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Abstract In this paper, we propose two moment-type estimation methods for the
parameters of the generalized bivariate Birnbaum–Saunders distribution by taking
advantage of some properties of the distribution. The proposed moment-type esti-
mators are easy to compute and always exist uniquely. We derive the asymptotic
distributions of these estimators and carry out a simulation study to evaluate the per-
formance of all these estimators. The probability coverages of confidence intervals are
also discussed. Finally, two examples are used to illustrate the proposed methods.

Keywords Asymptotic normality · Bivariate generalized Birnbaum–Saunders
distribution · Maximum likelihood estimator · Modified moment estimator

1 Introduction

The well-known two-parameter Birnbaum–Saunders (BS) distribution was proposed
byBirnbaum and Saunders (1969) tomodel fatigue failure provoked by cyclic loading.
The BS is related to the normal distribution by means of the stochastic representation
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Table 1 Moments [ur (g)] for the indicated distributions

Distribution u1(g) u2(g) u3(g) u4(g)

Normal 1 3 15 105

Student-t ν
(ν−2)

3ν2
(ν−2)(ν−4)

15ν3
(ν−2)(ν−4)(ν−6)

105ν4
(ν−2)(ν−4)(ν−6)(ν−8)

ν > 2 ν > 4 ν > 6 ν > 8

T = (β/4)
[
αZ + √

(αZ)2 + 4
]2
, where α > 0 and β > 0 are shape and scale

parameters, respectively, Z ∼ N(0, 1) and T is BS distributed with notation T ∼
BS(α, β). The probability density function (PDF) of T is given by

fBS(t;α, β) = 1

2
√
2παβ

exp

{
− 1

2α2

(
t

β
+ β

t
− 2

)}{(
β

t

) 1
2 +

(
β

t

) 1
2
}

,

t > 0. (1)

The generalized BS (GBS) distribution was proposed by Díaz-García and Leiva
(2005) as a manner to provide more flexible models than the BS one. The GBS dis-
tribution is obtained from Z = (√

T/β − √
β/T

)
/α ∼ ES(g), where ES(g) denotes

an elliptically symmetric distribution with parameter of position μ = 0, parameter
of scale σ = 1, and a density generator g. Then, T = (β/4)(αZ + √

α2Z2 + 4)2 ∼
GBS(α, β; g), and its PDF is given by

fGBS(t;α, β; g) = c g

(
1

α2

(
t

β
+ β

t
− 2

))
1

2α

{(
β

t

) 1
2 +

(
β

t

) 3
2
}

, t > 0,

where c is a normalizing constant of the associated symmetric PDF, and α and β are
as in (1). The mean and variance of T are given by

E[T ] = β

2

(
2 + u1α

2
)

, Var[T ] = β2α2

4

[
4u1 +

(
2u2 − u21

)
α2

]
, (2)

where ur = ur (g) = E[Ur ] (see Table 1), with U ∼ Gχ2(1; g), namely, U follows a
generalized chi-squared (Gχ2(·)) distribution with one degree of freedom and density
generator g; see Fang et al. (1990).

Recently, Kundu et al. (2013) introduced a generalized multivariate BS (GMBS)
distribution by using the multivariate elliptical symmetric distribution, and derived
the maximum likelihood estimators (MLEs) of its parameters. Two particular cases
were analyzed, the multivariate normal and multivariate-Student-t distributions. A
special case of the GMBS model is the generalized bivariate BS (GBBS) distribution,
which in turn has the bivariate BS (BBS) distribution, proposed by (Kundu et al.
2010), and the bivariate BS-Student-t (BBS-t), as particular models. Amongst other
things, Kundu et al. (2010, 2013) discussed different properties of these distributions
and maximum likelihood (ML) estimation. Balakrishnan and Zhu (2015) studied the
fitting of a regression model based on the BBS distribution introduced by Kundu et al.
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(2010). The authors derived the MLEs of the model parameters and then developed
inferential issues.

In this context, the main purpose of this paper is to introduce two moment-type
estimation methods for the parameters of the GBBS distribution. First, we derive
modified moment estimators (MMEs) which basically rely on the reciprocal property
of the GBBS distribution; see Ng et al. (2003). We then derive new modified moment
estimators (NMMEs) which are based on some key properties of the GBBS distribu-
tion; see Balakrishnan and Zhu (2014). These two new methods have the advantages
to be easy to compute and to possess explicit expressions as functions of the sample
observations. Additionally, contrasted to the MLEs, the MMEs and NMMEs always
exist uniquely. We derive the asymptotic distributions of the MMEs and NMMEs,
which are used to compute the probability coverages of confidence intervals.

The rest of the paper proceeds as follows. In Sect. 2, we describe briefly the GBBS
distribution and some of its properties. In Sect. 3, we describe theMLEs and the corre-
sponding inferential results. In Sect. 4, we present the proposed estimators and derive
their asymptotic distributions. A comparison of the estimators via aMonte Carlo (MC)
simulation study is shown in Sect. 5. In Sect. 6, we illustrate the proposedmethodology
by using two real data sets. Finally, in Sect. 7, we provide some concluding remarks
and also point out some problems worthy of further study.

2 Generalized bivariate Birnbaum–Saunders distribution

Let X� = (X1, X2) be a bivariate random vector following a bivariate elliptically
symmetric (BES) distribution with location vector μ = 0, correlation coefficient ρ,
and a density generator gc(·); see Fang et al. (1990). The PDF of X is given by

fBES (x; ρ, gc) = ωc√
1 − ρ2

gc

(
1(

1 − ρ2
)
(
x21 + x22 − 2ρx1x2

))
, x ∈ R

2, (3)

where ωc > 0 and
∫
R2 fBES(x; ρ, gc)dx = 1. In this case, the notation X ∼

BES(ρ, gc) is used. Alternative definitions of elliptical distributions can be found
in Cambanis et al. (1981) and Abdous et al. (2005). Table 2 presents some examples
of elliptically symmetric distributions.

Table 2 Constants (ωc) and density generator (gc(·)) for the indicated distributions

Distribution ωc gc(·) Parameter

Bivariate normal (2π)−1 e−
x
2

Symmetric Kotz type δ
πΓ (ζ/δ)

λ
ζ
δ xζ−1e−λxδ

δ, λ, ζ > 0

Bivariate Student-t
Γ

(
ν+2
2

)

Γ
(
ν
2
)
νπ

(
1 + x

ν

)− (ν+2)
2 ν > 0

Symmetric bivariate Pearson Type VII Γ (ξ)
Γ (ξ−1)θπ

(
1 + x

θ

)−ξ
ξ > 1, θ > 0
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Now, let α = (α1, α2)
� and β = (β1, β2)

�, with αk > 0 and βk > 0 for k = 1, 2.
If the bivariate vector T = (T1, T2)� with correlation coefficient ρ follows a GBBS
distribution, denoted by T ∼ GBBS(α,β, ρ), then its PDF is

fGBBS(t;α,β, ρ) = fBES

(
1

α1

(√
t1
β1

−
√

β1

t1

)
,
1

α2

(√
t2
β2

−
√

β2

t2

)
; ρ, gc

)

× 1

2α1

{(
β1

t1

) 1
2 +

(
β1

t1

) 3
2
}

1

2α2

{(
β2

t2

) 1
2 +

(
β2

t2

) 3
2
}

,

t > 0, (4)

where fBES(·; ρ, gc) is the PDF given in (3). The corresponding joint cumulative
distribution function (CDF) of T = (T1, T2)� is given by

FGBBS(t;α,β, ρ) = FBES

(
1

α1

(√
t1
β1

−
√

β1

t1

)
,
1

α2

(√
t2
β2

−
√

β2

t2

)
; ρ, gc

)
,

t > 0, (5)

where FBES(·; ρ, gc) is the CDF associated with (3).

Theorem 1 If T = (T1, T2)� ∼ GBBS(α,β, ρ) as defined in Equation (5), then

a) T−1 = (T−1
1 , T−1

2 )� ∼ GBBS(α,β−1, ρ), with β−1 = (1/β1, 1/β2)
�;

b) T−1
1 = (T−1

1 , T2)� ∼ GBBS(α,β−1
[1] ,−ρ), with β[1] = (1/β1, β2)

�;
c) T−1

2 = (T1, T
−1
2 )� ∼ GBBS(α,β−1

[2] ,−ρ), with β[2] = (β1, 1/β2)
�.

Proof By using the PDF in (4) and making suitable transformations. ��

Particular cases of the GBBS distributions are the BBS distribution proposed by
Kundu et al. (2010), and the BBS-t distribution. These models are obtained by assum-
ing the bivariate normal and bivariate Student-t kernels in Table 2, respectively.

Bivariate Birnbaum–Saunders distribution If the random vector T = (T1, T2)� is
BBS distributed with parameter vectors α = (α1, α2)

� and β = (β1, β2)
�, and

correlation coefficient ρ, denoted by T ∼ BBS(α,β, ρ), then its joint PDF is given
by

fBBS(t;α,β, ρ) = φ2

(
1

α1

(√
t1
β1

−
√

β1

t1

)
,
1

α2

(√
t2
β2

−
√

β2

t2

)
; ρ

)

× 1

2α1

{(
β1

t1

) 1
2 +

(
β1

t1

) 3
2
}

1

2α2

{(
β2

t2

) 1
2 +

(
β2

t2

) 3
2
}

,

t > 0, (6)
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where αk > 0 and βk > 0 for k = 1, 2, −1 < ρ < 1, and φ2(·, ·; ρ) is a normal joint
PDF given by

φ2(u, v; ρ) = 1

2π
√
1 − ρ2

exp

{
1(

1 − ρ2
)
(
u2 + v2 − 2ρuv

)}
.

Bivariate Birnbaum–Saunders-t distribution The random vector T = (T1, T2)�
is said to have a BBS-t distribution with parameter vectors α = (α1, α2)

� and
β = (β1, β2)

�, ν degrees of freedom, and correlation coefficient ρ, denoted by
T ∼ BBS−t (α,β, ρ, ν), if its joint PDF is given by

fBBS−t(t;α,β, ρ) = h2

(
1

α1

(√
t1
β1

−
√

β1

t1

)
,
1

α2

(√
t2
β2

−
√

β2

t2

)
; ρ, ν

)

× 1

2α1

{(
β1

t1

) 1
2 +

(
β1

t1

) 3
2
}

1

2α2

{(
β2

t2

) 1
2 +

(
β2

t2

) 3
2
}

,

t > 0, (7)

where αk > 0 and βk > 0 for k = 1, 2, −1 < ρ < 1, ν > 0, and h2(·, ·; ρ) is a
Student-t joint PDF given by

h2(u, v; ρ, ν) = Γ
(

ν+2
2

)

Γ
(

ν
2

)
νπ

√
1 − ρ2

(
1 + 1

ν
(
1 − ρ2

)
(
u2 + v2 − 2ρuv

))− (ν+2)
2

.

(8)

3 Maximum likelihood estimators

The MLEs of the model parameters of the BBS distribution are discussed in Kundu
et al. (2010), whereas Kundu et al. (2013) have approached the MLEs of the GMBS
model, which has as special case the GBBS distribution.

Bivariate Birnbaum–Saunders distribution Let {(t1i , t2i ), i = 1, . . . , n} be a bivariate
random sample from the BBS(α,β, ρ) distributionwith PDF as given in Eq. (6). Then,
the MLEs of β1 and β2, denoted by β̂1 and β̂2, can be obtained by maximizing the
profile log-likelihood function

�p(β) = −n ln(̂α1(β1)) − n ln(β1) − n ln (̂α2(β1)) − n ln(β2)

−n

2
ln

(
1 − ρ̂2(β1, β2)

)

+
n∑

i=1

ln

{(
β1

t1i

) 1
2 +

(
β1

t1i

) 3
2
}

+
n∑

i=1

ln

{(
β2

t2i

) 1
2 +

(
β2

t2i

) 3
2
}

, (9)
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where

α̂k(βk) =
(
sk
βk

+ βk

rk
− 2

) 1
2

, k = 1, 2, (10)

ρ̂(β1, β2) =
∑n

i=1

(√
t1i
β1

−
√

β1
t1i

) (√
t2i
β2

−
√

β2
t2i

)
√∑n

i=1

(√
t1i
β1

−
√

β1
t1i

)2√∑n
i=1

(√
t2i
β2

−
√

β2
t2i

)2 . (11)

In order to maximize the function in (9) with respect to β1 and β2, one may
use the Newton–Raphson algorithm or some other optimization algorithm. Once
β̂1 and β̂2 are obtained, the MLEs of α1, α2 and ρ are computed from (10) and
(11). Kundu et al. (2010) showed that the asymptotic joint distribution of θ̂ , where
θ = (α1, β1, α2, β2, ρ), is

√
n(̂θ − θ) ∼ N5

(
0, I−1

)
,

whereN5
(
0, I−1

)
is a 5-variate normal distributionwithmean 0 and covariancematrix

I−1; see Kundu et al. (2010) for the elements of the Fisher information matrix I .
Bivariate Birnbaum–Saunders-t distribution Now, let {(t1i , t2i ), i = 1, . . . , n} be a
bivariate random sample from the BBS − t(α,β, ρ, ν) distribution with PDF as given
in Eq. (7). Let also

[(√
T1
β1

−
√

β1

T1

)
,

(√
T2
β2

−
√

β2

T2

)]�
∼ t2(DΓ D�, ν),

M = DΓ D� =
⎛
⎝

α2
1 α1α2ρ

α1α2ρ α2
2

⎞
⎠ ,

where t2(DΓ D�, ν) is a bivariate Student-t distribution with PDF as in (8) and D =
diag{α1, α2}.Moreover,M = 1/n

∑n
i=1 γiuiu�

i , where γi = (ν+2)/(ν+u�
i M−1ui )

with

u�
i =

[(√
t1i
β1

−
√

β1

t1i

)
,

(√
t2i
β2

−
√

β2

t2i

)]
.

The MLEs of β1 and β2, denoted by β̂1 and β̂2, can be obtained by maximizing the
profile log-likelihood function

�p(β) = −n

2
ln

(∣∣Γ̂ (β1, β2)
∣∣) − n ln (̂α1(β1)) − n ln(β1) − n ln (̂α2(β1)) − n ln(β2)

−ν + 2

2

n∑
i=1

ln

(
1 + v�

i Γ̂
−1

(β1, β2)vi

ν

)
+

n∑
i=1

ln

{(
β1

t1i

) 1
2 +

(
β1

t1i

) 3
2
}
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+
n∑

i=1

ln

{(
β2

t2i

) 1
2 +

(
β2

t2i

) 3
2
}

,

where

v�
i =

[
1

α1

(√
t1i
β1

−
√

β1

t1i

)
,
1

α2

(√
t2i
β2

−
√

β2

t2i

)]
,

and

α̂k(βk) = (mkk)
1
2 , k = 1, 2, Γ̂ (β1, β2) = Q̂(β1, β2)M̂(β1, β2) Q̂

�
(β1, β2),

(12)

with M̂(β1, β2) = ((mkj (β1, β2))) and Q̂(β1, β2) = diag{1/α̂1(β1), 1/α̂2(β2)}. The
MLE of M can be obtained by using an algorithm to carry out iterations successively

until a certain convergence criterion is satisfied, for instance, when ||M̂(k+1)
(β1, β2)−

M̂
(k)

(β1, β2)|| is sufficiently small; see Nadarajah and Kotz (2008) and Kundu et al.
(2013).

An estimate of ν can be obtained by using the profile likelihood. Therefore, we
have the following two steps:

i) Let νl = l and for each l = 1, .., 20 compute the ML estimates of α1, α2, β1, β2
and ρ by using the above procedures. Compute also the likelihood function;

ii) The final estimate of ν is the one which maximizes the likelihood function and the
associated estimates of α1, α2, β1, β2 and ρ, are the final ones.

4 Proposed estimators

In this section we propose two new simple estimators of the parameters of the GBBS
distribution. Let {(t1i , t2i ), i = 1, . . . , n} be a bivariate random sample from the
GBBS(α,β, ρ) distribution with PDF as given in (4).

4.1 Modified moment estimators

Let the sample arithmetic and harmonic means be defined as

sk = 1

n

n∑
i=1

tki and rk =
[
1

n

n∑
i=1

t−1
ki

]−1

, k = 1, 2,

respectively. The MMEs are obtained by equating E[T1], E[T−1
1 ], E[T2] and E[T−1

2 ]
to the corresponding sample estimates, that is,

E [T1] = s1, E
[
T−1
1

]
= r−1

1 , E [T2] = s2 and E
[
T−1
2

]
= r−1

2 . (13)
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Thus, by using the expressions in (2), we have

s1 = β1

2

(
2 + u11α

2
1

)
, r−1

1 = 1

2β1

(
2 + u11α

2
1

)
,

s2 = β2

2

(
2 + u21α

2
2

)
and r−1

2 = 1

2β2

(
2 + u21α

2
2

)
, (14)

where ukr = ukr (g) = E[Ur
k ], with Uk ∼ Gχ2(1; g); see Table 1. Solving (14) for

α1, β1, α2 and β2, we obtain the MMEs of these parameters, denoted by α̃1, β̃1, α̃2
and β̃2, namely,

α̃1 =
{

2

u11

[(
s1
r1

) 1
2 − 1

]} 1
2

, β̃1 = (s1r1)
1
2 ,

α̃2 =
{

2

u21

[(
s2
r2

) 1
2 − 1

]} 1
2

, and β̃2 = (s2r2)
1
2 .

Theorem 2 The asymptotic distributions of α̃k and β̃k , for k = 1, 2, are given by

√
n(̃αk − αk) ∼ N

(
0, α2

k

[
uk2 − u2k1

4u2k1

])
,

√
n(β̃k − βk) ∼ N

(
0, α2

kβ
2
k

[
uk1 + uk2

4 α2
k(

1 + uk1
2 α2

k

)2
])

.

Proof See “Appendix 1”. ��

Bivariate Birnbaum–Saunders distribution In this case, the MMEs of α1, β1, α2 and
β2 are given by

α̃1 =
{
2

[(
s1
r1

) 1
2 − 1

]} 1
2

, β̃1 = (s1r1)
1
2 ,

α̃2 =
{
2

[(
s2
r2

) 1
2 − 1

]} 1
2

, and β̃2 = (s2r2)
1
2 .

Then, the MME of ρ is

ρ̃ =
∑n

i=1

(√
t1i
β̃1

−
√

β̃1
t1i

)(√
t2i
β̃2

−
√

β̃2
t2i

)

√
∑n

i=1

(√
t1i
β̃1

−
√

β̃1
t1i

)2
√

∑n
i=1

(√
t2i
β̃2

−
√

β̃2
t2i

)2
.
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Bivariate Birnbaum–Saunders-t distribution For a given ν, the MMEs of α1, β1, α2
and β2 are given by

α̃1 =
{

2

u11

[(
s1
r1

) 1
2 − 1

]} 1
2

, β̃1 = (s1r1)
1
2 ,

α̃2 =
{

2

u21

[(
s2
r2

) 1
2 − 1

]} 1
2

, and β̃1 = (s2r2)
1
2 ,

where ukr is as given in (14), that is, uk1 = ν
ν−2 with ν > 2 and k = 1, 2. The MME

of ρ is given by ρ̃ = γ12 = γ21, where γkl is the (k, l)th element of the matrix [see
Eq. (12)]

Γ̃ = Q̂(β̃1, β̃2)M̃(β̃1, β̃2) Q̃
�
(β̃1, β̃2).

The estimate of ν can be obtained by using the same procedure presented in Sect. 3.

4.2 New modified moment estimators

Let

Y1i j = T1i
1

T1 j
, Y2i j = T2i

1

T2 j
, for 1 ≤ i 	= j ≤ n,

where Y1i j = 1/Y1 j i and Y2i j = 1/Y2 j i , and then we have
(n
2

)
pairs of Y1i j or Y2i j .

Therefore,

E
[
Y1i j

] = E [T1i ] E

[
1

T1 j

]
=

(
1 + u11

2
α2
1

)2
,

E
[
Y2i j

] = E [T2i ] E

[
1

T2 j

]
=

(
1 + u21

2
α2
2

)2
,

where ukr is as in (14). Note that the sample means of y1i j and y2i j (observed values
of Y1i j and Y2i j , respectively) are given by

y1 = 1

2
(n
2

)
∑

1≤i 	= j≤n

y1i j and y2 = 1

2
(n
2

)
∑

1≤i 	= j≤n

y2i j .

Then, y1i j and y2i j can be equated to E[Y1i j ] and E[Y2i j ], respectively, and solved
for α1 and α2 to obtain the NMMEs estimators, namely,

α̃∗
1 =

{
2

u11

[√
y1 − 1

]} 1
2

and α̃∗
2 =

{
2

u21

[√
y2 − 1

]} 1
2

.
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Furthermore, since

E[T 1] = E

[
1

n

n∑
i=1

T1i

]
= β1

(
1 + u11

2
α2
1

)
and

E
[
T 2

] = E

[
1

n

n∑
i=1

T2i

]
= β2

(
1 + u21

2
α2
2

)
,

we can obtain estimators of β1 and β2, denoted by β̃
�
1 and β̃

�
2 , as

β̃
�
1 = 2s1

2 + (̃α∗
1)

2 = s1√
y1

and β̃
�
2 = 2s2

2 + (̃α∗
2)

2 = s2√
y2

.

Also, note that

E
[
T−1
1

]
= 1

n

1∑
i=1

E

[
1

T1i

]
= β1

(
1 + u11

2
α2
1

)
and

E
[
T−1
2

]
= 1

n

1∑
i=1

E

[
1

T2i

]
= β2

(
1 + u21

2
α2
2

)
,

which implies the following estimators of β1 and β2, denoted by β̃
�
1 and β̃

�
2 , that is,

β̃
�
1 = 2s1

2 + (̃α∗
1)

2 = s1√
y1

and β̃
�
2 = 2s2

2 + (̃α∗
2)

2 = s2√
y2

.

The final NMMEs of β1 and β2, denoted by β̃∗
1 and β̃∗

2 , can be obtained by merging
the two estimators as

β̃∗
1 =

(
β̃

�
1 β̃

�
1

) 1
2 = (s1r1)

1
2 and β̃∗

2 =
(
β̃

�
2 β̃

�
2

) 1
2 = (s2r2)

1
2 ,

which coincide with the MMEs.

Property 1 The NMMEs always exist uniquely.

Proof This can be proved by showing that α̃∗
1 and α̃∗

2 are always non-negative. This
result was proved by Balakrishnan and Zhu (2014). ��
Theorem 3 The asymptotic distributions of α̃∗

k and β̃∗
k , for k = 1, 2, are given by

√
n(̃α∗

k − αk) ∼ N

(
0, α2

k

[
uk2 − u2k1

4u2k1

])
,

√
n(β̃∗

k − βk) ∼ N

(
0, α2

kβ
2
k

uk1 + uk2
4 α2

k(
1 + uk1

2 α2
k

)2
)

.
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Proof Note that β̃k = β̃∗
k , then we have the same asymptotic distribution. The proof

for α̃∗
k is presented in “Appendix 2”. ��

Bivariate Birnbaum–Saunders distribution Here, the NMMEs of α1, β1, α2 and β2
are given by

α̃∗
1 =

{
2
[√

y1 − 1
]} 1

2
, β̃∗

1 = (s1r1)
1
2 , α̃∗

2 =
{
2
[√

y2 − 1
]} 1

2
, and

β̃∗
2 = (s2r2)

1
2 .

Then, the NMME of ρ is

ρ̃∗ =

∑n
i=1

(√
t1i
β̃∗
1

−
√

β̃∗
1

t1i

)(√
t2i
β̃∗
2

−
√

β̃∗
2

t2i

)

√√√√∑n
i=1

(√
t1i
β̃∗
1

−
√

β̃∗
1

t1i

)2
√√√√∑n

i=1

(√
t2i
β̃∗
2

−
√

β̃∗
2

t2i

)2
.

Bivariate Birnbaum–Saunders-t distribution For a given ν, the NMMEs of α1, β1, α2
and β2 are given by

α̃∗
1 =

{
2

u11

[√
y1 − 1

]} 1
2

, β̃∗
1 = (s1r1)

1
2 , α̃∗

2 =
{

2

u21

[√
y2 − 1

]} 1
2

, and

β̃∗
2 = (s2r2)

1
2 ,

where uk1 is provided in (14), namely, uk1 = ν
ν−2 with ν > 2 and k = 1, 2. The

NMME of ρ is given by ρ̃∗ = γ12 = γ21, where γkl is the (k, l)th element of the
matrix [see Eq. (12)]

Γ̃
∗ = Q̂

∗
(β̃∗

1 , β̃∗
2 )M̃

∗
(β̃∗

1 , β̃∗
2 ) Q̃

∗�
(β̃∗

1 , β̃∗
2 ).

Here, the estimate of ν can also be obtained by using the same procedure presented in
Sect. 3.

5 Numerical evaluation

We here carry out a MC simulation study to evaluate the performance of the proposed
estimators presented anteriorly. We focus on the BBS distribution. The simulation
scenario considered the following: the sample sizes n ∈ {10, 50}; the values of the
shape and scale parameters as αk ∈ {0.1, 2.0} and βk = 2.0, for k = 1, 2, respectively;
the values of ρ are 0.00, 0.25, 0.50 and 0.95 (the results for negative ρ are quite similar
so are omitted here); and 10, 000 MC replications. The values of αk cover low and
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high skewness. We also present the 90 and 95% probability coverages of confidence
intervals for the BBS model.

Tables 3, 4 report the empirical values of the biases and mean square errors (MSEs)
of the MLEs, MMEs and NMMEs, for the BBS distribution. From these tables, we
observe that, as n increases, the bias and MSE of all the estimators decrease, tending
to be unbiased, as expected. We also observe that the NMMEs α̃∗

k , for k = 1, 2, of the
shape parameters αk display biases, in absolute values, that are smaller than those of
the corresponding MLEs and MMEs for all samples sizes and values of ρ considered
in the study. In terms of MSE, the performances of the three methods are quite similar.

From Tables 3–4, it is also worth noting that the MLEs andMMEs are quite similar
in terms of bias and MSE. Furthermore, we note that, as the values of the shape
parameters αk increase, the performances of the estimators of βk , the scale parameters,
deteriorate. For example, when n = 10, ρ = 0.95 and α1 = 0.1, the bias of β̂1 (MLE),
β̃1 (MME) and β̃∗

1 (NMME) were 0.0017 in these three cases, and 0.1934, 0.2179 and
0.2179, respectively, when α1 = 2.0, which is equivalent to an increase in the bias of
over 200 times. In general, the results do not seem to depend on ρ. Overall, the results
favor the NMMEs.

5.1 Probability coverage simulation results

We compute the 90 and 95% probability coverages of confidence intervals for the BBS
model using the asymptotic distributions given earlier, with αk = 0.5, βk = 1.0, for
k = 1, 2. The 100(1 − γ )% confidence intervals for θ j , j = 1, . . . , 5, based on the
MLEs can be obtained from

⎡
⎣
⎛
⎝θ̂ j + zγ /2√

I j j (Θ̂)

⎞
⎠ ,

⎛
⎝θ̂k + z1−γ /2√

I j j (Θ̂)

⎞
⎠

⎤
⎦ ,

respectively, where Θ̂ = (θ̂1, θ̂2, θ̂3, θ̂4, θ̂5)
� = (̂α1, β̂1, α̂2, β̂2, ρ̂)� and zr is the

100r th percentile of the standard normal distribution. The corresponding 100(1−γ )%
confidence intervals for αk and βk , k = 1, 2, based on the MMEs are given by

[
α̃k

(
1 + zγ /2√

2n

)−1

, α̃k

(
1 + z1−γ /2√

2n

)−1
]

,

[
β̃k

(
1 + zγ /2√

nh(̃αk)

)−1

, β̃k

(
1 + z1−γ /2√

nh(̃αk)

)−1
]

,

where h(x) = 1+(3/4)x2

[1+(1/2)x2]2 . Finally, the 100(1 − γ )% confidence intervals for αk and
βk , k = 1, 2, based on the NMMEs are given by
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[
α̃∗
k

(
1 + zγ /2√

2n

)−1

, α̃∗
k

(
1 + z1−γ /2√

2n

)−1
]

,

⎡
⎣β̃∗

k

(
1 + zγ /2√

nh(̃α∗
k )

)−1

, β̃∗
k

(
1 + z1−γ /2√

nh(̃α∗
k )

)−1
⎤
⎦ .

To obtain 100(1 − γ )% confidence interval for ρ based on the MME (ρ̃k) and
NMME (ρ̃∗

k ), we can make use of the Fisher’s z-transformation Fisher (1921) and
the generalized confidence interval proposed by Krishnamoorthy and Xia (2007). The
latter method is suggested by Kazemi and Jafari (2015) as one of the best approaches
to construct confidence interval for the correlation coefficient in a bivariate normal
distribution.

First, note that

X1 = 1

α1

(√
T1
β1

−
√

β1

T1

)
∼ N(0, 1) and X2 = 1

α2

(√
T1
β2

−
√

β2

T2

)
∼ N(0, 1).

Note also that the we can express ρ̃ (results for ρ̃∗ are similar) as

ρ̃ =
∑n

i=1 x1i x2i√∑n
i=1 x

2
1i

√∑n
i=1 x

2
2i

,

where x1i = 1
α̃1

(√
t1i
β̃1

−
√

β̃1
t1i

)
and x2i = 1

α̃2

(√
t2i
β̃2

−
√

β̃2
t2i

)
. The pairs (x1i , x2i )

for i = 1, . . . , n can be thought of as realizations of the pair (X1, X2). Then, ρ̃ is
an estimator of the correlation coefficient of a standard bivariate normal distribution.
Below, we detail the two methods to compute the confidence interval.

Fisher’s z-transformation (FI) Based on the Fisher’s z-transformation Fisher (1921),
we readily have

z = 1

2
log

(
1 + ρ̃

1 − ρ̃

)
= tanh−1(ρ̃),

which has an asymptotic normal distribution with mean 1
2 log

(
1+ρ
1−ρ

)
= tanh−1(ρ)

and variance 1/(n−3). Then, we can obtain an approximate 100(1−γ )% confidence
interval for ρ by

[
tanh

(
ρ̃ + zγ /2√

n − 3

)
, tanh

(
ρ̃ + z1−γ /2√

n − 3

)]
.

Krishnamoorthy and Xia’s Method (KX) Based on Krishnamoorthy and Xia (2007)
we can construct an approximate 100(1 − ξ)% confidence interval for ρ from the
following algorithm
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– Step 1. Compute ρ = ρ̃√
1−ρ̃2

for a given n and ρ̃;

– Step 2. For i = 1 to m (1,000,000 say), generate U1 ∼ χ2
n−1, U2 ∼ χ2

n−2 and
Z0 ∼ N (0, 1) and compute

Qi = ρ
√
U2 − Z0√

(ρ
√
U2 − Z0)2 +U1

.

The upper and lower limits for ρ are the 100(γ )th and 100(1− γ )th percentiles of the
Qi ’s. Table 5 presents the 90% and 95% probability coverages of confidence intervals.
The results show that the asymptotic confidence intervals do no provide good results
for αk and βk when the sample size is small (n = 10), since the coverage probabilities
are much lower than the corresponding nominal values. The scenario changes when
n = 50 with satisfactory results for both αk and βk . Overall, the coverages for ρ

associated with the MMEs and NMMEs have quite good performances, whereas the
coverages based on the MLEs have poor performances.

6 Illustrative examples

We illustrate the proposed methodology by using two real data sets. The first data set
corresponds to two different measurements of stiffness, whereas the second data set
represents bone mineral contents of 24 individuals.

6.1 Example 1

In this example, the data set corresponds to two different measurements of stiffness,
namely, shock (T1) and vibration (T2) of each of n = 30 boards. The former involves
emitting a shock wave down the board, while the latter is obtained during the vibration
of the board; see Johnson and Wichern (1999).

Figure 1 provides the histogram, scaled total time on test (TTT) plot and probability
versus probability (PP) plot with 95% acceptance bands for each marginal T1 and
T2. Acceptance bands are computed by using the relation between the Kolmogorov-
Smirnoff (KS) test and the PP plot; see Castro-Kuriss et al. (2014). The TTT plot
allows us to have an idea about the shape of the failure rate of the marginals; see
Aarset (1987) and Azevedo et al. (2012). Let the failure rate of a random variable X be
h(x) = f (x)/[1−F(x)], where f (·) and F(·) are the PDF andCDFof X , respectively.
The scaled TTT transform is given by W (u) = H−1(u)/H−1(1), for 0 ≤ u ≤ 1,

where H−1(u) = ∫ F−1(u)

0 [1−F(y)]dy, with F−1(·) being the inverse CDF of X . The
corresponding empirical version of the scaled TTT transform is obtained by plotting
the points [k/n,Wn(k/n)], with Wn(k/n) = [∑k

i=1 x(i) + {n − k}xk]/∑n
i=1 x(i), for

k = 1, . . . , n, and x(i) being the i th observed order statistic. From Fig. 1, we observe
that the TTT plots suggest that the failure rates are all unimodal. Therefore, the BBS
and BBS-t models are good choices, since the marginal distributions of these models
allow us to model unimodal failure rates. Moreover, in Fig. 1, the PP plots support the
BBS and BBS-t models.

123



Estimation in generalized bivariate Birnbaum–Saunders models 445

Ta
bl

e
5

Pr
ob

ab
ili
ty

co
ve
ra
ge
s
of

90
an
d
95

%
co
nfi

de
nc
e
in
te
rv
al
s
fo
r
th
e
B
B
S
m
od

el
(α

k
=

0.
5,

β
k

=
1.
0,

fo
r
k

=
1,
2)

n
ρ

M
L
E

90
%

95
%

α
1

α
2

β
1

β
2

ρ
α
1

α
2

β
1

β
2

ρ

10
0.
00

80
.1
0

79
.7
8

82
.9
6

84
.3
4

78
.2
6

84
.3
0

85
.4
8

88
.4
4

89
.0
2

84
.0
4

0.
25

80
.1
6

79
.6
6

83
.9
4

83
.3
8

77
.3
6

84
.3
8

84
.4
8

89
.7
8

90
.2
6

83
.6
4

0.
50

79
.4
2

79
.2
6

91
.3
8

82
.1
4

79
.0
6

84
.7
0

84
.6
6

88
.1
2

88
.4
8

83
.1
8

0.
95

79
.7
8

80
.2
8

54
.7
3

54
.0
3

78
.8
0

84
.5
0

84
.3
6

61
.7
0

61
.4
3

82
.7
2

50
0.
00

87
.5
6

87
.9
8

88
.3
6

89
.2
6

87
.2
0

92
.9
4

92
.4
4

93
.7
6

93
.7
4

92
.5
0

0.
25

86
.7
4

87
.8
2

88
.7
4

88
.5
4

88
.0
0

93
.1
4

92
.7
8

93
.3
2

93
.7
2

93
.4
8

0.
50

87
.9
2

88
.3
0

88
.0
2

88
.0
0

89
.2
6

92
.6
0

93
.3
4

92
.5
6

93
.0
6

93
.1
8

0.
95

87
.4
2

87
.3
0

57
.9
0

57
.9
6

88
.3
4

93
.1
4

93
.2
0

67
.0
0

66
.8
4

92
.5
8

n
ρ

M
M
E

90
%

95
%

α
1

α
2

β
1

β
2

ρ
(F
I)

ρ
(K

X
)

α
1

α
2

β
1

β
2

ρ
(F
I)

ρ
(K

X
)

10
0.
00

80
.1
0

79
.7
8

83
.7
4

85
.0
6

90
.3
9

89
.3
9

84
.3
0

85
.4
6

89
.0
8

89
.7
0

94
.9
7

95
.3
4

0.
25

80
.1
6

79
.6
6

84
.9
6

84
.3
8

90
.0
7

89
.9
1

84
.3
8

84
.4
8

90
.5
0

91
.1
4

95
.1
2

94
.9
6

0.
50

79
.4
2

79
.2
6

84
.3
6

84
.8
4

90
.3
1

90
.1
1

84
.6
8

84
.6
4

90
.3
6

90
.7
4

94
.8
6

94
.9
8

0.
95

79
.1
2

80
.3
0

84
.6
4

85
.1
2

90
.3
1

89
.4
4

84
.4
6

84
.3
6

89
.6
2

89
.5
4

94
.9
6

95
.0
5

50
0.
00

87
.5
6

87
.9
8

88
.3
6

89
.4
2

90
.1
4

89
.9
6

92
.9
4

92
.4
4

93
.8
6

93
.8
8

94
.6
6

94
.8
0

0.
25

86
.7
4

87
.8
2

89
.3
4

89
.0
0

89
.7
6

90
.0
6

93
.1
4

92
.7
8

93
.7
6

94
.1
0

94
.7
5

94
.5
7

0.
50

87
.9
2

88
.3
0

89
.7
4

89
.9
4

90
.6
7

90
.0
7

92
.6
0

93
.3
4

94
.0
0

94
.4
4

95
.2
8

95
.3
7

0.
95

87
.4
2

87
.8
0

88
.7
2

89
.0
2

90
.5
4

89
.2
1

93
.1
4

93
.2
0

93
.8
8

93
.7
2

94
.9
9

94
.9
3

123



446 H. Saulo et al.

Ta
bl

e
5

co
nt
in
ue
d

n
ρ

N
M
M
E

90
%

95
%

α
1

α
2

β
1

β
2

ρ
(F
I)

ρ
(K

X
)

α
1

α
2

β
1

β
2

ρ
(F
I)

ρ
(K

X
)

10
0.
00

84
.3
2

84
.2
0

85
.6
4

86
.7
2

90
.3
9

89
.4
1

87
.9
2

88
.7
4

90
.3
2

90
.8
4

94
.9
7

95
.3
0

0.
25

84
.3
4

83
.6
2

86
.8
0

86
.1
8

90
.0
7

89
.8
8

88
.0
6

88
.3
2

91
.8
0

92
.3
0

95
.1
2

94
.9
6

0.
50

84
.1
0

83
.4
6

85
.8
4

86
.3
4

90
.3
1

90
.0
8

88
.2
8

88
.4
0

91
.7
2

92
.1
6

94
.8
6

95
.0
4

0.
95

84
.6
0

84
.5
2

86
.5
2

86
.6
8

90
.3
1

89
.5
3

88
.1
2

88
.1
8

91
.1
8

90
.9
2

94
.9
6

95
.0
3

50
0.
00

88
.6
2

88
.9
0

88
.7
0

89
.7
2

90
.1
4

89
.9
5

93
.7
8

93
.2
6

94
.0
0

94
.2
0

94
.6
6

94
.7
7

0.
25

87
.8
2

89
.0
6

89
.5
2

89
.3
8

89
.7
6

89
.9
6

93
.7
0

93
.6
0

94
.0
0

94
.3
2

94
.7
5

94
.5
1

0.
50

88
.6
6

89
.4
0

90
.0
0

90
.3
0

90
.6
7

90
.0
6

93
.6
8

93
.9
0

94
.3
4

94
.6
2

95
.2
8

95
.3
0

0.
95

88
.5
0

88
.4
2

89
.1
0

89
.3
2

90
.5
4

89
.1
9

93
.7
2

93
.7
4

94
.1
8

93
.9
2

94
.9
9

94
.9
8

123



Estimation in generalized bivariate Birnbaum–Saunders models 447

0.
0

.0
00

5
.0
01

0
.0
01

5

1500 2000 2500 3000
T1

PD
F

0.0 0.2 0.4 0.6 0.8 1.0

.7
0
.7
5
.8
0
.8
5
.9
0
.9
5
1.
0

W
n
(k

/
n
)

k/n

0.
0

0.0

0.
2

0.2

0.
4

0.4

0.
6

0.6

0.
8

0.8

1.
0

1.0
BS CDF

Em
pi
ric

al
C
D
F

0.
0

0.0

0.
2

0.2

0.
4

0.4

0.
6

0.6

0.
8

0.8

1.
0

1.0
BS-t CDF

Em
pi
ric

al
C
D
F

0.
0

.0
00

5
.0
01

0
.0
01

5

1000 1500 2000 2500
T2

PD
F

0.0 0.2 0.4 0.6 0.8 1.0

.7
0
.7
5
.8
0
.8
5
.9
0
.9
5
1.
0

W
n
(k

/
n
)

k/n

0.
0

0.0

0.
2

0.2

0.
4

0.4

0.
6

0.6

0.
8

0.8

1.
0

1.0

BS CDF
Em

pi
ric

al
C
D
F

0.
0

0.0

0.
2

0.2

0.
4

0.4

0.
6

0.6

0.
8

0.8

1.
0

1.0

BS-t CDF

Em
pi
ric

al
C
D
F

(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 1 Histogram, TTT plot and PP plot with acceptance bands for the two different measurements of
stiffness

We now fit the BBS and BBS-t distributions to the stiffness data. From the observa-
tions, we obtain s1 = 1906.1, r1 = 1857.55 and s2 = 1749.53 r2 = 1699.99. Table 6
presents the MLEs, MMEs and NMMEs, as well as the log-likelihood values and the
corresponding values of the Akaike (AIC) and Bayesian (BIC) information criteria.
We note that across the models the log-likelihood values are quite similar, which sug-
gests that the BBS model is the best model, since the BBS-t one does not improve
substantially the fit for these data. The AIC and BIC values also confirm this result.
Note that the estimates of ν are quite large, indicating that the BBS-t distribution is
tending to the BBS case.

In order to assess whether the BBS and BBS-t models fit these bivariate data or not,
we compute the generalized Cox–Snell (GCS) residual based on each marginal. The
GCS residual is given by rGCSj = − log(Ŝ(t j i )), for j = 1, 2 and i = 1, . . . , n, where

Ŝ(t j i ) is the fitted survival function of the j-th marginal. If the model is correctly
specified, the GCS residual is unit exponential [EXP(1)] distributed; see Leiva et al.
(2014).

Figure 2 shows the QQ plots with simulated envelope of the GCS residuals based
on the marginals of the BBS and BBS-t models and based on the MLEs. From this
figure, we note that the GCS residuals present a good agreement with the EXP(1)
distribution. Similar results are obtained when the QQ plots are based on the MMEs
and NMMEs.

6.2 Example 2

Here, the data set corresponds to the bone mineral density (BMD) measured in g/cm2

for 24 individuals included in a experimental study; see Johnson and Wichern (1999).
The data represent the BMD of dominant radius (T1) and radius (T2) bones. The
histogram, TTT plot and PP plot with 95% acceptance bands for each marginal T1
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Table 6 Estimates of the parameters, log-likelihood values and AIC and BIC values for the indicated
models

α1 α2 β1 β2 ρ ν Log-likelihood AIC BIC

BBS

MLE 0.1611 0.1700 1881.67 1724.58 0.9082 – −400.648 811.296 818.302

MME 0.1611 0.1700 1881.67 1724.58 0.9082 – −400.648 811.296 818.302

NMME 0.1638 0.1729 1881.67 1724.58 0.9082 – −400.664 811.328 818.334

BBS-t

MLE 0.1610 0.1699 1881.67 1724.58 0.9081 192 −400.646 813.292 821.699

MME 0.1603 0.1692 1881.67 1724.58 0.9045 200 −400.654 813.308 821.715

NMME 0.1629 0.1720 1881.67 1724.58 0.9075 188 −400.664 813.328 821.735
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Fig. 2 QQ plot with envelope of the GCS residual for the indicated models and marginals, based on the
MLEs
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Fig. 3 Histogram, TTT plot and PP plot with acceptance bands for the BMD data

and T2 are showed in Fig. 3. From this figure, we note that the PP plots of T1 and T2
support the assumed BBS and BBS-t models. We also note that the TTT plots suggest
unimodal hazard rates for both marginals.

123



Estimation in generalized bivariate Birnbaum–Saunders models 449

Table 7 Estimates of the parameters, log-likelihood values and AIC and BIC values for the indicated
models

α1 α2 β1 β2 ρ ν Log-likelihood AIC BIC

BBS

MLE 0.1673 0.1378 0.8285 0.8015 0.7784 – 43.3856 −96.7712 −102.6615

MME 0.1673 0.1378 0.8293 0.8025 0.7784 – 43.3847 −96.7694 −102.6597

NMME 0.1709 0.1408 0.8293 0.8025 0.7784 – 43.3635 −96.7270 −102.6173

BBS-t

MLE 0.0798 0.0785 0.8666 0.8284 0.8561 2 51.8293 −115.6586 −122.7269

MME 0.1183 0.0975 0.8293 0.8025 0.8350 4 49.8347 −111.6694 −118.7377

NMME 0.0986 0.0813 0.8293 0.8025 0.8433 3 49.9282 −111.8564 −118.9247
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Fig. 4 QQ plot with envelope of the GCS residual for the indicated models and marginals, based on the
MLEs

From the observations, we obtain s1 = 0.8409, r1 = 0.8178 and s2 = 0.8101 r2 =
0.7949. Table 7 provides theMLEs, MMEs and NMMEs, as well as the log-likelihood
values and the corresponding values of the AIC and BIC information criteria. The
results of the log-likelihood values and the information criteria indicate that the BBS-
t model provides the best fit to this data set. Based on the MLEs, Fig. 4 shows that
the QQ plots with simulated envelope of the GCS residuals under the BBS and BBS-t
models. These graphical plots show a good agreement, in terms of fitting to the data,
of both models.

7 Concluding remarks

In this paper, we have proposed two simple estimation methods, based on complete
samples, for the generalized bivariate Birnbaum–Saunders distribution. The new esti-
mators are easy to compute, possess good asymptotic properties, and have explicit
expressions as functions of the sample observation, that is, they are obtained with-
out the need to use numerical methods for maximizing the log-likelihood. Through a
Monte Carlo simulation study, we have shown that the new modified moment estima-
torswe proposed have good performance. Two illustrative exampleswith real data have
shown the usefulness of the proposed methodology. As part of future work, it would
be of interest to extend the proposed methods of estimation to generalized multivariate
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Birnbaum–Saunders distributions as well as to censored data. Work on these problems
is currently under progress and we hope to report these findings in a future paper.
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Appendix 1: Asymptotic distribution of the MMEs

Let T = (T1, T2)� follow a GBBS(α,β, ρ, ν) distribution, then

E [Tk] = βk

(
1 + uk1

2
α2
k

)
, σ 11

k = Var [Tk] = β2
kα

2
k

(
uk1 + 2uk2 − u2k1

4
α2
k

)
,

σ 22
k = Var

[
T−1
k
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k

(
uk1 + 2uk2 − u2k1

4
α2
k

)
σ 12
k = σ 22

k = Cov [Tk]

= 1 −
(
1 + uk1

2
α2
k

)2
, k = 1, 2,

where ukr is as in (14).
Now, let {(t1i , t2i ), i = 1, . . . , n} be a bivariate random sample from the

GBBS(α,β, ρ) distribution. The sample arithmetic and harmonic means are defined
by

sk = 1

n

n∑
i=1

tki and r∗
k = r−1

ki = 1

n

n∑
i=1

t−1
ki , k = 1, 2,

and the MMEs are given by

α̃k =
{

2

uk1

[(
skr

∗
k

) 1
2 − 1

]} 1
2

and β̃k = (
sk/r

∗
k

) 1
2 , k = 1, 2.

Consider Sk = 1
n

∑n
i=1 Xkj and R∗

k = R−1
k = ∑n

i=1
1
Xki

, with k = 1, 2, which

implies that the vector (Sk, R
−1
k )� is bivariate normal distributed, that is,

√
n

(
Sk − E [Tk]

R∗
k − E

[
T−1
k

]
)

∼ N

⎡
⎣
(
0
0

)
,

⎛
⎝Var [Tk] , 1 − E [Tk] E

[
T−1
k

]

1 − E [Tk] E
[
T−1
k

]
,Var [Tk]

⎞
⎠

⎤
⎦ .

We need to find the asymptotic joint distribution of (α̃k, β̃k)
�. Note that
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∂α̃k
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By using the Taylor series expansion, we readily have
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Appendix 2: Asymptotic distribution of α̃∗
k

Note that

E
[
Y k

] = 1

2
(n
2
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∑
1≤i 	= j≤n
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Yki j

] =
(
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, k = 1, 2,
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and
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2
k . From these results, we have
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To obtain the distribution of α̃∗
k , we use a Taylor series expansion such that
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where g′(·) and g′′(·) denote the first and second derivatives of the function of g(·)
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. We thus obtain the asymptotic distribution of α̃∗

k as
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