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Abstract A distribution function F is a generalized distorted distribution of the dis-
tribution functions F1, . . . , Fn if F = Q(F1, . . . , Fn) for an increasing continuous
distortion function Q such that Q(0, . . . , 0) = 0 and Q(1, . . . , 1) = 1. In this paper,
necessary and sufficient conditions for the stochastic (ST) and the hazard rate (HR)
orderings of generalized distorted distributions are provided when the distributions
F1, . . . , Fn are ordered. These results are used to obtain distribution-free ordering
properties for coherent systems with heterogeneous components. In particular, we
determine all the ST and HR orderings for coherent systems with 1–3 independent
components. We also compare systems with dependent components. The results on
distorted distributions are also used to get comparisons of finite mixtures.

Keywords Stochastic orders · Coherent systems · Order statistics ·
Copulas · Mixtures

Mathematics Subject Classification 62K10 · 60E15 · 90B25

1 Introduction

The stochastic comparison of coherent systems is a relevant problem in the reliability
theory. Several results have beenprovided for systemswith independent and identically
distributed (IID) components. Sufficient conditions for the stochastic (ST), hazard rate
(HR) and likelihood ratio (LR) orderings were given in Kochar et al. (1999). These
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conditions are based on themixture representation for the system distribution obtained
from the system signature, see, e.g., Samaniego (2007). They are distribution-free, that
is, they do not depend on the commondistribution of the components. Similar sufficient
conditions were given in Navarro et al. (2008) to obtain comparisons between sys-
tems with different numbers of components comparing all the coherent systems with
1–4 IID components. Recently, necessary and sufficient conditions for comparison of
systems with IID components were provided in Navarro (2016). They were used to get
all the orderings between systems with 1–4 IID components. Sufficient conditions for
the mean residual life order were stated in Navarro and Gomis (2016) for systems with
IID components. The results for the IID case were extended to coherent systems with
exchangeable (dependent) components in Navarro et al. (2008). In Navarro and Rubio
(2011) it was proved that these conditions are necessary and sufficient conditions for
the orderings of coherent systems with exchangeable components. Further results can
be seen in Navarro and Rychlik (2010).

However, in practice, in many situations the components cannot be assumed to be
identically distributed (ID). In the literature, there are few results on distribution-free
comparisons of coherent systems with heterogeneous (non ID) components. Balakr-
ishnan and Torrado (2016) provided comparison results for parallel systems with
independent components. Some sufficient conditions for the stochastic order of coher-
ent systems were obtained in Navarro and Rubio (2012). They were used to get ST
ordering properties for systems with 1–3 independent components. Recent results on
residual lifetimes and inactivity times of systems can be seen in Zhang and Balakrish-
nan (2016), Goli and Asadi (2017) and Samadi et al. (2017).

The distribution of a coherent system with heterogeneous (possibly dependent)
components can be represented as a generalized distorted distribution of the component
distributions, that is, it can be written as

F(t) = Q(F1(t), . . . , Fn(t))

where F1, . . . , Fn represent the component distribution functions and the distortion (or
aggregation) function Q : [0, 1]n → [0, 1] is an increasing continuous function such
that Q(0, . . . , 0) = 0 and Q(1, . . . , 1) = 1. The generalized distorted distributions
were defined in Navarro et al. (2014) extending the well known concept of distorted
distributions obtained when n = 1. Ordering properties for distorted and generalized
distorted distributions were given in Navarro et al. (2013, 2014, 2015, 2016) and
Navarro and Rychlik (2010). These results were used to provide ordering properties
for systems with homogeneous and heterogeneous components in Navarro (2016),
Navarro et al. (2016) and Samaniego and Navarro (2016).

In this paper, we obtain necessary and sufficient conditions for the stochastic, haz-
ard rate and reversed hazard rate orderings of generalized distorted distributions when
the baseline distribution functions F1, . . . , Fn are ordered (Sect. 2). These results
improve the results for the ST order given in Navarro and Rubio (2012). These con-
ditions are used (Sect. 3) jointly with the results given in Navarro et al. (2016) to
get all the orderings properties for coherent systems with 1–3 independent compo-
nents. We consider both the case of arbitrary components and the case of ordered
components. The conditions obtained here can also be applied to compare coherent
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Stochastic comparisons of distorted distributions… 629

systems with heterogeneous dependent components. The conditions for generalized
distorted distributions are also applied (Sect. 4) to provide distribution-free order-
ing properties for finite mixtures when the baseline members of the mixture are
ordered.

Throughout the paper, we say that a function h : Rn → R is increasing (decreasing)
if h(x1, . . . , xn) ≤ (≥)h(y1, . . . , yn) for all xi ≤ yi , i = 1, . . . , n. Analogously, if g, h
are two functions g, h : S → R, then g ≤ hmeans that g(x1, . . . , xn) ≤ h(x1, . . . , xn)
for all (x1, . . . , xn) ∈ S. We shall use the notation Dih for the partial derivative of
function h with respect to its i th variable. To simplify the notation, the product

∏n
i=1 xi

is represented as x1 . . . xn .
Next we give the definitions of the stochastic orderings studied in this paper. Their

basic properties and some applications can be seen in Barlow and Proschan (1975),
Shaked and Shanthikumar (2007) and Belzunce et al. (2016). Let X and Y be two
non-negative random variables with distribution functions FX and FY and reliability
functions FX = 1 − FX and FY = 1 − FY . Then:

(i) We say that X is less than Y in the (usual) stochastic (ST) order (shortly written
as X ≤ST Y or as FX ≤ST FY ) if FX ≤ FY .

(ii) We say that X is less than Y in the hazard rate (HR) order (shortly written as
X ≤HR Y or as FX ≤HR FY ) if FY /FX is increasing.

(iii) We say that X is less than Y in the reversed hazard rate (RHR) order (shortly
written as X ≤RHR Y or as FX ≤RHR FY ) if FY /FX is increasing.

In the ratios considered in (ii) and (iii), we take a/b = +∞ for a > 0 and b = 0.
They are not considered when a = b = 0.

If X andY have finitemeans and X ≤ST Y holds, then E(X) ≤ E(Y ). Themeaning
of the HR ordering is deduced from the following equivalence: X ≤HR Y if and only
if

(X − t |X > t) ≤ST (Y − t |Y > t)

for all t ≥ 0 such that these conditional distributions are defined, that is, their residual
lifetimes are ST ordered for any age t ≥ 0. The HR order implies the ST order. Anal-
ogously, the meaning of the RHR order is obtained from the following equivalence:
X ≤RHR Y if and only if

(t − X |X ≤ t) ≥ST (t − Y |Y ≤ t)

for all t ≥ 0 such that these conditional distributions are defined, that is, the inactivity
times are ST ordered for any age t ≥ 0. The RHR ordering implies the ST order. The
relationships between these stochastic orders are the following:

X ≤HR Y
⇓

X ≤RHR Y ⇒ X ≤ST Y ⇒ E(X) ≤ E(Y ).
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2 Comparisons of generalized distorted distributions

First we give the formal definition of generalized distorted distributions given in
Navarro et al. (2014).

Definition 1 We say that a distribution function F is a generalized distorted distribu-
tion (GDD) of the distribution functions F1, . . . , Fn if

F(t) = Q(F1(t), . . . , Fn(t)) (1)

for all t , where the distortion (or aggregation) function Q : [0, 1]n → [0, 1] is an
increasing continuous function such that Q(0, . . . , 0) = 0 and Q(1, . . . , 1) = 1.

Note that the conditions on Q are enough to assure that the right hand side of (1)
defines a proper distribution function for all distribution functions F1, . . . , Fn . Also
note that representation (1) is similar to a copula representation but that here F is a
univariate distribution function while copulas are used to obtain multivariate distribu-
tions. If n = 1 then F is called a distorted distribution. The distorted distributions were
introduced in the Risk Theory to represent uncertainty, see Hürlimann (2004) and the
references therein. They can also be used to represent coherent systems with identi-
cally distributed (ID) components, see Navarro et al. (2013). The generalized distorted
distributions were introduced in Navarro et al. (2014, 2016) and they can be used to
represent the distributions of coherent systems with non-ID (NID) components. They
can also be used to represent finite mixtures and other statistical distributions.

If representation (1) holds, then the respective reliability functions F = 1 − F ,
F1 = 1 − F1, . . . , Fn = 1 − Fn satisfy

F(t) = Q(F1(t), . . . , Fn(t)) (2)

for all t , where Q is called the dual distortion function (see Hürlimann 2004) and can
be written as

Q(u1, . . . , un) = 1 − Q(1 − u1, . . . , 1 − un)

for u1, . . . , un ∈ [0, 1]. The function Q satisfies the same properties as Q, that is,
it is an increasing continuous function in [0, 1]n such that Q(0, . . . , 0) = 0 and
Q(1, . . . , 1) = 1. Representations (1) and (2) are equivalent but sometimes it is better
to use (2) instead of (1) (or vice versa).

The first ordering results for generalized distorted distributions are given in the
following proposition extracted from Navarro et al. (2016).

Proposition 1 Let FQ1 = Q1(F1, . . . , Fn) and FQ2 = Q2(F1, . . . , Fn) be two GDD
based on F1, . . . , Fn. Then:

(i) FQ1 ≤ST FQ2 for all F1, . . . , Fn if and only if Q1 ≤ Q2 in [0, 1]n.
(ii) FQ1 ≤HR FQ2 for all F1, . . . , Fn if and only if Q2/Q1 is decreasing in [0, 1]n.
(iii) FQ1 ≤RHR FQ2 for all F1, . . . , Fn if and only if Q2/Q1 is increasing in [0, 1]n.
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The preceding proposition will be used in the next section to compare coherent
systems with arbitrary components. In some situations it could be of interest to assume
that the components are ordered. In this case we will need the following new results
for generalized distorted distributions. The result for the ST order can be stated as
follows.

Proposition 2 Let FQ1 = Q1(F1, . . . , Fn) and FQ2 = Q2(F1, . . . , Fn) be two GDD
based on F1, . . . , Fn. Then FQ1 ≤ST FQ2 for all F1, . . . , Fn such that

F1 ≥ST . . . ≥ST Fn

holds if and only if Q1 ≤ Q2 in D = {(u1, . . . , un) ∈ [0, 1]n : u1 ≥ · · · ≥ un}.
The proof is immediate. A similar result can be obtained by using the distortion

functions Q1 and Q2.
Analogously, we have the following result for the HR order of generalized distorted

distributions with HR ordered baseline distributions. This is the main theoretical result
of the paper.

Proposition 3 Let FQ1 = Q1(F1, . . . , Fn) and FQ2 = Q2(F1, . . . , Fn) be two GDD
based on F1, . . . , Fn. Then FQ1 ≤HR FQ2 for all F1, . . . , Fn such that

F1 ≥HR · · · ≥HR Fn (3)

holds if and only if the function

H(v1, . . . , vn) = Q2(v1, v1v2, . . . , v1 . . . vn)

Q1(v1, v1v2, . . . , v1 . . . vn)
(4)

is decreasing in [0, 1]n.
Proof First, we note that if (3) holds, then the function Fi+1(t)/Fi (t) is decreasing
in t and so Fi+1(t)/Fi (t) ∈ [0, 1] for all t and i = 1, . . . , n − 1. Hence the ratio
FQ2/FQ1 can be written as

FQ2(t)

FQ1(t)
= H

(

F1(t),
F2(t)

F1(t)
, . . . ,

Fn(t)

Fn−1(t)

)

(5)

for the function H defined by (4).
To prove that it is a sufficient condition for the hazard rate ordering note that F1

is always decreasing and if Fi+1/Fi is decreasing and H is decreasing, then, from
the preceding representation (5), the ratio FQ2/FQ1 is increasing and FQ1 ≤HR FQ2

holds.
Let us prove now that it is a necessary condition. Clearly, it is enough to study

the monotonicity of H over (0, 1)n . Fix u ≤ v with u = (u1, . . . , un) and v =
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632 J. Navarro, Y. del Águila

(v1, . . . , vn). We want to show that H(u) ≥ H(v). Let us consider the following
reliability functions

Fi (t) =

⎧
⎪⎪⎨

⎪⎪⎩

1, t < 1
v1 . . . vi , 1 ≤ t < 2
u1 . . . ui , 2 ≤ t < 3
0, t ≥ 3

for i = 1, . . . , n. It is easy to see that F1 ≥HR · · · ≥HR Fn . Furthermore, FQ1 ≤HR

FQ2 implies

FQ2(1)

FQ1(1)
≤ FQ2(2)

FQ1(2)

which, from (5), is equivalent to H(u) ≥ H(v). 	

Example 1 shows how the preceding propositions can be applied to compare coher-

ent systems with ordered components. To this purpose we just need to study the
monotonicity of the function H defined in (4) in the set (0, 1)n . This proposition is
also used to obtain the results given in Table 3 and, in Sect. 4, to compare finite mix-
tures. A similar proposition for theRHRordering is stated in the following proposition.
The proof is analogous to that of the preceding proposition.

Proposition 4 Let FQ1 = Q1(F1, . . . , Fn) and FQ2 = Q2(F1, . . . , Fn) be two GDD
based on F1, . . . , Fn. Then FQ1 ≤RHR FQ2 for all F1, . . . , Fn such that

F1 ≤RHR · · · ≤RHR Fn (6)

holds if and only if the function

Q2(v1, v1v2, . . . , v1 . . . vn)

Q1(v1, v1v2, . . . , v1 . . . vn)
(7)

is increasing in [0, 1]n.

3 Comparisons of coherent systems

First we note that, if T is the lifetime of a coherent system with component lifetimes
X1, . . . , Xn having distribution functions F1, . . . , Fn , then the system distribution FT
can be written (see, e.g., Navarro et al. 2014, 2016) as

FT (t) = Q(F1(t), . . . , Fn(t)) (8)

for all t , that is, it is a generalized distortion distribution of the component distribution
functions, where the distortion function Q only depends on the structure of the system
and on the copula of the random vector (X1, . . . , Xn).
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Table 1 Dual distortions functions of coherent systems with 1–3 INID components

N T = ψ(X1, X2, X3) Q(u1, u2, u3)

1 X1:3 = min(X1, X2, X3) u1u2u3
2 min(X2, X3) u2u3
3 min(X1, X3) u1u3
4 min(X1, X2) u1u2
5 min(X3,max(X1, X2)) u1u3 + u2u3 − u1u2u3
6 min(X2,max(X1, X3)) u1u2 + u2u3 − u1u2u3
7 min(X1,max(X2, X3)) u1u2 + u1u3 − u1u2u3
8 X3 u3
9 X2 u2
10 X1 u1
11 X2:3 u1u2 + u1u3 + u2u3 − 2u1u2u3
12 max(X3,min(X1, X2)) u3 + u1u2 − u1u2u3
13 max(X2,min(X1, X3)) u2 + u1u3 − u1u2u3
14 max(X1,min(X2, X3)) u1 + u2u3 − u1u2u3
15 max(X2, X3) u2 + u3 − u2u3
16 max(X1, X3) u1 + u3 − u1u3
17 max(X1, X2) u1 + u2 − u1u2
18 X3:3 = max(X1, X2, X3) u1 + u2 + u3 − u1u2 − u1u3 − u2u3 + u1u2u3

The respective reliability functions FT = 1− FT , F1 = 1− F1, . . . , Fn = 1− Fn
satisfy

FT (t) = Q(F1(t), . . . , Fn(t)) (9)

for all t , where Q is the dual distortion function associated to Q. If the components are
independent, then the function Q is a strictly increasing multinomial in [0, 1]n called
reliability function of the structure (see Barlow and Proschan 1975, p. 21). The Q
functions for all the systems with 1–3 independent components are given in Table 1.

Then we can use the results included in the preceding section to provide necessary
and sufficient conditions for the ST, HR and RHR ordering properties of coherent
systems. In our opinion, it is more interesting to study comparison results when
the components are ordered since, under this assumption, we have different systems
depending on howwe place the different components. These results could also be used
to study where the best components should be placed at the system structure to obtain
a more reliable system. Some comparison results in this direction were also given in
Navarro and Rubio (2012) for the ST order under the condition

X1 ≥ST · · · ≥ST Xn . (10)

These resultswere obtained by using a sufficient condition based on the graph signature
of the system. We can provide better results now by using the necessary and sufficient
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Table 2 Relationships for the ST order between the coherent systems with independent components given
in Table 1

ST 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2

2 0 2 1 1 2 2 1 2 2 1 2 2 2 2 2 2 2 2

3 0 0 2 1 2 1 2 2 1 2 2 2 2 2 2 2 2 2

4 0 0 0 2 0 2 2 0 2 2 2 2 2 2 2 2 2 2

5 0 0 0 0 2 1 1 2 1 1 2 2 2 2 2 2 2 2

6 0 0 0 0 0 2 1 0 2 1 2 2 2 2 2 2 2 2

7 0 0 0 0 0 0 2 0 0 2 2 2 2 2 2 2 2 2

8 0 0 0 0 0 0 0 2 1 1 0 2 1 1 2 2 1 2

9 0 0 0 0 0 0 0 0 2 1 0 0 2 1 2 1 2 2

10 0 0 0 0 0 0 0 0 0 2 0 0 0 2 0 2 2 2

11 0 0 0 0 0 0 0 0 0 0 2 2 2 2 2 2 2 2

12 0 0 0 0 0 0 0 0 0 0 0 2 1 1 2 2 1 2

13 0 0 0 0 0 0 0 0 0 0 0 0 2 1 2 1 2 2

14 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 2 2 2

15 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 1 1 2

16 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 1 2

17 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 2

18 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2

The value 2 indicates that Ti ≤ST Tj holds for any F1, F2, F3 (i denotes the row and j the column).
The value 1 indicates that Ti ≤ST Tj holds for any F1, F2, F3 such that (10) holds. It also indicates that
Ti ≤ST Tj does not hold for all F1, F2, F3. The value 0 indicates that Ti ≤ST Tj does not hold for all
F1, F2, F3 satisfying (10) holds

conditions for the ST order given in Proposition 2. By applying this proposition to sys-
tems with 1–3 independent components satisfying (10), we have the properties given
in Table 2. These ordering results coincide with that obtained in Navarro and Rubio
(2012). Note that now we know that these are all the distribution-free ST orderings
for these systems. Also note that the results are different from that obtained without
condition (10) (given also in Table 2). Moreover, the comparison results provided here
can also be applied to systems with dependent components.

In our knowledge, in the literature there are no distribution-free comparison results
for HR orderings of general coherent system with heterogeneous components. Some
results for parallel systems were given in Balakrishnan and Torrado (2016). In this
case we are going to assume the following condition for the component lifetimes

X1 ≥HR · · · ≥HR Xn . (11)

To get necessary and sufficient conditions for the HR order under (11) we shall use
Proposition 3. Let us see a simple example on how this proposition can be applied.

Example 1 Let us consider a parallel system with two independent components with
reliability functions F1, F2. ThenT = X2:2 = max(X1, X2) and the system reliability
is
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FT (t) = F1(t) + F2(t) − F1(t)F2(t) = Q(F1(t), F2(t)),

where Q(u1, u2) = u1 + u2 − u1u2. Hence, as

Q(u1, u2)

u1
= u1 + u2 − u1u2

u1
= 1 + u2(−1 + 1/u1)

is decreasing in u1 and increasing in u2 in the set (0, 1)2, by Proposition 1, (ii), we have
that T and X1 are not HR ordered (for all F1, F2). In a similar way, it can be proved
that T and X2 are not HR ordered (for all F1, F2). Note that this is a quite unexpected
property (the parallel system should be better than its components). However, as

Q(u1, u2)

u1u2
= u1 + u2 − u1u2

u1u2
= 1

u2
+ 1

u1
− 1

is decreasing, by Proposition 1, (ii), we obtain X1:2 ≤HR X2:2 for all F1, F2, that
is, the series system is HR-worse than the parallel system when the components are
independent (a well known property). Surprisingly, this property is not necessarily true
for dependent components, seeNavarro and Shaked (2006). Of course, we always have
X1:2 ≤ST Xi ≤ST X2:2 for i = 1, 2.

Now we add the condition
X1 ≥HR X2, (12)

that is, the first component is HR better than the second one. Under this condition,
if we want to compare T with X2 (the worst component) by using Proposition 3, we
obtain the function

H(v1, v2) = Q(v1, v1v2)

v1v2
= v1 + v1v2 − v21v2

v1v2
= 1 − v1 + 1

v2
.

As H is a decreasing function in (0, 1]2, we have X2 ≤HR T for all F1, F2 satisfying
(12).

However, if we want to compare T with X1 (the best component) by using Propo-
sition 3, we get

H(v1, v2) = v1 + v1v2 − v21v2

v1
= 1 + v2(1 − v1).

As H is a decreasing function of v1 and an increasing function of v2 in [0, 1]2, we
have that X1 and T are not HR ordered for all F1, F2 satisfying (12).

For example,when Xi ∼ Exp(μi )withmeansμi = 1/ i for i = 1, 2, the respective
hazard rate functions are 1 and 2. So (12) holds and hence X2 ≤HR X2:2 holds. In
Fig. 1, we plot the respective hazard rate functions and we see that this property holds.
However, there we see that, in this case, X1 ≤HR X2:2 does not hold. Actually, in this
example, the residual lifetime of X1 at time t will be ST better than that of X2:2 for
t ∈ (t0,∞) for a t0 ∈ (0, 1) (see Fig. 1).
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Fig. 1 Hazard rate functions of
X1, X2 and X1:2 (constant
values 1, 2, 3) and X2:2 when
Xi ∼ Exp(μi ), with μi = 1/ i
for i = 1, 2. Note that
X1:2 ≤HR X2 ≤HR X2:2 holds
but that X1 ≤HR X2:2 does not
hold
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Proceeding as in the preceding example we can obtain all the HR orderings for
systems with independent components. In the case of coherent systems with arbitrary
independent components, by usingProposition 1,we have the orderings given inTables
2 and 3 for all the coherent systems with 1–3 components given in Table 1. As the
proposition contains necessary and sufficient conditions, now we know that these are
all the (distribution-free) orderings for these systems. Thus, for example, by Table 2,
we know that T10 = X1 and T17 = max(X1, X2) are ST ordered, i.e., T10 ≤ST T17
for any F1, F2. However, by Table 3, they are not HR ordered, that is, there exist
distribution functions F1, F2 such that T10 ≤HR T17 does not hold (as we have seen
in the preceding example).

The similar results for the RHR order can be obtained from Table 3 by using the
following proposition for dual systems. The definition of the dual system can be seen
in Barlow and Proschan (1975, p. 5). It is stated there that the minimal path (cut) sets
of the dual system are the minimal cut (path) sets of the parent system. Thus we have
the following lemma.

Lemma 1 Let C and K be the distributional and survival copula of the component
lifetimes (X1, . . . , Xn) of a system. If C = K, then the distortion function QD for the
dual system is equal to the dual distortion function Q of the parent system and the
dual distortion function QD for the dual system is equal to the distortion function Q
of the parent system.

Proof From Barlow and Proschan (1975, p. 12), we know that the system lifetime can
be written as

T = max
i=1,...,r

min
j∈Pi

X j = min
i=1,...,s

max
j∈Ci

X j

where P1, . . . , Pr are the minimal path sets and C1, . . . ,Cs are the minimal cut sets
of T . Then, by using the inclusion-exclusion formula, we have that the distortion
functions in (8) and (9) can be written as
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Table 3 Relationships for the HR order between the coherent systems with independent components given
in Table 1

HR 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2

2 0 2 1 1 1 1 1 2 2 1 1 1 1 1 2 1 1 1

3 0 0 2 1 0 0 1 2 1 2 0 1 1 1 1 2 1 1

4 0 0 0 2 0 0 0 0 2 2 0 0 0 0 0 0 2 0

5 0 0 0 0 2 0 0 2 1 1 0 0 1 1 1 1 2 2

6 0 0 0 0 0 2 0 0 2 1 0 0 0 1 0 2 1 2

7 0 0 0 0 0 0 2 0 0 2 0 0 0 1 2 1 1 2

8 0 0 0 0 0 0 0 2 1 1 0 0 0 0 1 1 1 1

9 0 0 0 0 0 0 0 0 2 1 0 0 0 0 0 0 1 0

10 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0

11 0 0 0 0 0 0 0 0 0 0 2 0 1 1 2 2 2 2

12 0 0 0 0 0 0 0 0 0 0 0 2 0 1 1 1 1 1

13 0 0 0 0 0 0 0 0 0 0 0 0 2 1 0 0 1 0

14 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0

15 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 1 1 1

16 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0

17 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0

18 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2

The value 2 indicates that Ti ≤HR Tj holds for any F1, F2, F3 (i denotes the row and j the column).
The value 1 indicates that Ti ≤HR Tj holds for any F1, F2, F3 such that (11) holds. It also indicates that
Ti ≤HR Tj does not hold for all F1, F2, F3. The value 0 means that Ti ≤HR Tj does not hold for all
F1, F2, F3 satisfying (11)

Q(u1, . . . , un) =
∑

∅
=I⊆{1,...,s}
(−1)|I |+1C(u∪i∈I Ci )

and

Q(u1, . . . , un) =
∑

∅
=I⊆{1,...,r}
(−1)|I |+1K (u∪i∈I Pi ),

where |I | is the cardinality of the set I and uP = (uP
1 , . . . , uP

n ) with uP
i = ui

whenever i ∈ P or uP
i = 1 whenever i /∈ P .

Hence, if C = K , as the minimal path sets of the dual system are C1, . . . ,Cs , we
get QD = Q. Analogously, as the minimal cut sets of the dual system are P1, . . . , Pr ,
we have QD = Q. 	


We must note here that the property C = K is not common. Of course, it holds
for the product copula (independent components) and, for example, for the Farlie-
Gumbel-Morgenstern copula

C(u, v) = uv(1 + θ(1 − u)(1 − v)),
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where θ ∈ [−1, 1]. Radially symmetric copulas satisfy this property, see Durante
and Sempi (2016, pp. 32–33). However, it does not hold for other common copulas.
We refer the readers interested in this property to this book and to Nelsen (2006, pp.
36–38). As an immediate consequence of Proposition 1 and Lemma 1, we have the
following property.

Proposition 5 Let T1 and T2 be the lifetimes of two coherent systems based on the
component lifetimes (X1, . . . , Xn). Let T D

1 and T D
2 be the lifetimes of the respective

dual systems. If the distributional copula of (X1, . . . , Xn) is equal to its survival
copula, then

T1 ≤RHR T2 if, and only if, T D
1 ≥HR T D

2 .

If the components are independent, then the distributional and survival copulas are
equal to the product copula. Hence, the RHR orderings for the coherent systems with
1–3 components can be obtained from Table 3 and the preceding proposition. For
example, by this table we know that T1 ≤HR Ti for i = 2, . . . , 18. As T18 is the
lifetime of the dual system of T1, then T18 ≥RHR Ti holds for i = 2, . . . , 18.

The comparison results given in Tables 2 and 3 for arbitrary independent compo-
nents are quite expectable results. Now, by using Proposition 3 and proceeding as in
the preceding example, we obtain all the HR orderings for all the coherent systems
with 1–3 independent components under the condition

X1 ≥HR X2 ≥HR X3. (13)

The ordering results are given in Table 3 and are summarized in Fig. 2. The respective
results for the RHR order can be obtained in a similar way by using Proposition 4.
We want to note that a lot of calculations are needed to get the results given in Table 3.
Thus, for any pair of systems, we computed the associated function H and we deter-
mined if it is decreasing in v1, v2 and v3 in [0, 1]3. In case of a positive answer, then
the HR ordering holds under (13). In case of a negative answer, then we know that
the HR ordering does not hold for all F1, F2, F3 satisfying (13). To show how these
calculations can be done, we include the following example.

Example 2 Let us consider the coherent systems numbers 7 and 14 in Table 1with life-
times T7 = min(X1,max(X2, X3)) and T14 = max(X1,min(X2, X3)). We assume
that the component lifetimes X1, X2, X3 are independent. Then the reliability function
of T7 is

Pr(T7 > t) = Pr(max(min(X1, X2),min(X1, X3)) > t)

= Pr({min(X1, X2) > t} ∪ {min(X1, X3) > t})
= Pr(min(X1, X2) > t) + Pr(min(X1, X3) > t)

− Pr(min(X1, X2, X3) > t)

= F1(t)F2(t) + F1(t)F3(t) − F1(t)F2(t)F3(t)

= Q7(F1(t), F2(t), F3(t)),
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T11

T5 T13

T8

T9T4T3T2T1 T17 T15

T10 T12

T7 T14

T6 T16

T18

Fig. 2 Hazard rate ordering relationships between the coherent systems with 1–3 independent components
given in Table 1 when (11) holds

where F1, F2, F3 are the component reliability functions and

Q7(u1, u2, u3) = u1u2 + u1u3 − u1u2u3.

Thuswe obtain the distortion function given in line 7 of Table 1. The distortion function
of T14, given by

Q14(u1, u2, u3) = u1 + u2u3 − u1u2u3

(see line 14 of Table 1) can be deduced in a similar way. As

Q14(u1, u2, u3) − Q7(u1, u2, u3) = u1 + u2u3 − u1u2 − u1u3
≥ u1(1 + u2u3 − u2 − u3)

= u1(1 − u2)(1 − u3) ≥ 0
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for all u1, u2, u3 ∈ [0, 1], by Proposition 1, we have T7 ≤ST T14 for all F1, F2, F3.
So in line 7, column 14 of Table 2 we put a 2.

To compare these systems in the HR order we compute

Q14(u1, u2, u3)

Q7(u1, u2, u3)
= u1 + u2u3 − u1u2u3

u1u2 + u1u3 − u1u2u3

= 1 + u2u3/u1 − u2u3
u2 + u3 − u2u3

.

Clearly, this ratio is decreasing in u1 in the set (0, 1]3. However, for u3 = 1, we get

Q14(u1, u2, 1)

Q7(u1, u2, 1)
= 1 − u2 + u2/u1

which is strictly increasing in u2 for all u1 ∈ (0, 1). Hence, by Proposition 1, T7 ≤HR

T14 does not hold for all F1, F2, F3.
Next we want to study if T7 ≤HR T14 holds under condition (13). To this purpose

we write the ratio of the dual distortion functions as

Q14(u1, u2, u3)

Q7(u1, u2, u3)
= 1 + u1(u2/u1)2(u3/u2) − u21(u2/u1)

2(u3/u2)

u1(u2/u1) + u1(u2/u1)(u3/u2) − u21(u2/u1)
2(u3/u2)

= H(u1, u2/u1, u3/u2)

where

H(v1, v2, v3) = 1 + v1v
2
2v3 − v21v

2
2v3

v1v2 + v1v2v3 − v21v
2
2v3

is the function considered in Proposition 3. Then we need to study if H is a decreasing
function (in v1, v2, v3) in the set [0, 1]3. For the partial derivative D3H of H with
respect of v3 we obtain

D3H(v1, v2, v3) =sign v1v
2
2(1 − v1) − 1 + v1v2

≤ v1v
2
2(1 − v1) − 1 + v1

= −(1 − v1)(1 − v1v
2
2) ≤ 0

for all v1, v2, v3 ∈ (0, 1). Therefore H decreases in v3 in the set [0, 1]3. Analogously,
straightforward calculations prove that H also decreases in v1 and v2 in the set [0, 1]3.
Hence, by Proposition 3, T7 ≤HR T14 holds for all F1, F2, F3 such that (13) holds. So
in line 7, column 14 of Table 3 we put a 1. Moreover, as by Table 3 we do not have
any other system lifetime Tj such that T7 ≤HR Tj ≤HR T14 holds under condition
(13), systems 7 and 14 are connected in Fig. 2. Moreover, as the dual system of T7 is
T14 (and vice versa), by Proposition 4, we have T7 ≤RHR T14 under condition (13).
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If we want to study the ordering T7 ≤RHR T14 under condition (6), by Proposition 4,
it holds if the function in (7), given by

G(v1, v2, v3) = Q14(v1, v1v2, v1v2v3)

Q7(v1, v1v2, v1v2v3)
,

is increasing in v1, v2, v3. As the dual of system 7 is system 14, we have Q14 = Q7
and Q7 = Q14. Hence

G(v1, v2, v3) = Q7(v1, v1v2, v1v2v3)

Q14(v1, v1v2, v1v2v3)
= 1

H(v1, v2, v3)
,

where H is the function obtained in Proposition 3 for the ordering T7 ≤HR T14. We
have proved that H is decreasing and so, G is increasing and T7 ≤RHR T14 holds for
all F1, F2, F3 satisfying (13).

We conclude this section with an example which shows that the results given in
Sect. 2 can also be used to compare coherent systems with dependent components.

Example 3 Let us consider the series and parallel systems with lifetime T1 = X1:2 =
min(X1, X2) and T2 = X2:2 = max(X1, X2) with two dependent components having
the following Clayton-Oakes (CO) survival copula

K (u1, u2) =
(
u1−θ
1 + u1−θ

2 − 1
)1/(1−θ)

for θ > 1. Then, the system reliability functions are

FT1(t) = Q1(F1(t), F2(t))

and

FT2(t) = Q2(F1(t), F2(t))

where F1, F2 are the component reliability functions,

Q1(u1, u2) = K (u1, u2) =
(
u1−θ
1 + u1−θ

2 − 1
)1/(1−θ)

and

Q2(u1, u2) = K (u1, 1) + K (1, u2) − K (u1, u2)

= u1 + u2 −
(
u1−θ
1 + u1−θ

2 − 1
)1/(1−θ)

.

These systems are always ordered in the ST order, that is, X1:2 ≤ST X2:2 for all
F1, F2 and any survival copula K . To compare these systems in the HR order under a
CO survival copula when θ = 2, we compute
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Q1(u1, u2) = K (u1, u2) = u1u2
u1 + u2 − u1u2

,

Q2(u1, u2) = u1 + u2 − u1u2
u1 + u2 − u1u2

and

Q2(u1, u2)

Q1(u1, u2)
= u1 + u2 − u1u2

u2
+ u1 + u2 − u1u2

u1
− 1

= u1
u2

+ u2
u1

− u1 − u2 + 1.

It is easy to see that this ratio is not decreasing in u1 and u2 in [0, 1]2 (e.g., when
u2 = 0.1). Hence, surprisingly, we have that X1:2 and X2:2 are not HR ordered for all
F1, F2.

Next, we can compare these systems under condition (12). To this purpose we
compute the function in (4) obtaining

H(v1, v2) = Q2(v1, v1v2)

Q1(v1, v1v2)
= 1 + 1

v2
+ v2 − v1 − v1v2.

The partial derivatives Di H of H with respect of vi , i = 1, 2, satisfy

D1H(v1, v2) = −1 − v2 < 0

and

D2H(v1, v2) = 1 − 1

v22
− v1 ≤ 0

in [0, 1]2, that is, H is a decreasing function in [0, 1]2. Hence, by Proposition 3,
X1:2 ≤HR X2:2 holds for all F1, F2 under condition (12) and a CO survival copula
with θ = 2. A similar study can be done for other values of the dependence parameter
θ .

4 Comparisons of finite mixtures

The results on generalized distorted distributions can also be applied to compare finite
mixtures defined as follows.

Definition 2 We say that Fp is a mixture of the distribution functions F1, . . . , Fn with
the non-negative weights in the vector p = (p1, . . . , pn) satisfying p1 +· · ·+ pn = 1
if

Fp = p1F1 + · · · + pnFn . (14)
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Clearly, the assumptions on the weights imply that the right hand side of the preced-
ing expression determines a proper distribution function for any distribution functions
F1, . . . , Fn . The respective reliability functions will satisfy

Fp = p1F1 + · · · + pnFn .

They can be represented as Fp = Qp(F1, . . . , Fn) and Fp = Qp(F1, . . . , Fn) with

Qp(u1, . . . , un) = Qp(u1, . . . , un) = p1u1 + · · · + pnun .

Hence they are generalized distorted distributions. Therefore, we can use the results
given in Sect. 2 to obtain distribution-free comparison results for finite mixtures. In
this sense, we shall assume that

F1 ≥ST · · · ≥ST Fn (15)

or
F1 ≥HR · · · ≥HR Fn (16)

hold. Then, by using Proposition 2, we get the following result.

Proposition 6 If Fp and Fq are two finite mixtures based on F1, . . . , Fn, then

Fp ≤ST Fq

holds for all F1, . . . , Fn satisfying (15) if and only if p ≥ST q (i.e. p1 + · · · + pk ≤
q1 + · · · + qk for all k ∈ {1, . . . , n − 1}).
Proof The ‘if’ part is obtained from Theorem 1.A.6 in Shaked and Shanthikumar
(2007, p. 7).

By using Proposition 2, we have that Fp ≤ST Fq holds for all F1, . . . , Fn satisfying
(15) if and only if

(q1 − p1)u1 + · · · + (qn − pn)un ≥ 0

in D = {(u1, . . . , un) ∈ [0, 1]n : u1 ≥ · · · ≥ un}. Then, for k ∈ {1, . . . , n − 1},
taking u1 = · · · = uk = 1 and uk+1 = · · · = un = 0, we get

(q1 − p1) + · · · + (qk − pk) ≥ 0.

Hence q1 + · · · + qk ≥ p1 + · · · + pk for all k ∈ {1, . . . , n − 1} and so p ≥ST q
holds. 	


From the preceding proposition, in the case n = 2, we have the trivial condition
q1 ≥ p1 and in the case n = 3, we obtain q1 ≥ p1 and q3 ≤ p3.

Analogously, by using Proposition 3, we obtain the following result.
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Proposition 7 If Fp and Fq are two finite mixtures based on F1, . . . , Fn, then

Fp ≤HR Fq

holds for all F1, . . . , Fn satisfying (16) if and only if

H(v2, . . . , vn) = q1 + q2v2 + · · · + qnv2 . . . vn

p1 + p2v2 + · · · + pnv2 . . . vn
(17)

is decreasing in [0, 1]n−1.

Proof First note that in this case the ratio of the respective reliability functions can be
written as

Fq(t)

Fp(t)
= H

(
F2(t)

F1(t)
, . . . ,

Fn(t)

Fn−1(t)

)

for all t , where H is given by (17). Notice that H does not depend on v1. Then, by
Proposition 3, we have that

Fp ≤HR Fq

holds for all F1, . . . , Fn satisfying (16) if and only if H(v2, . . . , vn) is decreasing in
[0, 1]n−1. 	


In the case n = 2, we have the condition q1 ≥ p1. This is also a well known result
(see, e.g., Navarro et al. 2009). In the case n = 3, we obtain the following new result
for the HR order.

Corollary 1 If Fp and Fq are two finite mixtures based on F1, F2, F3, then

Fp ≤HR Fq

holds for all F1, F2, F3 satisfying (16) if and only if the following conditions hold:
(i) q3 ≤ p3 and
(ii) p1q2 ≤ q1 p2.

Proof If n = 3 then the function H defined in the preceding proposition can bewritten
as

H(v2, v3) = q1 + q2v2 + q3v2v3
p1 + p2v2 + p3v2v3

.

Then it is decreasing in v2 in the set [0, 1]2 if and only if

(q2 + q3v3)p1 − (p2 + p3v3)q1 ≤ 0
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for all v3 ∈ [0, 1]. This property is equivalent to

(p1q3 − q1 p3)v3 ≤ q1 p2 − p1q2

for all v3 ∈ [0, 1]. This property holds if and only if it holds for v3 = 0 and v3 = 1.
If v3 = 1, then we have

(1 − q1)p1 ≤ (1 − p1)q1

which is equivalent to p1 ≤ q1. If v3 = 0, then we have

0 ≤ q1 p2 − p1q2

which is equivalent to (ii).
Analogously, H is decreasing in v3 in the set [0, 1]2 if and only if

(p1 + p2v2)q3 − (q1 + q2v2)p3 ≤ 0

for all v2 ∈ [0, 1]. This property is equivalent to

(p2q3 − q2 p3)v2 ≤ q1 p3 − p1q3

for all v2 ∈ [0, 1]. This property holds if and only if it holds for v2 = 0 and v2 = 1.
If v2 = 0, then we have

0 ≤ q1 p3 − p1q3

which is equivalent to p1q3 ≤ q1 p3. If v2 = 1, then we have

p2q3 − q2 p3 ≤ q1 p3 − p1q3,

that is,

(1 − p3)q3 ≤ (1 − q3)p3,

which is equivalent to (i).
Finally, if (ii) holds, then

p1q2 + p1q1 ≤ q1 p2 + p1q1

and, as (i) implies p1 + p2 ≤ q1 + q2, then

p1(q1 + q2) ≤ q1(p1 + p2) ≤ q1(q1 + q2)

and so p1 ≤ q1 and p1q3 ≤ q1 p3 hold. 	
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The respective results for the RHR order can be obtained in a similar way by
Proposition 4. Note that conditions (i) and p1 ≤ q1 in the preceding corollary are the
necessary and sufficient conditions to have the ST ordering under (15) when n = 3.
To get the HR ordering under (16), we need to replace p1 ≤ q1 by condition (ii).

Remark 1 Note that the ‘if’ parts of Propositions 6 and 7 can be applied to ‘negative’
mixtures, that is, to distribution functions that can be written as in (14) but with
some negative weights. Negative mixtures appear in different statistical procedures,
including order statistics and coherent system representations, see Navarro (2016)
and the references therein. The term generalized mixture is used to manage both
cases (positive and negative mixtures) together. Note that negative mixtures cannot
be represented as generalized distorted distributions (since the corresponding Qp is
decreasing in the variables with negative weights). However, the ST and HR orderings
hold for negative mixtures when the conditions in Propositions 6 and 7, respectively,
are satisfied. The proofs are similar to that of Propositions 2 and 3. Note that, in this
case, the condition p ≥ST q in Proposition 6 should be written as: q1 + · · · + qk ≤
p1 + · · · + pk for all k ∈ {1, . . . , n − 1} (since the vectors p and q cannot be seen as
probability mass vectors).

The following examples show how to apply the preceding theoretical results to
some finite mixtures.

Example 4 Let us consider the mixtures with weights p = (1/3, 1/3, 1/3) and q =
(1/2, 1/4, 1/4). Then a straightforward calculation shows that the conditions (i) and
(ii) in the preceding corollary hold. Then we have

Fp ≤HR Fq

for all F1, F2, F3 satisfying (16). As (i) and p1 ≤ q1 hold, we also have

Fp ≤ST Fq

for all F1, F2, F3 satisfying (15).

Example 5 Let us consider the finite mixtures with weights p = (p1, p2, p3) and
q = (q1, q2, q3) and let us assume that p1 = q1 > 0. In this case, condition (ii) in
Corollary 1 is equivalent to q2 ≤ p2. Therefore, by using that q1 + q2 + q3 = 1 =
p1 + p2 + p3, implies q2 + q3 = p2 + p3, properties (i) and (ii) hold if and only if
pi = qi for i = 1, 2, 3. Hence

Fp ≤HR Fq

holds for all F1, F2, F3 satisfying (16) if and only if Fp = Fq. For example, the
mixtures with weights p = (1/3, 1/3, 1/3) and q = (1/3, 1/2, 1/6) are not HR
ordered for all F1, F2, F3 satisfying (16). This is a quite unexpected property since in
q we give a greater weight to the second component which is HR-better than the third
one. However,
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Fp ≤ST Fq

holds for all F1, F2, F3 satisfying (15) since (i) and p1 = q1 hold for these values. In
general, if p1 = q1, then Fp ≤ST Fq holds for all F1, F2, F3 satisfying (15) if and
only if q3 ≤ p3.

Example 6 Let us consider the finite mixtures with weights p = (p1, p2, p3) and
q = (q1, q2, q3). Let us assume that p1 = 0 < q1. Then, condition (ii) in Corollary 1
holds. Therefore

Fp ≤HR Fq

holds for all F1, F2, F3 satisfying (16) if and only if (i) q3 ≤ p3 is satisfied. In
particular, it holds if q3 = 0. For example, themixtureswithweightsp = (0, 1/2, 1/2)
and q = (q1, q2, q3) are HR ordered under (16) if and only if q3 ≤ 1/2.

5 Conclusions

Necessary and sufficient conditions have been obtained for distribution-free stochas-
tic (ST) and hazard rate (HR) comparisons of generalized distorted distributions with
ordered components. The examples provided here prove that these theoretical results
are useful in practice to get stochastic comparisons of coherent systems and finite mix-
tures. In particular, all the ST and HR ordering relationships between all the coherent
systems with 1–3 independent components have been determined. The procedures
used here improve preceding results and can also be used to compare systems with
more components and/or with dependent components.

The results obtained here can also be applied to compare any other distributions
which can be represented as generalized distorted distributions. For example, if two
reliability functions satisfy the generalized proportional hazard rate (GPHR) model
used to define the conditionally dependent frailty models (see, e.g., Fernández-Ponce
et al. 2016) and can be written as

Fα(t) = F
α1
1 (t) . . . F

αn
n (t)

and

Fβ(t) = F
β1
1 (t) . . . F

βn
n (t)

for some parameters α1, . . . , αn, β1, . . . , βn > 0, then, from Proposition 3, Fα ≤HR

Fβ holds for all F1, . . . , Fn satisfying (3) if and only if αi +· · ·+αn ≥ βi +· · ·+βn

for i = 1, . . . , n.
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