8

900 0.940 0.385 31.3 0.931 0.426 35.2

We compare confidence intervals based on ELmethodwith intervals based on the doubly robust and efficient
method (DRE)

average computing cost of each simulation, and the total computing cost of repeating
the simulation 1000 times is 2.6 × 1000 = 2600(s). This is also the case in Tables 2
and 3.

From Table 1, we have the following results:

(1) We can see that the coverage probabilities (CP) for β1 based on the EL and the
doubly robust and efficient method (DRE) method increase as the sample size
n increases, and the coverage probabilities appear to be close to the nominal
levels especially with moderate sample size. Certainly, the coverage probabili-
ties based on the empirical likelihood can not be up to the nominal levels when
the dimension p grows with the sample size n. According to Tsao (2004), the
dimension will have non-ignorable effect on coverage probabilities of empirical
likelihood confidence regions. Some methods may be used to improve coverage
probabilities of empirical likelihood confidence regions/intervals under the high
dimensional situation, such as Bartlett adjustment. How to improve it under the
high dimensional situations will be investigated in our future communications.

(2) The confidence intervals based on the empirical likelihood method consistently
havebetter coverage probabilities than the intervals basedonDRE, and the average
length (AL) of the intervals based on the empirical likelihood is slightly shorter
than that of the intervals based on DRE.

(3) The average computing cost of the empirical likelihood method is less than the
DRE method from Table 1. However, It must have a lot to do with computer
configuration, and high performance computers can improve the computing cost.
The outcomes in Table 1 are based on a normal computer.

In the second simulation, we further consider confidence regions for (β1, β2) con-
structed by EL and DRE where we show the coverage probability of the constructed
regions. The results are presented in Table 2. Finally, we consider confidence regions
for (β�, θ�)� constructed by using ELwherewe show the coverage of the constructed
regions. For comparison, we also construct confidence regions for (β�, θ�)� by using
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Table 2 Comparison of coverage probability for (β1, β2) between EL method and DRE method

p n 1 − α = 0.90 1 − α = 0.95

EL Time (s) DRE Time (s) EL Time (s) DRE Time (s)

(10,10) 200 0.871 3.5 0.857 4.9 0.919 3.7 0.908 5.0

400 0.887 8.2 0.874 10.3 0.932 8.1 0.916 10.1

600 0.901 15.4 0.889 16.1 0.947 15.3 0.929 16.2

(20,10) 400 0.859 16.3 0.847 18.5 0.908 16.6 0.897 18.8

600 0.881 20.6 0.872 21.4 0.923 20.5 0.912 21.9

800 0.893 24.1 0.881 25.8 0.935 24.1 0.924 25.4

(30,10) 600 0.862 24.9 0.856 28.2 0.903 25.1 0.891 28.6

800 0.875 28.7 0.867 32.6 0.920 28.8 0.903 32.3

900 0.884 32.4 0.873 35.7 0.931 32.2 0.915 35.6

Table 3 Comparison of coverage probability for (β�, θ�)� between EL method and DRE method

p n 1 − α = 0.90 1 − α = 0.95

EL Time (s) DRE Time (s) EL Time (s) DRE Time (s)

(10,10) 800 0.866 18.7 0.854 20.3 0.921 18.5 0.914 20.1

1000 0.873 24.2 0.861 25.1 0.927 24.3 0.919 25.4

1200 0.885 29.5 0.876 31.4 0.934 29.7 0.925 31.5

(20,10) 1000 0.852 32.4 0.843 34.6 0.905 32.3 0.892 34.4

1200 0.867 37.9 0.859 38.2 0.913 38.1 0.901 38.3

1400 0.882 41.6 0.871 43.5 0.928 41.8 0.917 43.8

(30,10) 1200 0.843 43.8 0.837 45.7 0.882 44.1 0.879 45.6

1400 0.861 48.1 0.852 49.4 0.910 48.2 0.892 50.2

1600 0.875 54.3 0.864 55.8 0.921 54.6 0.913 55.7

DRE. In each case we repeat the simulation 1000 times. The results are presented in
Table 3. Observing Tables 2 and 3, the message is similar as before and we can find
that EL consistently achieves slightly higher coverage probabilities than DRE.

5 Real data application

We further illustrate our proposed method by applying the heteroscedastic partially
linear single index model to data from AIDS Clinical Trials Group Protocol 175
(ACTG175) which has been analyzed by Hammer et al. (1996), Davidian et al. (2005)
and Lai and Wang (2014). CD4 is a co-receptor that assists the T cell receptor (TCR)
with an antigen-presenting cell, and many HIV clinical trials focus on comparing
treatment effects on CD4 count after a specified period. ACTG175 data concludes
four antiretroviral regimens [zidovudine (ZDV)monotherapy, ZDV+didanosine (ddI),
ZDV+zalcitabine, ddI] and randomizes 2139 patients to four antiretroviral regimens
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Table 4 95% confidence intervals based on EL and DRE, and estimators for (β�, θ�)�

(β̂�, θ̂�)� Confidence intervals

EL DRE

hemo 0.0044 [−0.0507, 0.0932] [−0.3218, 0.3305]

homo 0.0054 [−0.0526, 0.0103] [−0.1784, 0.1892]

drugs 0.0010 [−0.0543, 0.0597] [−0.2795, 0.2814]

karnof 0.0001 [−0.0482, 0.0504] [−0.0136, 0.0138]

race − 0.0019 [−0.0685, 0.0306] [−0.1890, 0.1851]

gender − 0.0039 [−0.0881, 0.0109] [−0.2274, 0.2196]

str2 − 0.0089 [−0.0138, −0.0405] [−0.1697, 0.1520]

symptom − 0.0088 [−0.0137, −0.0394] [−0.2290, 0.2115]

age 0.5687 [0.2687, 0.9687] [−0.6460, 0.7597]

wtkg − 0.5925 [−0.9925, −0.2925] [−1.1214, 1.0029]

cd80 0.0447 [−0.1553, 0.3947] [−0.5243, 0.5332]

cd820 − 0.0989 [−0.1489, 0.1511] [−0.5509, 0.5311]

cd40 − 0.4832 [−0.8332, −0.1832] [−0.6623, 0.5657]

cd420 0.3701 [0.0701, 0.5701] [−0.5681, 0.6421]

in equal proportions. The findings of ACTG 175 indicate that antiretroviral therapy
could reduce the risk in people with intermediate stage HIV disease and no symptoms.

In this paper, we will build a heteroscedastic partially linear single-index model for
a subject’s response with ZDV monotherapy. There are 532 patients with CD4 cell
counts between 200 and 500 per cubicmillimeter. The responseY is the CD4 cell count
at 96 ± 5 weeks (CD496). Because some CD496 are missing in the ACTG175 data,
we consider a subset of the ACTG175 data representing 321 samples from subjects
with CD496. The predictor variables are age, wtkg, hemo, homo, drugs, karnof, race,
gender, str2, symptom, CD40, CD420, CD80 and CD820. We divide the discrete
variables (hemo, homo, drugs, karnof , race, gender, str2, symptom) into the linear part
and the standardized continuous variables (age,wtkg, CD80, CD820, CD40, CD420)
into the single-index part. Furthermore, we standardize the response variable CD496,
and build the following heteroscedastic partially linear single-index model

Y = X�β + g
(
Z�θ

)
+ ε,

where X� = (hemo, homo, drugs, karnof , race, gender, str2, symptom), Z� =
(age,wtkg, CD80, CD820, CD40,CD420), Y = CD496 and g(·) is an unknown func-
tion. According to the plot of estimated errors in Lai and Wang (2014), we can find
that ε is heteroscedastic. Using the method proposed in Sect. 2, we can obtain the
estimators and confidence intervals for the parameters, and the results are summa-
rized in Table 4. It is seen from Table 4 that the confidence intervals based on the
empirical likelihood method are somewhat different from those of the doubly robust
and efficient method. The doubly robust and efficient method gives larger intervals
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and imposes symmetry on the confidence intervals. Lai and Wang (2014) analyzed
the ACTG175 data by using the variable selection method. They found that the effect
of CD40 and CD420 were significant, and the corresponding variables were included
in the final fitted model. From Table 4, we find that the confidence intervals based
on the empirical likelihood method of CD40 and CD420 do not cover the zero point.
However, the confidence intervals based on the doubly robust and efficient method
of CD40 and CD420 cover the zero point, which mean that the effect of CD40 and
CD420 are insignificant. In addition, according to the empirical likelihood method,
the coefficient of antiretroviral history (str2), symptomatic indicator (symptom) and
weight (wtkg) are significantly negative and the coefficient of age is significantly pos-
itive. These factors play an important role for four different antiretroviral regimens.
We think that those findings corroborate the results in Lai andWang (2014) very well.
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Appendix

To prove the main theorems, we need to give the following set of conditions.

Assumption 1 Let Var(Xi ) = �xi and Var(Zi ) = �zi , the eigenvalues of �xi and
�zi satisfy C1 ≤ γ1(�xi ) ≤ · · · ≤ γp(�xi ) ≤ C2 and C1 ≤ γ1(�zi ) ≤ · · · ≤
γr (�zi ) ≤ C2 for some constants 0 < C1 < C2, for i = 1 · · · n. There is a constant
δ > 0 such that E(ε4+δ|X, Z) < ∞.

Assumption 2 There are v(·), η = η(X, Z), such that E(ε2|X, Z) = v(η), 0 <

C1 < v(·) < C2 < ∞ for some constants 0 < C1 < C2, and The eigenvalues of
Var(Xi |η(Xi , Zi )) are bounded away from zero and infinity.

Assumption 3 There exists v1(X, Z) such that

∣∣∣∣
∂2E(X |Z�θ)

∂θi∂θ j

∣∣∣∣ ,
∣∣∣∣
∂2E(Z |Z�θ)

∂θi∂θ j

∣∣∣∣ ,
∣∣∣∣
∂2E(w|Z�θ)

∂θi∂θ j

∣∣∣∣ ,
∣∣∣∣
∂2E(wZ |Z�θ)

∂θi∂θ j

∣∣∣∣ ,
∣∣∣∣
∂2E(wX |Z�θ)

∂θi∂θ j

∣∣∣∣ < v1(X, Z), Ev21 < ∞, (i, j = 2, . . . , r).

Further there exists v2(X, Z) such that

∣∣∣∣
∂3η(X, Z)

∂γi∂γ j∂γl

∣∣∣∣ < v2(X, Z), Ev22 < ∞, (i, j, l = 1, . . . , p + r),
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where (X�, Z�)� = (γ1, . . . , γp+r )
�. Further there exists v3(X, Z) such that

∣∣∣∣
∂4g(Z�θ)

∂θi∂θ j∂θk∂θl

∣∣∣∣ ,
∣∣∣∣

∂4v(η)

∂ηi1∂η j1∂ηk1∂ηl1

∣∣∣∣ < v3(X, Z), Ev23 < ∞,

where the dimension of η is p1, and i, j, k, l = 2, . . . , r , i1, j1, k1, l1 = 1, . . . , p1.

Assumption 4 Assume that the random variable η and Z�θ have densities fη(η) and
fZ�θ (Z

�θ), satisfying 0 < inf fη(η) ≤ sup fη(η) < ∞ and 0 < inf fZ�θ (Z
�θ) ≤

sup fZ�θ (Z
�θ) < ∞. Further there exists v4(X, Z) such that

∣∣∣∣
∂2 fZ�θ (Z

�θ))

∂θi∂θ j

∣∣∣∣ ,
∣∣∣∣
∂2 fη(η)

∂ηk∂ηl

∣∣∣∣
< v4(X, Z), Ev24 < ∞, (i, j = 2, . . . , p; k, l = 1, . . . , p1).

Assumption 5 The kernel function Kh(·) is symmetric and its derivative is continuous
with compact support contained in [−1, 1].
Assumption 6 The bandwidths hi satisfy log2(n)/(nhi ) → 0 for i = 1, 2, 3. In
addition, nh41 → ∞, nh81 → 0, h41 log

2(n)/hi → 0 and log4(n)/(nh1hi ) → 0 for
i = 1, 2, 3, h2 = O(n−1/5) and h3 = O(n−1/5).

Assumption 7 p, r → ∞, pn−1/5 → 0, rn−1/5 → 0, as n → ∞.

Assumption 8 E‖X‖4 < ∞, E‖Z‖4 < ∞, E‖εX‖4 < ∞, E‖εZ‖4 < ∞ and
E |ε|4 < ∞.

Assumption 9 Let

ξn(β, θ) = wε

[
X� − E(wX�|Z�θ)

E(w|Z�θ)
, g′(Z�θ)

{
Z� − E(wZ�|Z�θ)

E(w|Z�θ)

}]�
,

and ξnl(β, θ) be the l-th component of ξn(β, θ), l = 1, . . . , p, p + 2, . . . , p + r .
As n → ∞, there is a positive constant C such that, E(‖ξn(β, θ)/

√
p‖4) < C ,

E(‖XX�‖4) < C , E(‖X Z�‖4) < ∞ and E(‖Z X�‖4) < C .

Assumptions 1–6 ensure the function g(Z�
i θ), g′(Z�

i θ), w(Xi , Zi ), E{ŵ(X, Z)

|Z�
i θ}, E{ŵ(X, Z)X |Z�

i θ} and E{ŵ(X, Z)Z−1|Z�
i θ} are estimated with retained

precision and the nonparametric estimation does not affect the asymptotic result of
the estimated empirical likelihood ratio, i.e., the estimated empirical likelihood ratio
L̃(β, θ) has the same asymptotic distribution as the ordinary empirical likelihood
ratio L(β, θ). Furthermore, Assumptions 1–6 ensure the existence of the estimator
(β̂�, θ̂�)� for parameters (β�, θ�)�. Assumption 7 is a technical condition, and
Assumption 8 ensures that there exists an asymptotic variance for the estimator of the
growing parameters (β�, θ�)�. Assumption 9 controls the tail probability behavior
of the estimating equation. Because establishing the asymptotic theoretical results for
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empirical likelihood approach under the situation with diverging dimensionality on
covariates is very challenging, these conditions are not the weakest possible and the
bounds in the stochastic analysis are conservative. This is also the case in Ma and Zhu
(2013), these strong conditions facilitate technical derivations.

Let l̃(λ, β, θ) = n−1∑n
i=1 log

{
1 + λ�ξ̂i (β, θ)

}
, ¯̂
ξ(β, θ) = n−1∑n

i=1 ξ̂i (β, θ),

an = Op{(p/n)1/2} andC will denote a generic positive constant thatmay be different
in different uses throughout the “Appendix”. In addition, we use the Frobenius norm

of a matrix A, defined as ‖A‖ = {tr(A�A)} 1
2 , where tr(A) denotes the trace of

matrix A.

Proof of Theorem 2.1

Proof We first expand

0 = 1√
n
A2

n∑
i=1

{
Yi − X�

i β̂ + ĝ′ (Z�
i θ̂
)}

ŵi ĝ
′ (Z�

i θ̂
)
⎧⎨
⎩Zi −

Ê
(
ŵZ |Z�

i θ̂
)

Ê
(
ŵ|Z�

i θ̂
)
⎫⎬
⎭

= 1√
n

n∑
i=1

ŵi ĝ
′ (Z�

i θ̂
)
A2

{
Zi − E

(
wZ |Z�

i θ0
)

E
(
w|Z�

i θ0
)
}
X�
i

(
β0 − β̂

)

+ 1√
n

n∑
i=1

ŵi ĝ
′ (Z�

i θ̂
)
A2

⎧⎨
⎩
E
(
wZ |Z�

i θ0
)

E
(
w|Z�

i θ0
) −

Ê
(
ŵZ |Z�

i θ̂
)

Ê
(
ŵ|Z�

i θ̂
)
⎫⎬
⎭ X�

i

(
β0 − β̂

)

+ 1√
n

n∑
i=1

{
g
(
Z�
i θ0

)
− ĝ

(
Z�
i θ0

)}
ŵi ĝ

′ (Z�
i θ̂
)
A2

{
Zi − E

(
wZ |Z�

i θ0
)

E
(
w|Z�

i θ0
)
}

+ 1√
n

n∑
i=1

{
g
(
Z�
i θ0

)
− ĝ

(
Z�
i θ0

)}
ŵi ĝ

′ (Z�
i θ̂
)
A2

{
E
(
wZ |Z�

i θ0
)

E
(
w|Z�

i θ0
)

−
Ê
(
ŵZ |Z�

i θ̂
)

Ê
(
ŵ|Z�

i θ̂
)
⎫⎬
⎭

+ 1√
n

n∑
i=1

{
g
(
Z�
i θ0

)
− ĝ

(
Z�
i θ̂
)}

ŵi ĝ
′ (Z�

i θ̂
)
A2

⎧⎨
⎩Zi −

Ê
(
ŵZ |Z�

i θ̂
)

Ê
(
ŵ|Z�

i θ̂
)
⎫⎬
⎭

+ 1√
n

n∑
i=1

εi ŵi ĝ
′ (Z�

i θ̂
)
A2

⎧
⎨
⎩Zi −

Ê
(
ŵZ |Z�

i θ̂
)

Ê
(
ŵ|Z�

i θ̂
)
⎫
⎬
⎭ . (17)

Similar to the proof of Proposition 2 in Ma and Zhu (2013), we can obtain from the
second equation in (3) that

A2E

[
wg′ (Z�θ0

){
Z − E

(
wZ |Z�θ0

)

E
(
w|Z�θ0

)
}
X�

]√
n
(
β̂ − β0

)
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+A2E

[
w{g′ (Z�θ0

)
}2
{
Z − E

(
wZ |Z�θ0

)

E
(
w|Z�θ0

)
}
Z�

]√
n
(
θ̂ − θ0

)

= 1√
n

n∑
i=1

εiwi g
′ (Z�

i θ0

)
A2

{
Zi − E

(
wZ |Z�

i θ0
)

E
(
w|Z�

i θ0
)
}

+ op (1) . (18)

Similarly, from the first equation in (3), we have that

A1E

[
w

{
X − E

(
wX |Z�θ0

)

E
(
w|Z�θ0

)
}
X�

]
√
n
(
β̂ − β0

)

+A1E

[
wg′ (Z�θ0

){
X − E

(
wX |Z�θ0

)

E
(
w|Z�θ0

)
}
Z�

]√
n
(
θ̂ − θ0

)

= 1√
n

n∑
i=1

εiwi A1

{
Xi − E

(
wX |Z�

i θ0
)

E
(
w|Z�

i θ0
)
}

+ op (1) . (19)

Combining (17) and (18) implies that

AV 1/2
(

β̂ − β0

θ̂ − θ0

)
=AV−1/2

⎛
⎜⎜⎝

1√
n

n∑
i=1

εiwi

{
Xi − E

(
wX |Z�

i θ0
)

E
(
w|Z�

i θ0
)
}

1√
n

n∑
i=1

εiwi g′ (Z�
i θ0

) {
Zi − E

(
wZ |Z�

i θ0
)

E
(
w|Z�

i θ0
)
}

⎞
⎟⎟⎠+op(1).

Applying the Lindeberg–Feller central limit theorem, we can establish

√
nAV 1/2

{(
β̂�, θ̂�)� −

(
β�
0 , θ�

0

)�} → N (0,G)

in distribution, and the proof of Theorem 2.1 is completed. �

Next, we present the following lemmas before proving Theorem 2.2.

Lemma 5.1 UnderAssumptions of Theorem2.2,max1≤i≤n ‖ξ̂i (β, θ)‖ = op(n1/4
√
p)

and max1≤i≤n |λ�ξ̂i (β, θ)| = op(1) for all λ = Op(an).

Proof From Assumptions 8 and 9, for any ε > 0,

P

{
max
1≤i≤n

‖ξi (β, θ) ‖ ≤ n1/4
√
pε

}
≤

n∑
i=1

P
{
‖ξi (β, θ) ‖ ≤ n1/4

√
pε
}

≤ 1

np2ε4

n∑
i=1

E‖ξi (β, θ) ‖4

= 1

εk
E‖ξ1 (β, θ) /

√
p‖4. (20)
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By Cauchy–Schwarz inequality, ‖ξ1(β, θ)/
√
p‖4 ≤ 1/p

∑p+r
l=1 |ξ1l(β, θ)|4, where

ξ1l(β, θ) are the lth component of ξ1(β, θ). According to (20), we have

max
1≤i≤n

‖ξi (β, θ)‖ = op
(
n1/4

√
p
)

.

Similar to the proof of (17) and (18) above, it is easy to check that

‖ξ̂i (β, θ)‖ = ‖ξi (β, θ)‖ + Op(p).

Then, by Assumption 7, we have

‖ξ̂i (β, θ) ‖ = op
(
n1/4

√
p
)

+ Op (p) = op
(
n1/4

√
p
)

,

and for all λ = Op(an),

max
1≤i≤n

|λ�ξ̂i (β, θ)| = op(1).

The proof of Lemma 5.1 is completed. �

Lemma 5.2 Under Assumptions of Theorem 2.2, ‖Sn − V ‖ = Op(p/

√
n), where

Sn = 1/n
∑n

i=1 ξ̂i (β, θ)ξ̂i (β, θ)�.

Proof Similar to the proof of Lemma 5.4 in Chen et al. (2009), we have tr{(Sn −
V )⊗2} = Op(p2/n). Therefore, by the definition of Frobenius norm, ‖Sn − V ‖ =
{tr [(Sn − V )�(Sn − V )]}1/2 = Op(p/

√
n). �


Lemma 5.3 Under Assumptions of Theorem 2.2, ‖λ‖ = Op(an), where λ is the root
of (8).

Proof According to (8), λ ∈ R
p+r satisfies

0 = 1

n

n∑
i=1

ξ̂i (β, θ)

1 + λ�ξ̂i (β, θ)
=: ψ(λ).

Let λ = ρα, where ρ ≥ 0, α ∈ R
p+r and ‖α‖ = 1. Substituting 1/(1+λ�ξ̂i (β, θ)) =

1 − λ�ξ̂i (β, θ)/(1 + λ�ξ̂i (β, θ)) into α�ψ(λ) = 0, we have

|α� ¯̂
ξi (β, θ)| ≥ ρ

1 + ρ max
1≤i≤n

‖ξi (β, θ)‖α�Snα,

where Sn = 1
n

n∑
i=1

ξ̂i (β, θ)ξ̂i (β, θ)�. Because of

0 < 1 + λ�ξ̂i (β, θ) ≤ 1 + ρ max
1≤i≤n

‖ξi (β, θ)‖,
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we have

ρ[α�Snα − α�ξ̂i (β, θ) max
1≤i≤n

‖ξi (β, θ)‖] ≤
∣∣∣α� ¯̂

ξi (β, θ)

∣∣∣ . (21)

Because |α� ¯̂
ξi (β, θ)| ≤ ‖¯̂

ξi (β, θ)‖ = Op(
√
p/n) and Lemma 5.1, then

max
1≤i≤n

‖ξi (β, θ)‖
∣∣∣α� ¯̂

ξi (β, θ)

∣∣∣ = op(1). (22)

By combining (21) and (22), we have

|ρ[α�Snα + op(1)]| = Op(
√
p/n).

According to Lemma 5.2, for a constant C1 > 0, P(α�Snα ≥ 1
2C1) → 1 as n → ∞.

Hence, ρ = Op(
√
p/n), that is ‖λ‖ = ρ = Op(

√
p/n), and the proof of Lemma 5.3

is completed. �

Lemma 5.4 Under Assumptions of Theorem 2.2, as n → ∞,

{2 (p + r − 1)}−1

⎧
⎨
⎩

(
1√
n

n∑
i=1

ξ̂i (β, θ)

)�
V−1

(
1√
n

n∑
i=1

ξ̂i (β, θ)

)

− (p + r − 1)} L→ N (0, 1).

Proof The proof entails applying the martingale central limit theorem as given in Hall
and Hyde (1980), and is omitted. �

Lemma 5.5 Under Assumptions of Theorem 2.2,

{
1√
n

n∑
i=1

ξ̂i (β, θ)

}� (
S−1
n − V−1

){ 1√
n

n∑
i=1

ξ̂i (β, θ)

}
= op

(√
p
)
.

Proof Let Dn = V−1/2SnV−1/2− Ip+r , where Ip+r is the p+r dimensional identity
matrix.

S−1
n − V−1 = V−1/2

(
V 1/2S−1

n V 1/2 − Ip+r

)
V−1/2

= V−1/2
{
−Dn + D2

n + D2
n

(
V 1/2S−1

n V 1/2 − Ip+r

)}
V−1/2.

It is easy to check that

tr (Sn − V ) = tr
(
V 1/2

(
V−1/2SnV

−1/2 − Ip+r

)
V 1/2

)

= tr (DnV DnV ) ≥ γ 2
1 (V ) tr

(
D2
n

)
,
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where γ1(V ) is the smallest eigenvalue of V . Similar to the proof of Lemma 5.4 in
Chen et al. (2009), we have

tr
(
D2
n

)
≤ tr

{
(Sn − V )2

}
= Op

(
p2/n

)
.

Then

tr
(
S−1
n − V−1

)2 ≤ 2tr

{
V−2

(
−Dn + D2

n

)2}+ 2tr

{
D4
n

(
S−1
n − V−1

)2}

≤ 2tr

{
V−2

(
−Dn + D2

n

)2}

+2
{
tr
(
D2
n

)}2
tr

{(
S−1
n − V−1

)2}

= 2tr

{
V−2

(
−Dn + D2

n

)2}+ op

(
tr

{(
S−1
n − V−1

)2})

= op
(
p2/n

)
.

Because ‖ 1
n

∑n
i=1 ξ̂i (β, θ)‖ = Op(

√
p/n), we can obtain

{
1√
n

∑n
i=1 ξ̂i (β, θ)

}� (
S−1
n − V−1

) { 1√
n

∑n
i=1 ξ̂i (β, θ)

}

≤ n‖ 1
n

∑n
i=1 ξ̂i (β, θ) ‖2

√
tr
(
S−1
n − V−1

)2 = op
(√

p
)
.

�

Proof of Theorem 2.2

Proof Put Wi = λ�ξ̂i (β, θ), i = 1, . . . , n. By expanding Eq. (8), we obtain

0 =
n∑

i=1

ξ̂i (β, θ)

1 + λ�ξ̂i (β, θ)
=

n∑
i=1

ξ̂i (β, θ) −
n∑

i=1

{
ξ̂i (β, θ) ξ̂i (β, θ)�

}
λ + Rn, (23)

where Rn = ∑n
i=1

ξ̂i (β,θ)(λ� ξ̂i (β,θ))2

(1+ϑi )
3 and |ϑi | ≤ |λ�ξ̂i (β, θ)|. By Lemma 5.1, we have

max1≤i≤n |ϑi | = op(1). Hence Rn = Rn1{1 + op(1)}, where

Rn1 =
n∑

i=1

ξ̂i (β, θ)
(
λ�ξ̂i (β, θ)

)2
.

Apply Lemmas 5.1 and 5.3, we obtain

‖n−1Rn‖ ≤ C‖λ‖2 max
1≤i≤n

‖ξ̂i (β, θ)‖n−1
n∑

i=1

‖ξ̂i (β, θ)‖2 = op(an). (24)
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By (23), we have

λ =
{

n∑
i=1

ξ̂i (β, θ)ξ̂i (β, θ)�
}−1 n∑

i=1

ξ̂i (β, θ) +
{

n∑
i=1

ξ̂i (β, θ)ξ̂i (β, θ)�
}−1

Rn .

Applying Taylor’s expansion, for some ζi such that |ζi | ≤ |λ�ξ̂i (β, θ)|, we obtain

log
(
1 + λ�ξ̂i (β, θ)

)
= λ�ξ̂i (β, θ) −

{
λ�ξ̂i (β, θ)

}2

2
+
{
λ�ξ̂i (β, θ)

}3

3 (1 + ζi )
4 .

Therefore,

l̃ (β, θ) =
(

1√
n

n∑
i=1

ξ̂i (β, θ)

)� {
1

n

n∑
i=1

ξ̂i (β, θ) ξ̂i (β, θ)�
}−1 (

1√
n

n∑
i=1

ξ̂i (β, θ)

)

−1

n
R�
n

{
1

n

n∑
i=1

ξ̂i (β, θ) ξ̂i (β, θ)�
}−1

Rn +
n∑

i=1

2
{
λ�ξ̂i (β, θ)

}3

3 (1 + ζi )
4

=
(

1√
n

n∑
i=1

ξ̂i (β, θ)

)�
V−1

(
1√
n

n∑
i=1

ξ̂i (β, θ)

)

+
(

1√
n

n∑
i=1

ξ̂i (β, θ)

)�⎡
⎣
{
1

n

n∑
i=1

ξ̂i (β, θ) ξ̂i (β, θ)�
}−1

− V−1

⎤
⎦

×
(

1√
n

n∑
i=1

ξ̂i (β, θ)

)
− 1

n
R�
n

{
1

n

n∑
i=1

ξ̂i (β, θ) ξ̂i (β, θ)�
}−1

Rn

+2

3

n∑
i=1

{
λ�ξ̂i (β, θ)

}3 {
1 + op (1)

}
. (25)

By Lemma 5.5, we have

(
1√
n

n∑
i=1

ξ̂i (β, θ)

)�⎡
⎣
{
1

n

n∑
i=1

ξ̂i (β, θ) ξ̂i (β, θ)�
}−1

− V−1

⎤
⎦

×
(

1√
n

n∑
i=1

ξ̂i (β, θ)

)
= op (1) . (26)

By Lemmas 5.1–5.3 and (24), we can obtain

1

n
R�
n

{
1

n

n∑
i=1

ξ̂i (β, θ) ξ̂i (β, θ)�
}−1

Rn = op (1) , (27)
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and

2

3

n∑
i=1

{
λ�ξ̂i (β, θ)

}3 {
1 + op (1)

} = op
(√

p
)
. (28)

It follows from (25)–(28) that

l̃ (β, θ) =
(

1√
n

n∑
i=1

ξ̂i (β, θ)

)�
V−1

(
1√
n

n∑
i=1

ξ̂i (β, θ)

)
+ op

(√
p
)
.

Hence the theorem follows from Lemmas 5.4 and 5.5, and the proof of Theorem 2.2
is completed. �


Proof of Theorem 2.3

Proof We first prove that max1≤i≤n ‖ ˆ̃
ξi (β

(1))‖ = op(n1/2). It can be shown that

ˆ̃
ξi (β) = ŵi

{
Yi − X (1)�

i β(1) − X (2)�
i β̂(2) − ĝ

(
Z�
i θ̂

)}
⎧⎨
⎩X (1)

i −
Ê
(
ŵX (1)|Z�

i θ̂
)

Ê
(
ŵ|Z�

i θ̂
)

⎫⎬
⎭

= {
wi

(
1 + op (1)

)} {
εi + X�

i

(
β − β̂

)
+ X (1)�

i

(
β̂(1) − β(1)

)
+
(
g
(
Z�
i θ̂

)

−ĝ
(
Z�
i θ̂

))}

×
⎧⎨
⎩

⎛
⎝X (1)

i −
E
(
wX (1)|Z�

i θ̂
)

E
(
w|Z�

i θ̂
)

⎞
⎠+

⎛
⎝ E

(
wX (1)|Z�

i θ̂
)

E
(
w|Z�θ̂

) −
Ê
(
ŵX (1)|Z�

i θ̂
)

Ê
(
ŵ|Z�

i θ̂
)

⎞
⎠
⎫⎬
⎭

= Mi1 + Mi2 + Mi3 + Mi4 + Mi5 + Mi6 + Mi7 + Mi8, (29)

where

Mi1 = {wi
(
1 + op (1)

)}εi
⎧⎨
⎩X (1)

i −
E
(
wX (1)|Z�

i θ̂
)

E
(
w|Z�

i θ̂
)

⎫⎬
⎭ ,

Mi2 = {wi
(
1 + op (1)

)}εi
⎧⎨
⎩
E
(
wX (1)|Z�

i θ̂
)

E
(
w|Z�θ̂

) −
Ê
(
ŵX (1)|Z�

i θ̂
)

Ê
(
ŵ|Z�θ̂

)
⎫⎬
⎭ ,

Mi3 = {wi
(
1 + op (1)

)}X�
i

(
β − β̂

)
⎧⎨
⎩X (1)

i −
E
(
wX (1)|Z�

i θ̂
)

E
(
w|Z�

i θ̂
)

⎫⎬
⎭ ,

Mi4 = {wi
(
1 + op (1)

)}X�
i

(
β − β̂

)
⎧
⎨
⎩
E
(
wX (1)|Z�

i θ̂
)

E
(
w|Z�θ̂

) −
Ê
(
ŵX (1)|Z�

i θ̂
)

Ê
(
ŵ|Z�θ̂

)
⎫
⎬
⎭ ,
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Mi5 = {wi
(
1 + op (1)

)}X (1)�
i

(
β̂(1) − β(1)

)
⎧⎨
⎩X (1)

i −
E
(
wX (1)|Z�

i θ̂
)

E
(
w|Z�

i θ̂
)

⎫⎬
⎭ ,

Mi6 = {wi
(
1 + op (1)

)}X (1)�
i

(
β̂(1)

−β(1)
)
⎧⎨
⎩
E
(
wX (1)|Z�

i θ̂
)

E
(
w|Zi θ̂

) −
Ê
(
ŵX (1)|Z�

i θ̂
)

Ê
(
ŵ|Z�θ̂

)
⎫⎬
⎭ ,

Mi7 = {wi
(
1 + op (1)

)}
(
g
(
z�i θ̂

)
− ĝ

(
Z�
i θ̂
))

⎧
⎨
⎩X (1)

i −
E
(
wX (1)|Z�

i θ̂
)

E
(
w|Z�

i θ̂
)

⎫
⎬
⎭ ,

Mi8 = {wi
(
1 + op (1)

)}
(
g
(
z�i θ̂

)

−ĝ
(
Z�
i θ̂
))

⎧⎨
⎩
E
(
wX (1)|Z�

i θ̂
)

E
(
w|Z�

i θ̂
) −

Ê
(
ŵX (1)|Z�

i θ̂
)

Ê
(
ŵ|Z�θ̂

)
⎫⎬
⎭ .

By (29), we can obtain that

max
1≤i≤n

‖ ˆ̃
ξi (β

(1))‖ ≤ max
1≤i≤n

‖Mi1‖ + max
1≤i≤n

‖Mi2‖ + max
1≤i≤n

‖Mi3‖ + max
1≤i≤n

‖Mi4‖
+ max

1≤i≤n
‖Mi5‖ + max

1≤i≤n
‖Mi6‖ + max

1≤i≤n
‖Mi7‖ + max

1≤i≤n
‖Mi8‖.

Similar to the proof of Proposition 2 in Ma and Zhu (2013), it is easy to show that

max
1≤i≤n

‖Ml1‖ = op(n
1/2), l = 1, . . . , 8.

Therefore, we have max1≤i≤n ‖ ˆ̃
ξi (β

(1))‖ = op(n1/2). In addition, from the proof of
Theorem 3.1 in Li and Wang (2003), as n → ∞, we can also show that

1√
n

n∑
i=1

ˆ̃
ξi

(
β(1)

)
L−→ N

(
0, V1

(
β(1)

))
, (30)

1

n

n∑
i=1

ˆ̃
ξi

(
β(1)

) ˆ̃
ξ�
i

(
β(1)

)
p−→ V1

(
β(1)

)
, (31)

where

V1
(
β(1)

)
= E

⎧
⎨
⎩wX (1)X (1)� −

E
(
wX (1)|Z�θ̂

)
E
(
wX (1)T |Z�θ̂

)

E
(
w|Z�θ̂

)
⎫
⎬
⎭
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and
p→ stands for convergence in probability. By max1≤i≤n ‖ ˆ̃

ξi (β
(1))‖ = op(n1/2)

and Talor expansion to (10), we can obtain that

l̃
(
β(1)

)
= 2

n∑
i=1

λ(1)� ˆ̃
ξi

(
β(1)

)
−

n∑
i=1

{
λ(1)� ˆ̃

ξi

(
β(1)

)}2 + op (1) . (32)

Similar to the proof of Theorem 17 in Owen (1990), we have

n∑
i=1

{
λ(1)� ˆ̃

ξi

(
β(1)

)}2 =
n∑

i=1

λ(1)� ˆ̃
ξi

(
β(1)

)
+ op (1) , (33)

λ(1) =
{

n∑
i=1

ˆ̃
ξi

(
β(1)

) ˆ̃
ξi

(
β(1)

)�
}−1 n∑

i=1

ˆ̃
ξi

(
β(1)

)
+ op

(
n−1/2

)
. (34)

Combining (32)–(34) implies that

l̃
(
β(1)

)

=
{

1√
n

n∑
i=1

ˆ̃
ξi

(
β(1)

)}� {
1

n

n∑
i=1

ˆ̃
ξi

(
β(1)

) ˆ̃
ξ�
i

(
β(1)

)}−1 {
1√
n

n∑
i=1

ˆ̃
ξi

(
β(1)

)}

+op (1) .

Therefore, together with (30) and (31), we can show that l̃(β(1))
L→ χ2

k , and the proof
is completed. �


The partially linear model or the single-indexmodel is a special case of the partially
linear single-index model. We can prove Theorems 3.1 and 3.2 by using the same
arguments in the proofs of Theorems 2.1–2.3, hence their proofs are omitted.

References

Bai Z, Saranadasa H (1996) Effect of high dimension: by an example of a two sample problem. Stat Sin
6:311–329

Carroll R, Fan J, Gijbels I, Wand M (1997) Generalized partially linear single-index models. J Am Stat
Assoc 92:477–489

Chen S, Hall F (1993) Smoothed empirical likelihood confidence intervals for quantiles. Ann Stat 21:1166–
1181

Chen S, Peng L, Qin Y (2009) Effects of data dimension on empirical likelihood. Biometrika 96:712–722
Davidian M, Tsiatis A, Leon S (2005) Semiparametric estimation of treatment effect in a pretest-posttest

study with missing data. Stat Sin 20:261–301
Donohn D (2000) High-dimensional data analysis: high-dimensional data analysis: the curses and blessings

of dimensionality. Aide-memoire of a lecture at AMS conference on math challenges of the 21st
century

Engle R, Granger C, Rise J, Weiss A (1986) Semiparametric estimates of the relation between weather and
electricity sales. J Am Stat Assoc 81:310–320

Hall P, Hyde C (1980) Martingale central limit theory and its applications. Academic Press, New York

123



Empirical likelihood for heteroscedastic partially linear… 281

Hammer S, Katzenstein D, Hughes M et al (1996) For the AIDS clinical trials group study 175 study team:
a trial comparing nucleoside monotherapy with combination therapy in HIV-infected adults with CD4
cell counts from 200 to 500 per cubic millimeter. New Engl J Med 20:1081–1089

HjortH,Mckeague I,VanKeilegom I (2009) Extending the scope of empirical likelihood.AnnStat 37:1079–
1111

Huber P (1973) Robust regression: asymptotics, conjectures and Monte Carlo. Ann Stat 1:799–821
Kolaczyk E (1994) Empirical likelihood for generalized linear models. Stat Sin 4:199–218
Lai P, Wang Q (2014) Semiparametric efficient estimation for partially linear single-index models with

responses missing at random. J Multivar Anal 128:33–50
Ledoit O, Wolf M (2002) Some hypothesis tests for the covariance matrix when the dimension is large

compared to the sample size. Ann Stat 30:1081–1102
Li G, Wang Q (2003) Empirical likelihood regression analysis for right censored data. Stat Sin 13:51–68
Lu X (2009) Empirical likelihood for heteroscedastic partially linear models. J Multivar Anal 100:387–395
Lu X, Qi Y (2004) Empirical likelihood for the additive risk model. Probab Math Stat 24:419–431
Ma Y, Zhu L (2013) Doubly robust and efficient estimators for heteroscedastic partially linear single-index

models allowing high dimensional covariates. J R Stat Soc Ser B 75:305–322
MaY,Chiou J,WangN (2006)Efficient semiparametric estimator for heteroscedastic partially linearmodels.

Biometrika 943:75–84
OwenA (1988) Empirical likelihood ratio confidence intervals for a single function. Biometrika 75:237–249
Owen A (1990) Empirical likelihood ratio confidence regions. Ann Stat 18:90–120
Owen A (1991) Empirical likelihood for linear models. Ann Stat 19:1725–1747
Owen A (2001) Empirical likelihood. Chapman and Hall, London
Qin J, Lawless J (1994) Empirical likelihood and general estimating equations. Ann Stat 22:300–325
Qin G, Jing B (2001) Empirical likelihood for Cox regression model under random censorship. Commun

Stat Simul Comput 30:79–90
Shi J, Lau T (2000) Empirical likelihood for partially linear models. J Multivar Anal 72:132–148
Tsao M (2004) Bounds on coverage probabilities of the empirical likelihood ratio confidence regions. Ann

Stat 32:1215–1221
Wang Q, Rao J (2002) Empirical likelihood-based inference in linear errors-in-covariables models with

validation data. Biometrika 89:345–358
Xia H, Härdle W (2006) Semi-parametric estimation of partially linear single-index models. J Multivar

Anal 97:1162–1184
Xia Y, Tong H, Li W (1999) On extended partially linear single-index models. Biometrika 86:831–842
Xia Y, Tong H, Li W, Zhu L (2002) An adaptive estimation of dimension reduction space. J R Stat Soc Ser

B 64:363–410
Xue L, Zhu L (2006) Empirical likelihood for single-index models. J Multivar Anal 97:1295–1312
Yu Y, Ruppert D (2002) Penalized spline estimation for partially linear single-index models. J Am Stat

Assoc 97:1042–1054
Zhang J, Wang T, Zhu L, Liang H (2012) A dimension reduction based approach for estimation and

variable selection in partially linear single-index models with high-dimensional covariates. Electron
J Stat 6:2235–2273

Zhu L, Xue L (2006) Empirical likelihood confidence regions in a partially linear single-index model. J R
Stat Soc Ser B 68:549–570

123


	Empirical likelihood for heteroscedastic partially linear single-index models with growing dimensional data
	Abstract
	1 Introduction
	2 Methodology and main results
	3 Two special cases: partially linear models and single-index models
	4 Simulation studies
	5 Real data application
	Acknowledgements
	Appendix
	References




