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Abstract Mukhopadhyay and Padmanabhan (Metrika 40:121–128, 1993) considered
the construction of fixed-width confidence intervals for the difference of location
parameters of two negative exponential distributions via triple sampling when the
scale parameters are unknown and unequal. Under the same setting, this paper deals
with the problemof fixed-width confidence interval estimation for a linear combination
of location parameters, using the above mentioned three-stage procedure.
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1 Introduction

Let {Xi1, Xi2, . . .} (i = 1, 2)be two independent sequences of randomvariableswhere
Xi1, Xi2, . . . are independent and identically distributed (i.i.d.) random variables with
the probability density function (pdf)

f (t;μi , σi ) = 1

σi
exp

(
− t − μi

σi

)
I (t ≥ μi ).
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86 E. Isogai, C. Uno

Here I (·) denotes the indicator function of the set (·) and the four parametersμ1, μ2 ∈
(−∞,∞), σ1, σ2 ∈ (0,∞) are all unknown. This distribution is known as a two-
parameter negative exponential distribution (written as EXP(μi , σi )) and has been
widely used in many reliability and life-testing experiments to describe the failure
times of complex equipment and some small electrical components. In the paper we
consider a linear combination of locations, including the difference of two location
parameters. For any given numbers b1, b2 (b1b2 �= 0) and any preassigned numbers
d (> 0) and 0 < α < 1 we would like to find appropriate sample sizes to construct
a confidence interval J for a linear combination δ = b1μ1 + b2μ2 of two location
parameters based on the random samples {X11, . . . , X1 n1} and {X21, . . . , X2 n2} such
that P{δ ∈ J } ≥ 1 − α for all fixed values of μ1, μ2, σ1, σ2, α and d and that
the length of J is fixed at 2d. Mukhopadhyay and Padmanabhan (1993) designed
three-stage sampling procedures for δ = μ1−μ2 and provided the asymptotic second-
order expansion of the coverage probability P{δ ∈ J } = (1 − α) + Ad + o(d) as d
tends to zero where A is a certain constant. They also gave P{δ ∈ J } = (1 − α) +
o(d) with choosing the “fine-tuning” factors. The theory of a three-stage procedure
was first established by Hall (1981). Many authors have investigated the sequential
estimation problems for the difference of two negative exponential distributions by
using purely and/or two-stage procedures, for instance Mukhopadhyay and Hamdy
(1984), Mukhopadhyay and Mauromoustakos (1987), Hamdy et al. (1989) and Singh
and Chaturvedi (1991). Mukhopadhyay and Zack (2007) dealt with bounded risk
estimation of linear combinations of the location and scale parameters. Isogai and
Futschik (2010) proposed a purely sequential procedure for a linear combination of
locations. Honda (1992) and Yousef et al. (2013) considered the estimation of the
mean by a three-stage procedure when the distribution is unspecified.

In the present paper we construct fixed-width confidence intervals for δ = b1μ1 +
b2μ2 via the three-stage procedure proposed by Mukhopadhyay and Padmanabhan
(1993) when σ1, σ2 are unknown and may be unequal, and derive the asymptotic
second-order expansion of the coverage probability.

In Sect. 2 we give some preliminaries and design the three-stage procedure. Section
3 provides the main results concerning the asymptotic second-order expansion of the
coverage probability. In Sect. 4 we show some simulation results. Section 5 gives all
the proofs of the results in Sect. 3.

2 Preliminaries and a three-stage procedure

Having observed {Xi1, . . . , Xini } from the population �i : EXP(μi , σi ), we define
for ni ≥ 2

Xi ni (1) = min{Xi1, . . . , Xini } , Ui ni = 1

ni − 1

ni∑
j=1

(Xi j − Xi ni (1))

for i = 1, 2 and Xi ni (1) and Ui ni are the estimators of μi and σi . Let n = (n1, n2),
b1 and b2 (b1b2 �= 0) be given numbers and d(> 0) be a preassigned number. We
propose the fixed-width confidence interval of the parameter δ = b1μ1 + b2μ2 with
length 2d
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Three-stage confidence intervals for a linear combination… 87

J (n) = [ δ̂(n) − d, δ̂(n) + d ], where δ̂(n) = b1X1 n1(1) + b2X2 n2(1).

For a preassigned number α ∈ (0, 1) we wish to conclude that P{δ ∈ J (n)} ≥ 1− α.
First of all, we want to find an appropriate sample size Ci which satisfies

P{δ ∈ J (n)} ≥ 1 − α for all ni ≥ Ci (i = 1, 2) (1)

for all fixed μ1, μ2, σ1, σ2, d and α. We will calculate the probability P{δ ∈ J (n)}.
For i = 1, 2, let Vi = |bi |(Xi ni (1) − μi ) and

βi = ni
|bi |σi (> 0). (2)

V1 and V2 are independent and Vi is distributed as EXP(0, β
−1
i ) with pdf gi (s) =

f (s; 0, β−1
i ). First, let us treat the case b1b2 > 0. We can easily see

P{δ ∈ J (n)} = P{−V1 − d � V2 � −V1 + d}
=
∫ d

0
P{0 < V2 < −s + d}g1(s)ds = 1 − e−β1d − β1e

−β2d
∫ d

0
e−(β1−β2)sds,

which provides

P{δ ∈ J (n)} =
{
1 − e−β1d − (β1d)e−β1d if β1 = β2,

1 − (β1d − β2d)−1{(β1d)e−β2d − (β2d)e−β1d} if β1 �= β2.

Let b1b2 < 0. By the argument similar to above we get

P{δ ∈ J (n)} = P{V1 − d � V2 � V1 + d}
= 1 −

{
β2(β1 + β2)

−1e−β1d + β1(β1 + β2)
−1e−β2d

}
.

Thus, utilizing the indicator function I (·), we have the following lemma.

Lemma 1 For any fixed n = (n1, n2) with ni ≥ 2 (i = 1, 2) we have

P{δ ∈ J (n)}

=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1 − {
β2(β1 + β2)

−1e−β1d + β1(β1 + β2)
−1e−β2d

}
for b1b2 < 0,

1 − e−β1d − (β1d)e−β1d

+(β1d)e−β1d
{
1 + ((β2 − β1)d)−1(e−(β2−β1)d − 1)

}
I (β1 �= β2)

for b1b2 > 0.

Let any α ∈ (0, 1) be fixed. For b1b2 < 0 we get

β2(β1 + β2)
−1e−β1d + β1(β1 + β2)

−1e−β2d ≤ α
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88 E. Isogai, C. Uno

if e−βi d ≤ α (i = 1, 2) which is equivalent to ni ≥ a|bi |σi/d ≡ Ci with a = ln α−1.
Hence from Lemma 1 we get P{δ ∈ J (n)} ≥ 1 − α for all ni ≥ Ci (i = 1, 2) which
gives (1). Next we consider the case b1b2 > 0. Let u(x) = (1+ x)e−x for x > 0. We
can easily show that the function u(x) is strictly decreasing on (0,∞) with u(0) = 1
and u(+∞) = 0 and hence there exists a unique solution a0(> 0) satisfying that
u(a0) = α. Let us define the function h(x, y) on R

2+ as

h(x, y) =
{

(x − y)−1(xe−y − ye−x ) when x �= y,
u(x) when x = y,

where R+ = (0,∞). After some calculations we have

h(x, y) ≤ h(a0, y) ≤ u(a0) = α for all x ≥ a0 and y ≥ a0.

It follows from Lemma 1 that P{δ ∈ J (n)} = 1− h(β1d, β2d), which, together with
the above inequality, yields that P{δ ∈ J (n)} ≥ 1 − α if βi d ≥ a0 for i = 1, 2. Let
Ci = a0|bi |σi/d. From (2) we get that βi d ≥ a0 if ni ≥ Ci for i = 1, 2. Therefore
we have that P{δ ∈ J (n)} ≥ 1 − α if ni ≥ Ci for i = 1, 2, which gives (1). We call
Ci (i = 1, 2) the optimal fixed sample size. From the above results, we obtain

Proposition 1 Let

Ci = a∗|bi |σi
d

(i = 1, 2) and (3)

a∗ =
{
a = ln α−1 for b1b2 < 0,
a0 with (1 + a0)e−a0 = α for b1b2 > 0.

(4)

Then for all ni ≥ Ci (i = 1, 2) we have

P{δ ∈ J (n)} ≥ 1 − α for all fixed μ1, μ2, σ1, σ2, d and α,

where n = (n1, n2) with ni ≥ 2 (i = 1, 2).

Since the optimal fixed sample size Ci of (3) is unknown, we will define a three-
stage procedurewhich is similar to that designed byMukhopadhyay and Padmanabhan
(1993). First we take the pilot sample Xi1, . . . , Xim and calculate Xi m(1) andUi m for
i = 1, 2, where the starting sample size m(≥ 2) satisfies m = O(d−1/r ) for some
r > 1 as d → 0. We also choose and fix any two numbers ρi ∈ (0, 1) (i = 1, 2). Let
any d(> 0) be fixed and define

Ti = Ti (d) = max
{
m, 〈ρi a∗|bi |d−1Ui m〉 + 1

}
for i = 1, 2. (5)

If Ti > m, then we take the second sample Xi m+1, . . . , XiTi for i = 1, 2. Using the
combined sample Xi1, . . . , XiTi , we calculate Xi Ti (1) and Ui Ti and define

Ni = Ni (d) = max
{
Ti , 〈a∗|bi |d−1Ui Ti 〉 + 1

}
for i = 1, 2, (6)
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Three-stage confidence intervals for a linear combination… 89

where 〈x〉 stands for the largest integer less than x . If Ni > Ti , then we take the third
sample Xi Ti+1, . . . , XiNi for i = 1, 2. Using all the combined sample Xi1, . . . , XiNi

(i = 1, 2), we construct a confidence interval of δ = b1μ1 + b2μ2 as

J (N ) = [ δ̂(N ) − d, δ̂(N ) + d ], (7)

where N = (N1, N2) and δ̂(N ) = b1X1 N1(1) + b2X2 N2(1).

3 Main results

In this section we will derive the asymptotic second-order expansions of the expected
sample size E(Ni ) for (6) and coverage probability P{δ ∈ J (N )} for (7). Theorem 1
gives the asymptotic second-order expansion of E(Ni ) for i = 1, 2.

Theorem 1 We have

E(Ni ) = Ci + ηi + o(1) as d → 0,

where ηi = 1
2 − ρ−1

i ∈ (−∞,− 1
2 ).

The following theorem shows the asymptotic second-order expansion of the cov-
erage probability P{δ ∈ J (N )}.
Theorem 2 As d → 0 we have

P{δ ∈ J (N )} = 1 − α + Aαd + o(d),

where

(0 >) Aα =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

1

4
α

{
2∑

i=1

(
1 − (a + 3)ρ−1

i

)
(|bi |σi )−1

}
for b1b2 < 0,

a0e−a0

{
2∑

i=1

(
1

4
− 1

6
(a0 + 3)ρ−1

i

)
(|bi |σi )−1

}
for b1b2 > 0.

Remark 1 Theorems 1 and 2 generalize the results of Mukhopadhyay and Padman-
abhan (1993) for estimating the difference δ = μ1 − μ2 (b1 = 1, b2 = −1).

Remark 2 The approximation to P{δ ∈ J (N )} becomes better as ρi increases, since
the absolute value of Aα gets smaller as ρi increases.

Remark 3 When b1b2 > 0, one can consider the confidence interval

J ∗(n) =

⎧⎪⎨
⎪⎩

[
δ̂(n) − d, δ̂(n)

]
for b1 > 0, b2 > 0,

[
δ̂(n), δ̂(n) + d

]
for b1 < 0, b2 < 0
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90 E. Isogai, C. Uno

Table 1 δ = 1
2 (μ1 + μ2) = 1 for μ1 = 2, σ1 = 1 and μ2 = 0, σ2 = 1

α = 0.05 d = 0.06 s.e. d = 0.03 s.e.

C1 39.532167 79.064333
C2 39.532167 79.064333

ρ1 = 0.4 E(T1) 16.358697 0.006378 32.121238 0.009982

ρ2 = 0.4 E(T2) 16.362222 0.006379 32.133641 0.009981

η1 = −2 E(N1) 37.114968 0.010976 76.670732 0.015255

η2 = −2 E(N2) 37.099661 0.010969 76.690959 0.015243

E(δ̂(N )) 1.030393 0.000025 1.013693 0.000010

P{δ ∈ J (N )} 0.896762 0.000304 0.927890 0.000259

Aαd − 0.029501 − 0.014750

ρ1 = 0.6 E(T1) 24.224945 0.009669 47.947887 0.014990

ρ2 = 0.6 E(T2) 24.217171 0.009659 47.931609 0.014982

η1 = −1.167 E(N1) 38.252309 0.009479 77.820806 0.012495

η2 = −1.167 E(N2) 38.255471 0.009476 77.805422 0.012483

E(δ̂(N )) 1.028458 0.000023 1.013227 0.000010

P{δ ∈ J (N )} 0.916636 0.000276 0.937332 0.000242

Aαd − 0.018841 − 0.009421

with fixed-width d. By the same arguments as Lemma 1, we have

P{δ ∈ J ∗(n)} = P{0 � V1 + V2 � d} = P{−V1 − d � V2 � −V1 + d}

and hence, it holds for all ni ≥ Ci (i = 1, 2) that P{δ ∈ J ∗(n)} ≥ 1 − α for all
fixed μ1, μ2, σ1, σ2, d and α. Therefore, when b1b2 > 0, the length of the confidence
interval (7) is indeed considered as a half length.

4 Simulation results

We shall present some simulation results which were carried out by means of Borland
C++. We consider two cases when δ = 1

2 (μ1 + μ2) (b1b2 > 0) and δ = μ1 − μ2
(b1b2 < 0). We choose ρ1 = ρ2 = 0.4, 0.6 in (5) and take α = 0.05 (1 − α = 0.95)
in Tables 1, 2, 5 and 6 and α = 0.10, 0.01 in Tables 3 and 4, respectively. About
(5) and (6), we have a∗ = a0 = 4.74386 with (1 + a0)e−a0 = 0.05 for b1b2 > 0
and a∗ = a = ln(0.05)−1 = 2.99573 for b1b2 < 0. From Taylor’s expansion and
calculus, one can find an approximation ã0 to a0 such as

a0 � ã0 = a + a

a − 1
ln a with a = ln α−1.

For α = 0.05, we have ã0 = 4.64269 with (1 + ã0)e−ã0 = 0.05435. For α = 0.1,
we also have a0 = 3.88972 with (1 + a0)e−a0 = 0.1 and ã0 = 3.77691 with (1 +

123
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Table 2 δ = 1
2 (μ1 + μ2) = 1 for μ1 = 2, σ1 = 2 and μ2 = 0, σ2 = 1

α = 0.05 d = 0.06 s.e. d = 0.03 s.e.

C1 79.064333 158.128667
C2 39.532167 79.064333

ρ1 = 0.4 E(T1) 32.120166 0.012905 63.750527 0.020002

ρ2 = 0.4 E(T2) 16.369592 0.006384 32.136720 0.009987

η1 = −2 E(N1) 76.435833 0.015986 155.800940 0.021296

η2 = −2 E(N2) 37.129127 0.010973 76.703653 0.015235

E(δ̂(N )) 1.029041 0.000024 1.013367 0.000010

P{δ ∈ J (N )} 0.910766 0.000285 0.934339 0.000248

Aαd − 0.022126 − 0.011063

ρ1 = 0.6 E(T1) 47.949343 0.019381 95.299930 0.029960

ρ2 = 0.6 E(T2) 24.223336 0.009662 47.925842 0.014983

η1 = −1.167 E(N1) 78.222371 0.013653 157.126273 0.017727

η2 = −1.167 E(N2) 38.237131 0.009465 77.811653 0.012503

E(δ̂(N )) 1.027530 0.000022 1.013062 0.000010

P{δ ∈ J (N )} 0.926187 0.000261 0.940754 0.000236

Aαd − 0.014131 − 0.007065

ã0)e−ã0 = 0.10936. Further, forα = 0.01,we have a0 = 6.63835with (1+a0)e−a0 =
0.01 and ã0 = 6.55596 with (1 + ã0)e−ã0 = 0.01074. In all tables below, the three-
stage procedure defined by (5) and (6) was carried out with 1,000,000 independent
replications under d = 0.06 (moderate) and d = 0.03 (sufficiently small). In each
table, E(Ti ), E(Ni ), E(δ̂(N )) and P{δ ∈ J (N )} stand for the averages of 1,000,000
independent replications and “s.e.” stands for each standard error. Let the size of the
pilot sample be m = 〈d−2/3〉 + 1 for each population. Thus, m = 7 for d = 0.06 and
m = 11 for d = 0.03.

For estimating δ = 1
2 (μ1 + μ2), we take EXP(2, 1) as �1 and EXP(0, 1) as �2 in

Table 1, where the variances are equal and also take EXP(2, 2) as �1 and EXP(0, 1) as
�2 in Table 2, where the variances are unequal. In both Tables 1 and 2, we estimate
δ = 1 with α = 0.05 and the optimal fixed sample sizes C1 and C2 are calculated by
(3) with b1 = b2 = 0.5 and a∗ = a0 = 4.74386. We have from Theorem 1

E(Ni ) − Ci ≈ ηi , (8)

where ηi = −2 for ρi = 0.4 and ηi = −1.167 for ρi = 0.6. It seems from Tables 1
and 2 that each Ni underestimates Ci as the above approximation. We also have from
Theorem 2

P{δ ∈ J (N )} − (1 − α) ≈ Aαd. (9)

It also seems from Tables 1 and 2 that the coverage probabilities P{δ ∈ J (N )} are
less than 0.95, for Aαd < 0. However, as d becomes sufficiently small (d = 0.03),
the coverage probabilities P{δ ∈ J (N )} get closer to 0.95 in both tables. In Tables 3
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Table 3 δ = 1
2 (μ1 + μ2) = 1 for μ1 = 2, σ1 = 1 and μ2 = 0, σ2 = 1

α = 0.1 d = 0.06 s.e. d = 0.03 s.e.

C1 32.414333 64.828667
C2 32.414333 64.828667

ρ1 = 0.4 E(T1) 13.572373 0.005135 26.430996 0.008169

ρ2 = 0.4 E(T2) 13.567443 0.005135 26.431895 0.008166

η1 = −2 E(N1) 30.219554 0.009540 62.445478 0.013771

η2 = −2 E(N2) 30.216410 0.009543 62.459390 0.013772

E(δ̂(N )) 1.037604 0.000031 1.016986 0.000013

P{δ ∈ J (N )} 0.828111 0.000377 0.865192 0.000342

Aαd − 0.050034 − 0.025017

ρ1 = 0.6 E(T1) 19.955724 0.007895 39.400128 0.012280

ρ2 = 0.6 E(T2) 19.969642 0.007912 39.406992 0.012302

η1 = −1.167 E(N1) 31.077383 0.008467 63.536216 0.011328

η2 = −1.167 E(N2) 31.096707 0.008464 63.547090 0.011330

E(δ̂(N )) 1.035697 0.000029 1.016316 0.000012

P{δ ∈ J (N )} 0.848593 0.000358 0.879527 0.000326

Aαd − 0.031765 − 0.015883

Table 4 δ = 1
2 (μ1 + μ2) = 1 for μ1 = 2, σ1 = 1 and μ2 = 0, σ2 = 1

α = 0.01 d = 0.06 s.e. d = 0.03 s.e.

C1 55.319583 110.639167
C2 55.319583 110.639167

ρ1 = 0.4 E(T1) 22.642284 0.009009 44.721256 0.013999

ρ2 = 0.4 E(T2) 22.641949 0.009016 44.752411 0.013993

η1 = −2 E(N1) 52.726017 0.013360 108.268277 0.017973

η2 = −2 E(N2) 52.733431 0.013352 108.264365 0.017937

E(δ̂(N )) 1.020788 0.000017 1.009523 0.000007

P{δ ∈ J (N )} 0.969137 0.000173 0.983566 0.000127

Aαd − 0.007855 − 0.003928

ρ1 = 0.6 E(T1) 33.685548 0.013554 66.834883 0.020986

ρ2 = 0.6 E(T2) 33.677759 0.013541 66.881905 0.020985

η1 = −1.167 E(N1) 54.221485 0.011316 109.515043 0.014776

η2 = −1.167 E(N2) 54.195915 0.011316 109.489136 0.014778

E(δ̂(N )) 1.019543 0.000015 1.009299 0.000007

P{δ ∈ J (N )} 0.978853 0.000144 0.986617 0.000115

Aαd − 0.005063 − 0.002531

and 4, we carried out simulations for α = 0.1 with a0 = 3.88972 and α = 0.01 with
a0 = 6.63835, respectively, under the same settings in Table 1. The results in Tables
3 and 4 behave as in Table 1.
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Table 5 δ = μ1 − μ2 = 1 for μ1 = 2, σ1 = 1 and μ2 = 1, σ2 = 1

α = 0.05 d = 0.06 s.e. d = 0.03 s.e.

C1 49.928871 99.857742
C2 49.928871 99.857742

ρ1 = 0.4 E(T1) 20.484368 0.008127 40.432489 0.012608

ρ2 = 0.4 E(T2) 20.468928 0.008115 40.429592 0.012616

η1 = −2 E(N1) 47.349820 0.012631 97.522519 0.017090

η2 = −2 E(N2) 47.345715 0.012619 97.488300 0.017068

E(δ̂(N )) 0.999963 0.000039 1.000016 0.000016

P{δ ∈ J (N )} 0.910361 0.000286 0.934870 0.000247

Aαd − 0.020984 − 0.010492

ρ1 = 0.6 E(T1) 30.439973 0.012213 60.370934 0.018905

ρ2 = 0.6 E(T2) 30.448254 0.012216 60.402815 0.018933

η1 = −1.167 E(N1) 48.734646 0.010734 98.687033 0.014019

η2 = −1.167 E(N2) 48.751315 0.010728 98.704855 0.014007

E(δ̂(N )) 0.999974 0.000035 1.000000 0.000015

P{δ ∈ J (N )} 0.926278 0.000261 0.941096 0.000235

Aαd − 0.013489 − 0.006745

In Tables 5 and 6, we consider the estimation of δ = μ1 − μ2, where our three-
stage procedure defined by (5) and (6) concides with the one of Mukhopadhyay and
Padmanabhan (1993). We take EXP(2, 1) as �1 and EXP(1, 1) as �2 in Table 5 and
also take EXP(2, 2) as �1 and EXP(1, 1) as �2 in Table 6. In both tables, we estimate
δ = 1 and the optimal fixed sample sizes C1 and C2 are calculated by (3) with b1 = 1,
b2 = −1 and a∗ = a = 2.99573. The simulation results in Tables 5 and 6 also seem to
have the trends as above including the properties (8) and (9). Throughout these tables,
we can verify Remark 2 for ρi .

Hamdy (1997), Hamdy et al. (2015) and Son et al. (1997) treated theories on the
type II errors of sequential procedures and gave simulation results for one-sample
case. For the present two-sample case, it is still open.

5 Proofs of Theorems 1 and 2

In this section we will give the proofs of two theorems in Sect. 3. Let μ′
1 = b1μ1,

μ′
2 = −b2μ2, σ ′

i = |bi |σi for b1b2 < 0 and μ′
i = biμi , σ ′

i = |bi |σi (i = 1, 2) for
b1b2 > 0. Then without any loss of generality δ can be written as

δ =
{

μ1 − μ2 when b1b2 < 0,
μ1 + μ2 when b1b2 > 0.

Throughout this section we use this form. Thus, b1 = b2 = 1 for both cases.
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Table 6 δ = μ1 − μ2 = 1 for μ1 = 2, σ1 = 2 and μ2 = 1, σ2 = 1

α = 0.05 d = 0.06 s.e. d = 0.03 s.e.

C1 99.857742 199.715485
C2 49.928871 99.857742

ρ1 = 0.4 E(T1) 40.428351 0.016293 80.346714 0.025218

ρ2 = 0.4 E(T2) 20.478699 0.008111 40.423224 0.012618

η1 = −2 E(N1) 97.236447 0.017891 197.349920 0.023874

η2 = −2 E(N2) 47.361480 0.012616 97.472558 0.017082

E(δ̂(N )) 0.998088 0.000036 0.999648 0.000015

P{δ ∈ J (N )} 0.921438 0.000269 0.939450 0.000239

Aαd − 0.015738 − 0.007869

ρ1 = 0.6 E(T1) 60.431824 0.024456 120.278800 0.037800

ρ2 = 0.6 E(T2) 30.458167 0.012218 60.403670 0.018917

η1 = − 1.167 E(N1) 99.262021 0.015482 198.918548 0.019982

η2 = − 1.167 E(N2) 48.751595 0.010723 98.686575 0.014023

E(δ̂(N )) 0.998742 0.000033 0.999771 0.000015

P{δ ∈ J (N )} 0.933273 0.000250 0.943806 0.000230

Aαd − 0.010117 − 0.005058

Let Yi 2,Yi 3, . . . be i.i.d. random variables according to EXP(0, σi ) and Y1 j ’s and
Y2 j ’s be independent. Also let {X1 j , X2 j : j ≥ 1} and {Y1 j ,Y2 j : j ≥ 2} be
independent. Set Y i n = ∑n

j=2 Yi j/(n − 1) for n ≥ 2 (i = 1, 2). From Lemma 6.1 of

Lombard and Swanepoel (1978) {(n − 1)Ui n, n ≥ 2} and {(n − 1)Y i n, n ≥ 2} are
identically distributed. Let us define for i = 1, 2

Ri = max
{
m, 〈ρi a∗d−1Y i m〉 + 1

}
and Si = max

{
Ri , 〈a∗d−1Y i Ri 〉 + 1

}
.

Then we get the following lemma.

Lemma 2 For i = 1, 2 (Ti , Ni ) and (Ri , Si ) are identically distributed, and S1 and
S2 are independent.

Proof Let any m ≤ k ≤ n be fixed. Then

P{Ti ≤ k, Ni ≤ n}

=
k∑

t=m

P{t = max{m, 〈ρi a∗d−1Ui m〉 + 1}, max{t, 〈a∗d−1Ui t 〉 + 1} ≤ n}

=
k∑

t=m

P{t = max{m, 〈ρi a∗d−1Y i m〉 + 1} = Ri , max{t, 〈a∗d−1Y i t 〉 + 1} ≤ n}

= P{Ri ≤ k, Si ≤ n},
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which shows that (Ti , Ni ) and (Ri , Si ) are identically distributed. It is obvious that S1
and S2 are independent. This completes the proof. ��

Lemma 2 implies that we can use results of Mukhopadhyay (1990) for (10) below,
from which we can derive the desired results for (6) and (7).

Let Y ′
i j = Yi j/σi and λi = a∗σi d−1 = Ci . Then Y ′

i2, Y
′
i3, . . . are i.i.d. random

variables according to EXP(0, 1), and Ri and Si can be rewritten as

Ri = max
{
m, 〈ρiλi Y ′

im〉 + 1
}

and Si = max
{
Ri , 〈λi Y ′

i Ri 〉 + 1
}

. (10)

From Theorems 2 and 3 of Mukhopadhyay (1990) we have

Lemma 3 Let i = 1, 2.

(i) For k = 1, 2, 3, . . .

E(Ski ) = Ck
i + 1

2
kCk−1

i {(k − 3) + ρi }/ρi + o(Ck−1
i ) and

E(Si ) = Ci + ηi + o(1) as d → 0.

(ii) Let S̃i = C−1/2
i (Si − Ci ). Then

S̃i
D−→

√
ρ−1
i Zi as d → 0

and for each p ≥ 1 {S̃ p
i , 0 < d ≤ d0} is uniformly integrable for some d0 > 0,

where Z1 and Z2 are independent and identically distributed random variables

according to the standard normal distribution and “
D−→” stands for convergence

in distribution.

The uniform integrability of {S̃ p
i , 0 < d ≤ d0} for each p ≥ 1 in Lemma 3 will

be shown in “Appendix”.

Proof of Theorem 1 For both cases Theorem 1 is an immediate consequence of Lem-
mas 2 and 3. ��
Proof of Theorem 2 From the point of view of Lemma 1we need to show it separately.

Case 1 b1b2 < 0. Thus δ = μ1 − μ2. In the proof of Theorem 1 of Mukhopadhyay
and Padmanabhan (1993) they provided the equation

P{δ ∈ J (N )} = (1 − α) + 1

2
de−a

2∑
i=1

σ−1
i E(Si − Ci )

−1

4
de−a(1 + a)

2∑
i=1

σ−1
i E(S̃2i ) + 1

2
de−a(σ1σ2)

−1/2E(S̃1 S̃2) + E(K )

≡ (1 − α) + E(K1) − E(K2) + E(K3) + E(K ), say,
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where K is similarly given as Mukhopadhyay and Padmanabhan (1993). Lemmas 2
and 3 yield

E(K1) − E(K2) = 1

4
α

{
2∑

i=1

(
2ηi−(a + 1)ρ−1

i

)
σ−1
i

}
d+o(d) and E(K3) = o(d).

Mukhopadhyay and Padmanabhan (1993) showed that E(K ) = o(d). Therefore,
recalling σi = |bi |σi , the above results give Theorem 2.

Case 2 b1b2 > 0. Thus δ = μ1+μ2. Lemmas 4, 5 and 7 (which are given later) imply
the desired result. Therefore the proof of Theorem 2 is complete. ��

Let us give Lemmas 4, 5, 6 and 7. We introduce the following real valued functions
of (x, y) ∈ R

2:

g(x) =
{
1 + x−1(e−x − 1) for x �= 0,
0 for x = 0,

(11)

A(x) = 1 − e−a0x − a0xe
−a0x and B(x, y) = a0xe

−a0x g(a0(y − x)).

Throughout the rest of this section let Qi = Si/Ci for i = 1, 2. Lemma 4 shows an
expression of the coverage probability.

Lemma 4 Let b1b2 > 0. Then we have

P{δ ∈ J (N )} = E [A(Q1)] + E [B(Q1, Q2)] . (12)

Proof Lemma 1 implies

P{δ ∈ J (n)} = A(n1/C1) + B(n1/C1, n2/C2). (13)

Since {X1 n1(1), X2 n2(1)} and {Ui 2, . . . ,Ui ni i = 1, 2} are independent, two events
{δ ∈ J (n)} and {N = n} for any fixed n are also independent. Hence from (13) and
Lemma 2 we get

P{δ ∈ J (N )} =
∑
n1≥m

∑
n2≥m

P{δ ∈ J (n)}P{S1 = n1}P{S2 = n2}

= E [A(Q1)] + E [B(Q1, Q2)] ,

which leads to the lemma. Thus the proof is complete. ��
We will evaluate each quantity in (12).

Lemma 5 We have as d → 0

E [A(Q1)] = (1 − α) + a0e
−a0{η1 + (1 − a0)ρ

−1
1 /2}σ−1

1 d + o(d).
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Proof Let h(x) = e−a0x + a0xe−a0x for x . Then by using Taylor’s expansion around
one and (1 + a0)e−a0 = α we get

h(x) = α − a20e
−a0(x − 1) − 1

2
a20(1 − a0w1)e

−a0w1(x − 1)2,

where w1 satisfies that |w1 − 1| < |x − 1|. Using S̃1 = C−1/2
1 (S1 −C1) in Lemma 3,

we have

E[A(Q1)] = 1 − E[h(Q1)]
= (1 − α) + a20e

−a0C−1
1 E(S1 − C1) + 1

2
a20C

−1
1 E{(1 − a0W1)e

−a0W1 S̃ 2
1 }

≡ (1 − α) + K1 + K2, say, (14)

whereW1 is a positive random variable satisfying |W1−1| < |Q1−1|. FromLemma 3
we get

K1 = a0e
−a0η1σ

−1
1 d + o(d) as d → 0. (15)

Since Q1
P−→ 1 by Lemma 3 (ii) where “

P−→” means convergence in probability,

we have that (1 − a0W1)e−a0W1 S̃ 2
1

D−→ (1 − a0)e−a0ρ−1
1 Z2

1 . Using a0W1 > 0, we
get that |(1 − a0W1)e−a0W1 S̃ 2

1 | ≤ S̃ 2
1 , which, together with Lemma 3, implies that

{(1 − a0W1)e−a0W1 S̃ 2
1 } is uniformly integrable. Thus we get

K2 = 1

2
a0e

−a0(1 − a0)ρ
−1
1 σ−1

1 d + o(d) as d → 0. (16)

Therefore, combining (14)–(16), we obtain the desired result. Therefore the proof is
complete. ��

The following lemma is used to evaluate the expectation E[B(Q1, Q2)].
Lemma 6 As d → 0 we have the following results:

(i) E[(Q1 − 1)e−a0Q1 ] = a−1
0 e−a0(η1 − a0ρ

−1
1 )σ−1

1 d + o(d),

(ii) E[(Q1 − 1)2e−a0Q1 ] = a−1
0 e−a0ρ−1

1 σ−1
1 d + o(d),

(iii) E[(Q2 − 1)e−a0Q1 ] = a−1
0 e−a0η2σ

−1
2 d + o(d),

(iv) E[(Q2 − 1)2e−a0Q1 ] = a−1
0 e−a0ρ−1

2 σ−1
2 d + o(d),

(v) E[(Q1 − 1)e−a0Q1(Q2 − 1)] = o(d),

(vi) E[(Q1 − 1) j e−a0Q1(Q2 − 1)3− j ] = o(d) for j = 1, 2, 3.

Proof First we will prove (i). Let h(x) = e−a0x . Taylor’s expansion and Lemma 3
give

E[(Q1 − 1)e−a0Q1 ] = C−1
1 E[(S1 − C1)h(Q1)]

= C−1
1 e−a0E(S1 − C1) − C−1

1 a0E(e−a0W1 S̃21 )
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= e−a0C−1
1 η1 − a0C

−1
1 E[e−a0W1 S̃ 2

1 ] + o(d),

where W1 is a positive random variable satisfying |W1 − 1| < |Q1 − 1|. Since
E[e−a0W1 S̃ 2

1 ] = e−a0ρ−1
1 + o(1), we obtain (i). (ii) follows from the fact that

Q1 − 1 = (a0σ1)−1/2d1/2 S̃1 and E[e−a0Q1 S̃ 2
1 ] = e−a0ρ−1

1 + o(1). Similarly, we
can show (iii)–(vi). This completes the proof. ��
Lemma 7 As d → 0 we have

E[B(Q1, Q2)] = a0e
−a0d

[
σ−1
1

{
−1

2
(η1 + (1 − a0)ρ

−1
1 ) − 1

6
a0ρ

−1
1

}

+ σ−1
2

{
1

2
η2 − 1

6
a0ρ

−1
2

}]
+ o(d).

Proof Let g(x) be defined as in (11). Taylor’s expansion for e−x implies

g(x) = 1

2
x − 1

6
x2 + 1

24
e−wx3 for all x,

where w = θx for some θ = θ(x) ∈ (0, 1). Hence from (11) we get

E[B(Q1, Q2)] = a0E[Q1e
−a0Q1g(a0(Q2 − Q1))]

= 1

2
a20E[Q1e

−a0Q1(Q2 − Q1)] − 1

6
a30E[Q1e

−a0Q1(Q2 − Q1)
2]

+ 1

24
a40E[Q1e

−a0Q1e−W (Q2 − Q1)
3]

≡ 1

2
a20K1 − 1

6
a30K2 + 1

24
a40K3, say, (17)

where W = θa0(Q2 − Q1) for some θ = θ(Q1, Q2) ∈ (0, 1). We will evaluate each
term Ki for i = 1, 2, 3. It follows from Lemma 6 that

K1 = E[(Q1 − 1)e−a0Q1(Q2 − 1)] − E[(Q1 − 1)2e−a0Q1 ]
+ E[e−a0Q1(Q2 − 1)] − E[(Q1 − 1)e−a0Q1 ]

= −a−1
0 e−a0{η1 + (1 − a0)ρ

−1
1 }σ−1

1 d + a−1
0 e−a0η2σ

−1
2 d + o(d). (18)

Similarly,

K2 = E[(Q1 − 1)e−a0Q1(Q2 − 1)2] − 2E[(Q1 − 1)2e−a0Q1(Q2 − 1)]
+ E[(Q1 − 1)3e−a0Q1 ] + E[e−a0Q1(Q2 − 1)2] + E[e−a0Q1(Q1 − 1)2]
− 2E[(Q1 − 1)e−a0Q1(Q2 − 1)]

= a−1
0 e−a0

(
2∑

i=1

ρ−1
i σ−1

i

)
d + o(d). (19)
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Finally, we will calculate the term K3. Since W = θa0(Q2 − Q1), it is easy to see
that e−a0Q1 e−W = e−a0{(1−θ)Q1+θQ2}, which implies that 0 < e−a0W e−W ≤ 1, for
a0{(1 − θ)Q1 + θQ2} ≥ 0. Thus we have

|K3| ≤ E[|Q1{(Q2 − 1) − (Q1 − 1)}|3]
≤ E[|Q1(Q2 − 1)|3] + 3E[|Q1(Q2 − 1)2(Q1 − 1)|]

+ 3E[|Q1(Q1 − 1)2(Q2 − 1)|]
+ E[|Q1(Q1 − 1)3|] ≡ K31 + 3K32 + 3K33 + K34, say.

Let s j = (a0σ j )
−1/2 for j = 1, 2. Recall that Q j − 1 = s j d1/2 S̃ j . The uniform

integrability of {S̃ p
j , 0 < d ≤ d0} for each p ≥ 1 gives that sup0<d≤d0 E(|S̃ j |p) is

bounded from above for each p ≥ 1. Let us evaluate each term K3 j for j = 1, 2, 3, 4.
Since S̃1 and S̃2 are independent, we have for some positive constant M

|K31| ≤ E[|Q1 − 1||Q2 − 1|3] + E[|Q2 − 1|3]
≤ ME(|S̃1|)E(|S̃2|3)d2 + ME(|S̃2|3)d3/2 = O(d2 + d3/2) = o(d).

In the same way we get that K3 j = o(d) for j = 2, 3, 4. Therefore we obtain

K3 = o(d). (20)

Combining (17)–(20), we obtain the desired result of the lemma. This completes the
proof. ��
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Number 26400193.

Appendix

In this appendix we will give the uniform integrability of {S̃ p
i , 0 < d ≤ d0} for each

p ≥ 1 in Lemma 3. Let Y2, Y3, . . . be a sequence of independent and identically
distributed positive continuous random variables having a finite mean θ = E(Y2). We
consider the following three-stage procedure defined by Mukhopadhyay (1990):

R = R(d) = max {m, N1} and S = S(d) = max {R, N2} ,

where N1 = 〈ρλYm〉 + 1, N2 = 〈λY R〉 + 1, 0 < ρ < 1, 0 < λ < ∞, Yn =
(n − 1)−1∑n

i=2 Yi for n ≥ 2 and m = m(d) (≥ 2) is the starting sample size such
that m → ∞ as d → 0. Let n∗ = λθ and we suppose the following conditions

λ = λ(m) → ∞ as m → ∞, lim sup
d→0

m/n∗ < ρ2 (21)
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and for some r > 1, as m → ∞

n∗ = O(mr ). (22)

In the following we assume that E(Y p
2 ) < ∞ for some p ≥ 2 and let M denote a

generic positive constant, not depending on d. Let Vj = Y j/θ for j = 2, 3, · · · and
V n = ∑n

j=2 Vj/(n − 1). Then N1 = 〈ρn∗Vm〉 + 1 and N2 = 〈n∗V R〉 + 1. For

ε ∈ (0, 1), define a set Bm,ε by Bm,ε = {
Vm < 1 − ε

}
.

Lemma 8 As d → 0, we have P(Bm,ε) = O(m−p/2).

Proof Since {V n−1, n ≥ m} is a reversedmartingale,we have from the submartingale
inequality,

P(Bm,ε) ≤ P

{
sup
n≥m

∣∣V n − 1
∣∣ > ε

}
≤ ε−pE

∣∣Vm − 1
∣∣p = O(m−p/2).

��
Lemma 9 As d → 0, we have

P(R �= N1) = O(m−p/2) and P(S �= N2) = O(m−p/2). (23)

Proof Fix ε0 ∈ (0, 1 − ρ). By (21) and Lemma 8, for sufficiently small d,

P(R �= N1) ≤ P(Vm < m/(ρn∗)) ≤ P(Vm < 1 − ε0) = O(m−p/2),

which implies the left side of (23). Next,

P(S �= N2) ≤ P(〈ρλYm〉 + 1 > 〈λY R〉 + 1, R = N1) + P(R �= N1)

≤ P(ρλYm > λY R) + O(m−p/2)

from the left side of (23). The first term is evaluated as follows.

P(ρλYm > λY R)

= P(ρn∗Vm > n∗V R, V R < 1 − ε0) + P(ρn∗Vm > n∗V R, V R ≥ 1 − ε0)

≤ P
(∣∣V R − 1

∣∣ > ε0
)+ P(ρVm > 1 − ε0).

As in the proof of Lemma 8, we have that P
(∣∣V R − 1

∣∣ > ε0
) = O(m−p/2) and

P(ρVm > 1 − ε0) = P
(∣∣Vm − 1

∣∣ > (1 − ε0 − ρ)/ρ
) = O(m−p/2). Hence, the

right side of (23) holds. ��
Lemma 10 If 0 < q < p/(2r), where r is as in (22), then {(n∗/R)q , 0 < d ≤ d0}
and {(n∗/S)q , 0 < d ≤ d0} are uniformly integrable for some d0 > 0.
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Proof Note that (n∗/S)q ≤ (n∗/R)q . From Lemma 1 of Chow and Yu (1981), it
suffices to show that P(R < ε1n∗) = o(n∗−q) for some ε1 ∈ (0, 1). By choosing
ε1 ∈ (0, ρ), we have from (22)

P(R < ε1n
∗) ≤ P(ρVm < ε1) ≤ P

(∣∣Vm − 1
∣∣ > 1 − ε1/ρ

) = o(n∗−q
).��

Lemma 11 For 0 < q ≤ p, {(R/n∗)q , 0 < d ≤ d0} and {(S/n∗)q , 0 < d ≤ d0}
are uniformly integrable for some d0 > 0.

Proof From Corollary 4.1 of Gut (2005), if E
{
sup0<d≤d0(R/n∗)q

}
< ∞, then

{(R/n∗)q , 0 < d ≤ d0} is uniformly integrable. By the definition of R, Doob’s max-
imal inequality for the reversed martingale and (21),

E

{
sup

0<d≤d0
(R/n∗)q

}
≤ M · E

[
sup

0<d≤d0
{(m/n∗)q + (ρVm + (1/n∗))q}

]

≤ M + Mρq E

(
sup

0<d≤d0
V
q
m

)
≤ M + ME

(
sup
n≥2

V
q
n

)
≤ M for 1 < q ≤ p,

which yields the uniform integrability of {(R/n∗)q , 0 < d ≤ d0} for 1 < q ≤ p.
When 0 < q ≤ 1, we have that sup0<d≤d0 E(R/n∗)qζ = sup0<d≤d0 E(R/n∗)p < ∞
for ζ = p/q > 1. Therefore, {(R/n∗)q , 0 < d ≤ d0} is uniformly integrable for
0 < q ≤ p. Next, we shall show the uniform integrability of {(S/n∗)q , 0 < d ≤ d0}.
Since S ≤ N2 + R, it suffices to show that E

{
sup0<d≤d0(N2/n∗)q

}
< ∞ which can

be proved similarly. ��
Lemma 12 For 0 < q ≤ p,

⎧⎨
⎩
∣∣∣∣∣∣n

∗− 1
2

R∑
j=2

(Vj − 1)

∣∣∣∣∣∣
q

, 0 < d ≤ d0

⎫⎬
⎭ and

⎧⎨
⎩
∣∣∣∣∣∣n

∗− 1
2

S∑
j=2

(Vj − 1)

∣∣∣∣∣∣
q

, 0 < d ≤ d0

⎫⎬
⎭

are uniformly integrable for some d0 > 0.

Proof Follows from Lemma 5 of Chow and Yu (1981) and Lemma 11. ��

Proposition 2 We assume that E(Y p
2 ) < ∞ for some p ≥ 2. Let S̃ = n∗− 1

2 (S − n∗).
Under the conditions (21) and (22), if 0 < q < p/(2r + 1), then

{
S̃q , 0 < d ≤ d0

}
is uniformly integrable for some d0 > 0.

Proof Now,

|S̃q | = |n∗−1/2(S − n∗)|q
= |n∗−1/2(〈n∗V R〉 + 1 − n∗)|q I (S = N2) + |n∗−1/2(R − n∗)|q I (S �= N2)

≡ K1 + K2, say.
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Since K3 ≡ n∗−1/2(〈n∗V R〉 + 1 − n∗V R) ≤ n∗−1/2 ≤ 1 and 0 < R/(R − 1) ≤ 2,
we have for some ζ > 1, u = 2r + 1 and v = 1

2r + 1,

E(K ζ
1 ) ≤ E |n∗−1/2(n∗V R − n∗) + K3|qζ

≤ ME

∣∣∣∣∣∣n
∗− 1

2

R∑
j=2

(Vj − 1) · (R/(R − 1)) · (n∗/R)

∣∣∣∣∣∣
qζ

+ M

≤ M

⎧⎪⎨
⎪⎩E

∣∣∣∣∣∣n
∗− 1

2

R∑
j=2

(Vj − 1)

∣∣∣∣∣∣
uqζ

⎫⎪⎬
⎪⎭

1
u {

E(n∗/R)vqζ
} 1

v + M = O(1)

by Lemmas 10 and 12. Finally, for some ζ > 1, u0 = r + 1 and v0 = 1
r + 1, we have

from (23) and Lemma 11

E(K ζ
2 ) ≤ M n∗ 1

2 qζ {E(R/n∗)u0qζ + 1} 1
u0 {P(S �= N2)}

1
v0 = O(mqζr/2−p/(2v0))

= O(1).

Hence, the proposition is proved. ��
Proof of the uniform integrability Wewill show the uniform integrability of {S̃ p

i , 0 <

d ≤ d0} for each p ≥ 1. Let Y ′
i j = Yi j/σi and Ci = λi = a∗σi d−1, where

Yi j has the exponential distribution EXP(0, σi ). Then Y ′
i2, Y

′
i3, . . . are i.i.d random

variables according to EXP(0, 1), and Ri and Si defined by (10) can be written as
Ri = max {m, N1i } and Si = max {Ri , N2i } , where N1i = 〈ρiλi Y ′

im〉 + 1, N2i =
〈λi Y ′

i Ri 〉 + 1 and 0 < ρi < 1. Put n∗ = Ci , λ = λi , ρ = ρi , R = Ri , S = Si ,
Y j = Yi j and Vj = Y ′

i j for i = 1, 2. Since E(Y p
i2) < ∞ for all p > 0 and

m = O(d−1/r ) for some r > 1, the conditions (21) and (22) are satisfied. There-
fore from Proposition 2, {S̃i p, 0 < d ≤ d0} is uniformly integrable for some d0 > 0.

��
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