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Abstract Two adaptive nonparametric procedures are proposed to estimate the den-
sity of the random effects in a mixed-effect Ornstein–Uhlenbeck model. First a kernel
estimator is introduced with a new bandwidth selection method developed recently
by Goldenshluger and Lepski (Ann Stat 39:1608–1632, 2011). Then, we adapt an
estimator from Comte et al. (Stoch Process Appl 7:2522–2551, 2013) in the frame-
work of small time interval of observation. More precisely, we propose an estimator
that uses deconvolution tools and depends on two tuning parameters to be chosen
in a data-driven way. The selection of these two parameters is achieved through a
two-dimensional penalized criterion. For both adaptive estimators, risk bounds are
provided in terms of integrated L2-error. The estimators are evaluated on simulations
and show good results. Finally, these nonparametric estimators are applied to neuronal
data and are compared with previous parametric estimations.
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920 C. Dion

1 Introduction

Stochastic differential models have been intensively surveyed in the theoretical litera-
turewith either continuous observations (e.g.Kutoyants 2004) or discrete observations,
both in the parametric field (e.g. Genon-Catalot and Jacod 1993) or in the nonparamet-
ric field (e.g. Hoffmann 1999; Comte et al. 2007).More recently, stochastic differential
equations with random effects have been introduced with various applications such
as neuronal modelling or pharmacokinetics (e.g. Picchini et al. 2008; Delattre and
Lavielle 2013; Donnet and Samson 2013). Mixed-effects models are used to analyse
repeatedmeasurementswith similar functional form butwith some variability between
experiments (see Davidian and Giltinan 1995; Pinheiro and Bates 2000; Diggle et al.
2002). The advantage is that a single estimation procedure is used to fit the overall
data simultaneously.

Estimationmethods in stochastic differential models with random effects have been
proposed, especially in the parametric framework (e.g. Donnet and Samson 2008,
2014; Donnet et al. 2010; Picchini et al. 2010; Picchini and Ditlevsen 2011; Delattre
and Lavielle 2013; Genon-Catalot, and Larédo 2016; Delattre et al. 2015). All these
parametric estimation methods of the density of the random effects are developed
assuming a known model on the density, which is often Gaussian. However, one can
wonder if this assumption is reasonable depending on the application context.We focus
here on the nonparametric estimation of the density of the independent identically
distributed random effects. To the best of our knowledge, the only references in this
context are Comte et al. (2013) and Dion and Genon-Catalot (2015). The first one
provides a nonparametric estimator of the density under restrictive assumptions on the
drift and diffusion coefficients. The second one studies the more general case of two
linear random effects in the drift. It provides a kernel estimator of the bivariate density
of the couple of random parameters. Assuming that the process is at its stationary
regime, the authors obtain L2-convergence results.

The present work proposes two nonparametric estimation methods in the simpler
model, i.e. an Ornstein–Uhlenbeck stochastic differential model with one additive
random effect, X , the time scale parameter being assumed known. More precisely, we
consider N real valued stochastic processes (X j (t), t ∈ [0, T ]), j = 1, . . . , N , with
dynamics ruled by the following SDEs:

{
dX j (t) =

(
φ j − X j (t)

α

)
dt + σdWj (t)

X j (0) = x j
(1)

where (Wj )1≤ j≤N are N independent Wiener processes, and (φ j )1≤ j≤N are N unob-
served independent and identically distributed (i.i.d.) random variables taking values
in R, with a common density f . The sequences (φ j )1≤ j≤N and (Wj )1≤ j≤N are inde-
pendent. Here (x1, . . . , xN ) are known values. The positive constants σ and α are
supposed to be known; in practice they are estimated from experimental data. The
estimation of σ can be done using the quadratic variation of the process. The con-
stant α is a physical quantity. Picchini et al. (2010) give an estimator of α for the
Ornstein–Uhlenbeck model (1) where the likelihood function is explicit and one can
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compute maximum likelihood estimators. Each process (X j (t), 0 ≤ t ≤ T ) repre-
sents an individual and the variable φ j is the random effect of individual j . Due to
the independence of the φ j and theWj , the X j (t), for j = 1, . . . , N are i.i.d. random
variables when t is fixed, also the N trajectories (X j (t), 0 ≤ t ≤ T ), j = 1, . . . , N
are i.i.d. Nevertheless, differences between observations are due to the realization of
both Wj and φ j . The Ornstein–Uhlenbeck model is very useful in practice: at first in
physics to describe the movement of a particle, then in the econometric field, or for
example in neuroscience to describe the membrane potential of a neuron.

The purpose of the present work is to build nonparametric estimators of the random
effect density f , considering that only the processes are observed on [0, T ]with T > 0
given. In practice we consider discrete observations of the X j ’s with a very small time
step δ.We are able to evaluate the error made by this discretization. Themain difficulty
is that we do not observe the φ j ’s but only the X j (kδ)’s. Thus the first step is to find
an estimator of the random effects φ j and then to estimate f , taking into account the
approximation introduced by the estimation of the φ j .

In the context of stochastic differential equations with random effects, Comte et al.
(2013) propose different nonparametric estimators with good theoretical properties for
large T . Here we adopt two different approaches. First we assume that T is large and
we propose a direct estimation method of the density from the estimator of the φ j ’s.
This is the kernel estimator. Then, assuming that T may be small (due to the chosen
units for example but still with high frequency data) we focus on the deconvolution
estimator.

The kernel estimator depends on a bandwidth to be chosen from the data. Several
selection methods of the bandwidth of kernel estimators are known. The originality
here is that we use a method, proposed by Goldenshluger and Lepski (2011), which
provides an adaptive estimator. This kind of non-asymptotic result is new in this
context.

Then we study an estimator built by a deconvolution method (see Butucea and
Tsybakov 2007; Comte et al. 2013, for example). The novelty lies in the introduction
of an additional tuning parameter to control the variance of the noise. The value of T
is then allowed to be small but we still need high frequency observation meaning a
small time step.

We obtain a collection of estimators depending on two parameters. To select the
final estimator among this collection, we extend theGoldenshluger and Lepski method
for a two-dimensional model selection (Goldenshluger and Lepski 2011). Finally we
have a consistent estimator satisfying an oracle inequality, for any value of T . This
estimator is likely to be applied to experimental data with small T .

We illustrate the properties of the proposed estimators with a simulation study.
Especially, we compare them with standard bandwidth selection method of cross-
validation type. Then, the estimators are applied to neuronal data. They are intracellular
measurements of the neuronal membrane potential between two spikes which can be
modelled with an Ornstein–Uhlenbeck model with one random effect as in (1). The
potential being reset at a fixed initial value after a spike, we consider that the measure
between two spikes is an independent experimental unit with a different realization
of the random effect. This assumption has already been considered with parametric
strategies in Picchini et al. (2008, 2010), where it is assumed that the random effect is
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922 C. Dion

Gaussian and proven that the Ornstein–Uhlenbeck model with one random effect fits
better the data than the model without them. Our goal is to estimate nonparametrically
the density of the random effect. This estimated density could be used in further works
to model this phenomenon (instead of using the Gaussian density systematically).

The paper is organized as follows. Section 2 is dedicated to giving definitions and
presenting the estimators investigated in this work. Then in Sect. 3 we set up a method
of bandwidth selection for the kernel estimator. In Sect. 4 we define and study the
final data-driven estimator built by deconvolution. In Sect. 5 we calibrate the selection
methods and illustrate the good performances of both estimators on simulated data.
In Sect. 6 we experiment the procedures on real data. We conclude this article with a
discussion in Sect. 7. All proofs are gathered in Sect. 8, and the computation of the
error made by discretization is done in “Appendix 1”.

2 Presentation of the strategies

2.1 Notation and assumptions

Let us introduce some notations. For two functions g1 and g2 in L
1(R) ∩ L

2(R), the
convolution product of g1 and g2 for all x ∈ R, is g1�g2(x) = ∫

R
g1(x−y)g2(y)dy and

the scalar product is: 〈g1, g2〉 = ∫
R
g1(x)g2(x)dx . Then the Fourier transform of g1

is g∗
1(x) = ∫

R
eiux g1(u)du for all x ∈ R and the L2-norm is ‖g1‖2 = ∫

R
|g1(x)|2dx .

Finally we recall the Plancherel–Parseval’s formula: 2π‖g1‖2 = ‖g∗
1‖2.

We assume (A) f ∈ L
2(R), f ∗ ∈ L

1(R) ∩ L
2(R).

2.2 Initial idea

As previously mentioned, the first step of the procedure is to estimate the random
effect φ j which are not observed, in order to recover their density, in a second time.
For this purpose, we introduce the following random variables for j = 1, . . . , N and
τ ∈]0, T ],

Z j,τ :=
X j (τ ) − X j (0) − ∫ τ

0

(
− X j (s)

α
ds
)

τ
= φ j + σ

τ
Wj (τ ). (2)

The (Z j,τ )τ are estimators of the φ j based on the trajectory (X j (t)). They corre-
spond to the maximum in ϕ of the conditional likelihood of (1) given φ j = ϕ.
Moreover random variables satisfy E[Z j,τ ] = E[φ j ] and when τ goes to infin-
ity, the noise σWj (τ )/τ goes to zero. This attests the goodness of the estimator.
Notice that the (Z j,τ ) j=1,...,N are i.i.d. when τ is fixed, with density fZτ , due to
the independence of (φ j ) j=1,...,N and (Wj ) j=1,...,N . These new random variables are
available, depending only on the observations and known parameters. Nevertheless,
we only have discrete observations of the process. Thus we discretize the integral:∫ τ

0 Xsds ≈ δ
∑
τ/δ�

k=1 X(k−1)δ . The error due to this approximation is studied in sec-
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tion ‘Discretization’ of “Appendix 2”. At this point, two strategies materialize which
we explain in the following Section.

2.3 Estimation strategies

Let us present the two investigated methods.

Kernel strategy
The first idea is to reduce the noise which appears in formula (2). Indeed,
Var(σWj (τ )/τ) = σ 2/τ leads to focus on the largest τ : τ = T . Moreover, when
T is large Z j,T clearly approximates φ j without needing to remove the noise. Then
we are able to build a kernel estimator of the density f of the φ j ’s based on the Z j,T

using directly the Z j,T as an approximation of the non-observed random effects φ j .
These N random variables are i.i.d. and the resulting kernel estimator is given for all
x ∈ R, by

f̂h(x) = 1

N

N∑
j=1

Kh(x − Z j,T ) (3)

where h > 0 is a bandwidth, and K : R → R is a C2 kernel such that

∫
K (u)du = 1, ‖K‖2 =

∫
K 2(u)du < +∞,

∫
(K ′′(u))2du < +∞,

Kh(x) = 1

h
K
( x
h

)
. (4)

This natural estimator is studied in detail in Sect. 3.

Deconvolution strategy
The other idea is to build an estimator of f using all variables Z j,τ for different
τ ∈ [0, T ]. Recovering f from theobservations (X1(t), . . . , XN (t))t∈[0,T ] is called the
deconvolution problem because the common density of (Z j,τ ) j=1,...,N is a convolution
product between twodensities. Indeed, the twomembers of the sum (2) are independent
when τ is fixed, which implies for all j = 1, . . . , N ,

fZτ (u) = f � f σ
τ
W1(τ )(u).

Then the characteristic function ofφ j is recoverable from that of Zτ . Taking the Fourier
transform under assumption (A) gives the simple product

f ∗
Zτ

(u) = f ∗(u) f ∗
σ
τ
W1(τ )

(u),

with f ∗
σ
τ
W1(τ )

(u) = e− u2σ2
2τ . In this particular case the noise is Gaussian and this con-

volution problem has been investigated in the literature, see Fan (1991), Butucea and
Tsybakov (2007) for example. However it has been proven in Carroll and Hall (1988)
that the best rates of convergence obtained in this case are logarithmic. This suggests
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to improve the deconvolution procedure and this is the reason why we choose not to
use previous estimators but to propose a new method, based on repeated observations
and new parameters chosen carefully.

We have f ∗(u) = f ∗
Zτ

(u)eu
2σ 2/2τ . Finally the Fourier inversion gives the closed

formula, for all x ∈ R,

f (x) = 1

2π

∫
R

e−iux f ∗
Zτ

(u)e
u2σ2
2τ du. (5)

Then, we estimate f ∗
Zτ

(u) by its empirical estimator f̂ ∗
Zτ

(u) = (1/N )
∑N

j=1 e
iuZ j,τ .

However, plugging this in formula (5) involves integrability problems. Indeed the
integrability of f̂ ∗

Zτ
(u)eu

2σ 2/2τ is not ensured. Therefore, we have to introduce a cut-
off. The nonparametric estimation using a deconvolution method in the Gaussian case
commonly yields bad speeds of convergence. To improve the rates, an idea of Comte
and Samson (2012), for linear mixed models, was to link this cut-off and the time
of the process. Comte et al. (2013) link the time of the process τ and the cut-off as
follows:

f̂τ (x) = 1

2π

∫ √
τ

−√
τ

e−iux 1

N

N∑
j=1

eiuZ j,τ e
u2σ2
2τ du. (6)

Then the time τ is chosen by a Goldenshluger and Lepski’s method and the final
estimator is denoted f̃˜̃τ . Nevertheless, when τ is small (which is the case for the real
dataset we investigate), the integration domain is not large enough, and the estimators
of f are not satisfactory (cf an explicit example in Sect. 6). We adapt Comte et al.
(2013) estimator to this small T framework. Indeed, to improve the previous estimator,
we introduce a new parameter s in the cut-off:

f̂s,τ (x) = 1

2π

∫ s
√

τ

−s
√

τ

e−iux 1

N

N∑
j=1

eiuZ j,τ e
u2σ2
2τ du.

Then, in order to simplify the theoretical study, we replace s
√

τ in the integral by a
new parameter m. The resulting estimator f̃m,s is defined when m2/s2 ∈]0, T ], by

f̃m,s(x) = 1

2π

∫ m

−m
e−iux 1

N

N∑
j=1

eiuZ j,m2/s2 e
u2σ2s2

2m2 du (7)

with m and s in two finite setsM and S that we will precise later.
In the following we survey in detail the two strategies.

3 Study of the kernel estimator

The kernel estimator given by (3) has been investigated in Comte et al. (2013). First
we recall the MISE bound that the kernel estimator f̂h satisfies. Then we develop the
bandwidth selection procedure we are interested in in this work.
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3.1 Risk bound

Let us define fh := Kh� f , for h > 0. We denote for all p ∈ R, ‖ f ‖p =
(
∫ | f (x)|pdx)1/p and for p = 2 we still use ‖ f ‖2 = ‖ f ‖. Notice that ‖Kh‖ =

‖K‖/√h and ‖Kh‖1 = ‖K‖1. We recall the result proven in Comte et al. (2013) for
the MISE.

Proposition 3.1 Considering estimator f̂h given by (3), we have

E[‖ f̂h − f ‖2] ≤ 2‖ f − fh‖2 + ‖K‖2
Nh

+ 2σ 4‖K ′′‖2
3T 2h5

. (8)

The right-hand side of (8) involves three terms, and the middle one is the integrated
variance. The integrated bias is ‖E[ f̂h]− f ‖2 ≤ 2‖ f − fh‖2 + 2‖E[ f̂h]− fh‖2, with

‖E[ f̂h] − fh‖2 ≤ σ 4‖K ′′‖2
3T 2h5

. (9)

Therefore, the first term ‖ f − fh‖2 is a bias term, which decreases when h decreases.
The second term is the term of variance which increases when h decreases. Finally,
the third term, also given in (9), is an unusual error term due to the approximation of
the φ j ’s by the Z j,T also increasing when h decreases. We see on this bound that the
rate σ 2/T must be small to obtain a small risk.

3.2 Adaptation of the bandwidth

Now that we have at hand a collection of estimators depending on a bandwidth h, we
focus on the crucialmatter namely how to choose the bandwidth from the data. The best
choice of h is the one which minimizes the sum of these three terms. The selection of
the bandwidth can be done for example using cross validation, see e.g. the R-function
density which is commonly used. However, the only theoretical results known for
cross-validation procedure are asymptotic and to the best of our knowledge there is
no adaptive result on the final estimator. In the present work, we propose to adapt a
selection method due to Goldenshluger and Lepski (2011) mentioned before, which
provides a data-driven bandwidth for which we provide non-asymptotic theoretical
results.

We denote HN ,T the finite set of bandwidths h, to be defined later. The best the-
oretical choice of the bandwidth is the h which minimizes the bound on the MISE
given by (8). Nevertheless, in practice, the bias term is unknown, and this bound has
to be estimated.

To choose h adequately, we use a Goldenshluger and Lepski’s criterion introduced
in Goldenshluger and Lepski (2011). The idea is to estimate ‖ f − fh‖2 by the L

2-
distance between two estimators defined in (3). But this induces an error which has to
be corrected by the variance term. Then the estimator of the bias term is
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926 C. Dion

A(h) = sup
h′∈HN ,T

(
‖ f̂h,h′ − f̂h′ ‖2 − V (h′)

)
+ (10)

where

f̂h,h′(x) := Kh′� f̂h(x) = 1

N

N∑
j=1

Kh′�Kh(x − Z j,T )

and V correspond to the two terms of variance

V (h) = κ1
‖K‖21‖K‖2

Nh
+ κ2

σ 4‖K‖21‖K ′′‖2
T 2h5

(11)

with κ1 and κ2 two numerical positive constants. We will prove that A(h) has the order
of the bias term (see Eq. (24)). Finally the bandwidth is selected as follows:

ĥ = argmin
h∈HN ,T

{A(h) + V (h)} (12)

withHN ,T a finite discrete set of bandwidths h such that h > 0,
1

Nh
≤ 1,

1

h5T 2
≤ 1

and Card(HN ,T ) ≤ N . It must be chosen such that when N goes to infinity, for

all c ∈ C
∑

h∈HN ,T
h−1/2e−c/

√
h ≤ S(c) with S(c) a positive constant depending

on c. For example notice that taking HN ,T = {1/k2, k = 1, . . . ,
√
N }, the sum∑

h∈HN ,T
h−1/2e−c/

√
h ≤ ∑

k≥1 ke
−ck converges, which is a necessary condition for

the proof.
Then we can prove the following Theorem.

Theorem 3.1 Consider estimator f̂h given by (3) with h ∈ HN ,T . Then, there exist
two penalty constants κ1, κ2 such that

E[‖ f̂ĥ − f ‖2] ≤ C1 inf
h∈HN ,T

{
‖ f − fh‖2 + V (h)

}
+ C2

N

where C1,C2 are two positive constants such that C1 = max(7, 30‖K‖21 + 6) and C2
depends on ‖ f ‖, ‖K‖, ‖K‖1, ‖K‖4/3.
The theoretical study gives κ1 ≥ max(40/‖K‖21, 40) and κ2 ≥ max(10/3, 10/
(3‖K‖21)). But in practice these two constants are calibrated from a simulation study
(and always smaller than the theoretical ones). Theorem 3.1 is an oracle inequal-
ity: the bias variance compromise is automatically obtained and in a data-driven and
non-asymptotic way.

This strategy requires large T as we assume 1/h5 ≤ T 2. The error implied by the
discrete observations and the use of Riemann sums to compute the Z j,T are detailed
in Comte et al. (2013).
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4 Study of the deconvolution estimator

4.1 Risk bound

Let us emphasize that the estimator f̃m,s given by (7) depends on two parameterswhich
have to be selected from the data. This is not usual in the deconvolution setting, where
only one cut-off parameter is often introduced. The selection of these two parameters
(m, s) among the finite sets M, S is thus more difficult. It is even more challenging
here because the cut-off m appears both in the integral and in the integrand. But this
will induce gains in the rates of the estimators. Before proposing a selection method
of (m, s) we start by evaluating the quality of the estimator with the mean integrated
squared error (MISE):

E

[
‖ f̃m,s − f ‖2

]
= ‖ f − E[ f̃m,s]‖2 + E

[
‖ f̃m,s − E[ f̃m,s]‖2

]
.

In Proposition 4.1 we prove that E[ f̃m,s] = fm where fm is defined by its Fourier
transform

f ∗
m := f ∗1[−m,m].

It means that the bias does not depend on s. We obtain the following bound on the
MISE of f̃m,s .

Proposition 4.1 Under (A), the estimator f̃m,s given by (7) is an unbiased estimator
of fm and we have

E

[
‖ f̃m,s − f ‖2

]
≤ ‖ fm − f ‖2 + m

πN

∫ 1

0
eσ 2s2v2dv. (13)

The proofs are relegated to Sect. 8. Let us look at the risk bound. The first term of the
bound (13) is the bias term. It represents the error resulting from estimating f by fm
and it decreases when m increases, indeed:

‖ fm − f ‖2 = 1

2π

∫
|u|≥m

| f ∗(u)|2du.

The second term is the variance term, and it increases with m and s. One can notice
that it is bounded as soon as s is bounded and m ≤ N .
We specify the two sets M and S. We notice that the quality of the estimate in the
Fourier domain is good on an interval around zero with length related with σ . The
chosen set for s is

S :=
{
sl = 1

2l
2

σ
, l = 0, . . . , P

}
.
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928 C. Dion

Notice that for sl ∈ S, 1/2P−1 ≤ σ sl ≤ 2. Moreover with this chosen collection S,
the order of the variance term is m/N . With the idea that m2/s2 is homogeneous to a
time, we choose m in the finite collection:

M :=
{
m =

√
kΔ

σ
, k ∈ N

∗, 0 < m ≤ N

}

with 0 < Δ < 1 a small step to be fixed. The collection of couples of parameters is

C := {(m, s) ∈ M × S, m2/s2 ≤ T }.

The final estimator is the estimator from the collection C which achieves the bias-
variance compromise. Choosing the final estimator is not an easy task except if we
know the regularity of f . Indeed, let us assume that f is in the Sobolev ball with
regularity parameter b, i.e. f belongs to the set defined by

Ab(L) =
{
f ∈ L

1(R) ∩ L
2(R),

∫
R

| f ∗(x)|2(1 + x2)bdx ≤ L

}

with b > 0, L > 0. For example the standard normal distribution is in a space Ab(L)

for some L and for all b > 0, an exponential distribution is in someAb(L) for b < 1/2
or more generally a Gamma distribution with shape parameter k is in someAb(L) for
b < (k − 1/2). Thus when f ∈ Ab(L), the bias term satisfies:

‖ fm − f ‖2 = 1

2π

∫
|u|≥m

| f ∗(u)|2du ≤ L

2π
m−2b.

Consequently, the L2-risk of f̃m,s is bounded by

E

[
‖ f̃m,s − f ‖2

]
≤ L

2π
m−2b + m

πN
eσ 2s2 .

Therefore, the best theoretical choice of s is sP the smallest s in our collection, and

m = m∗ = KbN
1

(2b+1)

with Kb = (bL exp(−1/(22(P−1))))1/(2b+1). Thenwe obtain the following asymptotic
result.

Corollary 4.1 If f ∈ Ab(L), and if we choose s = sP and m = m∗, there exists a
constant K depending on b, L , P, such that

E

[
‖ f̃m∗,sP − f ‖2

]
≤ K N− 2b

2b+1 .

123



Nonparametric estimation in a mixed-effect Ornstein–Uhlenbeck... 929

The order of the risk in this case is N−2b/(2b+1) for a large N , and it is the nonparametric
estimation rate of convergence obtained when the observations are N realizations of
the variable of interest. Nevertheless, it is not easy to see that (m, s) ∈ C and this
choice is theoretical because it depends on the regularity b of f , which is unknown.
The next section provides a data-driven method to select (m, s).

4.2 Selection of the final estimator

In this Section we deal with the choice of the best estimator among the available
collection of f̃m,s . In the previous work Comte et al. (2013), s was fixed to s = 1 and
mwas selected. Butwe saw empirically that it did notwork in the setting corresponding
to the data. This is why we experimented different values for s. But then we did not
find any reliable criterion to select m for any given s. On the contrary, if we look
at the bound and try to select s first, we just get s = 0, which is not of interest
if we are looking to improve the estimator through s in particular. This implies to
select the couple (m, s) minimizing the MISE and realizing the compromise between
the two terms, in a data-driven way. This is a crucial issue. Indeed, the role of the
two parameters is not the same. Thus we propose a new criterion adapted from the
Goldenshluger and Lepski (2011) method.

The idea is to select the couple which minimizes the MISE: E
[‖ f̃m,s − f ‖2]. As it

is unknown, we have to find a computable approximation of this quantity. We define
the best couple (m, s) as the oneminimizing a criterion defined as the sum of a squared
bias term and a variance term called penalty. We define the penalty function, which
has the same order as the bound on the variance term:

pen(m, s) = κ
m

N
eσ 2s2 ,

where κ is a numerical constant to be calibrated. Note that for m ∈ M and s ∈ S, the
penalty function is bounded.

To estimate the bias term, we generalize Goldenshluger and Lepski’s criterion for
a two-dimensional index. The method is inspired by the ideas developed for kernel
estimators by Goldenshluger and Lepski (2011) and adapted to model selection in one
dimension in Comte and Johannes (2012) and in two dimensions by Chagny (2013).
The idea is to estimate ‖ f − fm‖2 by the L2-distance between two estimators defined
in (7). But this induces a bias which has to be corrected by the penalty function. We
consider the following estimator of the bias, with (m′, s′)∧(m, s) := (m′ ∧m, s′ ∧s),

Γm,s = max
(m′,s′)∈C

(
‖ f̃m′,s′ − f̃(m′,s′)∧(m,s)‖2 − pen(m′, s′)

)
+ (14)

for (m, s) ∈ C. Finally the selected couple is:

(m̃, s̃) = arg min
(m,s)∈C

{Γm,s + pen(m, s)}. (15)

We are now able to obtain the following result.
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Theorem 4.1 Under (A), consider the estimator f̃m̃ ,̃s given by (7) and (15). There
exists κ0 a numerical constant such that, for all penalty constants κ ≥ κ0,

E

[
‖ f̃m̃ ,̃s − f ‖2

]
≤ C inf

(m,s)∈C

{
‖ f − fm‖2 + pen(m, s)

}
+ C ′(P + 1)

N
(16)

where C > 0 is a numerical constant and C ′ is a constant depending on ‖ f ‖, σ , Δ,
and P + 1 the cardinality of S.

The key of the proof is to prove that

E[Γm,s] ≤ 18‖ f − fm‖2 + C ′(P + 1)

N

(see the proof in Sect. 8.3.) Inequality (16) means that f̃m̃ ,̃s automatically makes the
bias-variance trade-off. Moreover, our result is of non asymptotic nature w.r.t. N .

One should notice that this new parameter s generalizes the results of Comte et al.
(2013) even if T is large. We choose the two parameters in an adaptive way, thus this
gives more flexibility in the choice of the estimator.

It follows from the proof that κ0 = 24 would suit. But in practice, values obtained
from the theory are generally too large and the constant is calibrated by simulations.
Once chosen, it remains fixed for all simulation experiments. Besides the cardinality
P of the set S is chosen small in practice (P = 3 or 10 for example).

In the section ‘Discretization’ of “Appendix 2’ we investigate the error implied by
the discrete observations and thus of the discretization of Z j,τ given by (2).

5 Simulation study

In the following section we compare on simulations the two procedures we compute
f̂ĥ and f̃m̃ ,̃s , the estimator of Comte et al. (2013) f̃˜̃τ and we compare our bandwidth
selection method with the estimator from the R-function density with the cross-
validation argument bw = ucv, on the Z j,T , j = 1, . . . , N , we denote it f̂cv .

We simulate data by computing the exact solutions of (1) given by Itô’s formula,

X j (t) = X j (0)e
−t/α + φ jα(1 − e−t/α) + σe−t/α

∫ t

0
es/αdWj (s) (17)

at discrete times tk ∈ T := {kδ, k ∈ {0, . . . , J }, Jδ = T }. For the simulation study,
we have to fix N , δ, T, σ, α, and the density f . We take σ = 0.0135, 0.05, 1 and
σ = 0.05, α = 0.039, 1, 39. For the time T , we choose T = 0.3, 10, 50, 100, 300
with different values of δ the discrete time step at which observations are recorded.
The value of J , the number of observations for one trajectory ranges from 150 to
5000 for Table 1 and is fixed to J = 2000 for Table 2. All these parameter val-
ues are chosen in relation with the parameters of the real dataset. In this study we
hope to highlight the influence of each one. For f , we investigate four different
distributions:
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• Gaussian distribution N (0.278, (0.041)2)
• Gamma distribution Γ (1.88, 0.148)
• mixed Gaussian distribution 0.3N (0, (0.02)2) + 0.7N (1, (0.02)2) (denoted M-
Gaussian)

• mixedGammadistribution0.4Γ (3, 0.08)+0.6Γ (30, 0.035) (denotedM-Gamma)
where we write Γ (k, θ) with k the scale parameter and θ the shape.

First, we implement the two collections of estimators: f̂ĥ and f̃m̃ ,̃s . We begin
by computing the random variables used by both estimators: Z j,τ given by (2),
with Riemann sums approximations (see section ‘Discretization’ of “Appendix 2’
for details). For the deconvolution estimator given by (7) we also use Riemann
sums to compute the integral. For the collection of m, we choose Δ = 0.08 and
δ changes. Furthermore, for the kernel estimator given by (3), we choose a Gaussian
kernel: K (u) = (1/

√
2π)e−u2/2. In this case ‖K‖1 = 1, ‖K‖22 = 1/(2

√
π),

‖K ′′‖22 = (1 + 1/
√
2)/(

√
2π).

Then, the selected bandwidth ĥ is given by Eq. (12). Note that for all (h, h′) ∈ H2,

Kh′�Kh(x) = 1√
2π

√
h′2 + h2

e−x2/[2(h′2+h2)].

We use this relation to compute the f̂h,h′ .
Secondly, we have to calibrate the penalty constants: κ1, κ2 for the kernel estimator

and κ for the deconvolution estimator. Classically, the constants are fixed thanks to
preliminary simulation experiments. Different functions f have been investigatedwith
different parameter values, and a large number of replications. Comparing the MISE
obtained as functions of the constants κ1, κ2 and κ yield to select values making a
good compromise over all experiments. Finally we choose κ1 = 1, κ2 = 0.0001 and
κ = 0.3. A recent work Lacour andMassart (2016) proposes to change the calibration
constants in the variance term V (h): taking κ in the term Γ(m,s) (14) and 2κ for the
second V (h) in the selection criterion (12). It has been done in practice for the kernel
estimator. We notice that this strategy produces very good results in practice, better
than choosing the same κ for the two apparitions of term V (h). On Fig. 1 25 estimators
f̂ĥ are plotted and on Fig. 2 25 estimators f̃m̃ ,̃s , for the 4 investigated densities f . The
batch of estimators is close to the estimated density.

In order to evaluate the performances of each estimator on the different designs,
we compare their empirical MISE computed from 100 simulated data sets.

Table 1 summarises the results for different parameters values. It shows the bad
performances of the estimator of Comte et al. (2013) f̃˜̃τ when T is small compared
to f̃m̃ ,̃s . It performs clearly better when T is increasing. Besides we notice that both
kernel estimators have good results. Nevertheless these results are satisfying because
it appears that our estimator f̂ĥ fits slightly better the true density than f̂cv . The
computation time is close for both selection method. We show the results for different
values of α do not seem to influence the quality of estimators (while the selected
h,m, s are very different). During the simulation study, we noticed that the parameter
α is important is the sense that when the value of α does not have the same order as
the values of φ, the estimation is harder. Except when T = 300 the ratio signal noise
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Fig. 1 Simulated data. In plain red (black) 25 estimators f̂ĥ with parameters: N = 240, T = 0.3, δ =
0.00015, σ = 0.0135, α = 0.039 and the true density f in plain bold black line. a f Gaussian, b f mixed
Gaussian density, c f Gamma and d f mixed Gamma density

which is the standard deviation of the random effect divided by σ is larger than one
thus the settings are favourables. But for both Gamma and mixed Gamma cases, the
standard deviations are respectively 0.2 and 0.15, which is not small compared to σ or
to their mean. The mixed Gamma case is difficult for the nonparametric estimation:
Fig. 3 illustrates the performances of estimators for this choice. Finally, it is interesting
to note that when the standard deviation of the random effect of interest has a larger
variance, the density estimation is easier, which is the case of the chosen Gamma
density for example compared with the Gaussian case.

In the following as the two kernel estimators seem very close, we only show the
results for f̂ĥ which is of interest here. Besides we no longer investigate the previous
estimator f̃˜̃τ in light of Table 1 for T < N .

We further compare f̂ĥ and f̃m̃ ,̃s . The two estimators seem close to the true density
on graphs, see Figs. 1 and 2. In Table 2 on theMISE it is clear that the kernel estimator
is the best. Furthermore, we can point out some differences. The first row of the Table
corresponds to simulations with the parameters of the real dataset. In the first column,
the Gaussian case, the MISE are 10 times larger than the ones for other cases. This
can be easily explained: the values of the estimated density are 10 times larger than
others. Nevertheless, on lines 3 and 4 for the Gaussian case, the MISE are very large.
This is due to the bad estimation of the φ j by the Z j,T with σ = 0.05 and T = 0.3.1

1 We insist that this bad estimation is not due to the fact that the noise is Gaussian. Indeed even if Fan
(1991) proves the rates to be logarithmic in that case, the rates are improved and can be polynomial when
the density under estimation is of the same type as the noise (see Lacour 2006; Comte et al. 2006).
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Fig. 2 Simulated data. In plain red (black) 25 estimators f̃m̃ ,̃s with parameters: N = 240, T = 0.3, δ =
0.00015, σ = 0.0135, α = 0.039 and the true density f in bold plain black line. a f Gaussian, b f mixed
Gaussian, c f Gamma and d f mixed Gamma

Table 1 Empirical MISE computed from 100 simulated data sets, with N = 200, with various T , δ, σ and
α for two kernel estimators f̂cv , f̂ĥ and two deconvolution estimators f̂˜̃τ and f̃m̃ ,̃s

f̂cv f̂ĥ f̃˜̃τ f̃m̃ ,̃s

Case f Gamma

T = 0.3 δ = 0.0005 σ = 0.0135α = 0.039 0.043 0.037 1.547 0.071

T = 300 δ = 0.5 σ = 0.5α = 39 0.048 0.039 0.049 0.055

T = 50 δ = 0.1 σ = 0.05α = 1 0.042 0.039 0.218 0.050

Case f mixed Gamma

T = 0.3 δ = 0.0005 σ = 0.0135α = 0.039 0.033 0.030 0.712 0.035

T = 300 δ = 0.5 σ = 0.5α = 39 0.032 0.030 0.035 0.043

T = 50 δ = 0.1 σ = 0.05α = 1 0.033 0.031 0.145 0.043

The quality of the estimation is significantly better when we try aN (0.278, 0.2) (0.2
is the variance of the mixed Gaussian density we implement for example). In general
one can notice that when σ is larger than the standard deviation of the density of the
random effects f , the estimation is less precise, which is coherent in term of ratio
signal noise.

Table 2 shows that if T increases, it improves the results for σ = 0.05, compare
cases 2 and 5 with 4 and 7 for example. If J is large enough, meaning if δ is small
enough (which is the case even for J = 150 when T = 0.3), the deconvolution
estimator fits well the density. In practice, when T increases, the selected value of s
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Fig. 3 Simulated data. In bold plain black curve is the true density f mixed Gamma, the estimator f̂cv
estimator f̂ĥ are superposed is in plain green (grey), estimator f̃˜̃τ is dotted black (blue) and estimator f̃m̃ ,̃s
is plain blue (black), with N = 200, T = 50, δ = 0.05, σ = 0.05, α = 1

decreases, which could have been predicted. The results are still satisfying for large T .
For the kernel estimator, although the theoretical condition 1/h5 < T 2 is not satisfied,
the numerical results are good.

Another point is, as expected, that the larger N is, the better the estimators f̂ĥ and
f̃m̃ ,̃s . We can refer to Comte et al. (2013) for a study with different values for N . It
highlights the influence of N when the estimated density has two modes; for example
with N = 50 the estimation is clearly less precise than for N = 200.

Amain difference between our two estimators f̂ĥ and f̃m̃ ,̃s is the computation time:
a few seconds for the first one and ten minutes for the second one. Thus the kernel
estimator with the method of bandwidth selection is very efficient, especially in the
case of multi-modal densities, and performs often better than the deconvolution one.

6 Application to neuronal data

6.1 Dataset

We describe quickly the data but we refer to Yu et al. (2004), Lansky et al. (2006)
for example for details on data acquisition. The data are intracellular measurements
of the membrane potential in volts along time, for one single neuron of a pig between
the spikes. This is the depolarization phase. In this neuronal context, between the
( j − 1)th and the j th spike, the depolarization of the membrane potential receiving
a random input can be described by the Ornstein–Uhlenbeck model with one random
effect (1). The spikes are not intrinsic to the model but are generated when the voltage
reaches for the first time a certain threshold S, then the process is reset to a fixed
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Table 2 Empirical MISE computed from 100 simulated data sets, with N = 240, α = 0.039 and various
T , δ, σ for the kernel estimator f̂ĥ and the deconvolution estimator f̃m̃ ,̃s

Case T δ σ Estimator f

Gaussian Gamma M-Gaussian M-Gamma

1 0.3 0.0002 0.0135 f̂ĥ 0.254 0.037 0.016 0.024

f̃m̃ ,̃s 0.381 0.072 0.021 0.038

2 0.3 0.002 0.0135 f̂ĥ 0.270 0.032 0.016 0.024

f̃m̃ ,̃s 1.584 0.071 0.019 0.038

3 0.3 0.0002 0.05 f̂ĥ 2.544 0.098 0.026 0.054

f̃m̃ ,̃s 3.402 0.231 0.078 0.226

4 0.3 0.002 0.05 f̂ĥ 2.524 0.092 0.028 0.053

f̃m̃ ,̃s 3.269 0.154 0.029 0.232

5 10 0.002 0.0135 f̂ĥ 0.091 0.031 0.017 0.024

f̃m̃ ,̃s 0.080 0.037 0.035 0.052

6 10 0.02 0.0135 f̂ĥ 0.085 0.033 0.014 0.023

f̃m̃ ,̃s 0.151 0.048 0.033 0.034

7 10 0.002 0.05 f̂ĥ 0.111 0.031 0.016 0.025

f̃m̃ ,̃s 0.687 0.061 0.016 0.034

8 10 0.02 0.05 f̂ĥ 0.121 0.035 0.014 0.025

f̃m̃ ,̃s 0.181 0.053 0.023 0.040

9 100 0.2 0.0135 f̂ĥ 0.106 0.032 0.014 0.024

f̃m̃ ,̃s 0.123 0.062 0.091 0.046

initial voltage. Thus each trajectory is observed on an interval [0, Tj ] where Tj =
inf{t > 0, X j (t) ≥ S}. The initial voltage (the value following a spike) is assumed to
be equal to the resting potential. The present dataset has been normalised to obtain N
trajectories which begin in zero: x j = 0.

The positive constant parameter α is called the time constant of the neuron
(the coefficient of decay in the exponential, when there is no noise), which is
intrinsic to the neuron and fixed to α = 0.039 [s] (Lansky et al. 2006). The
diffusion coefficient σ [V/

√
s] has been estimated using the estimator σ̂ 2 =

(1/N )
∑N

j=1

(
(1/J )

∑J
k=1 ((X j (δ(k + 1)) − X j (δk))2/δ

)
. We obtain σ̂ = 0.0135,

which is the same value as that used in Picchini et al. (2008). The φ j represents the
local average input that the neuron receives during the j th inter-spike interval. We
assume that φ j changes from one trajectory to another because of other neurons or
the influence of the environment, for example. So parameters φ and σ characterize
the input, while α, x j (the resting potential) and S (the firing threshold) describe the
neuron irrespectively of the incoming signal (Picchini et al. 2008).

Data are composed of N = 312 inter-spike trajectories. For each interval [0, Tj ]
the time step is the same: δ = 0.00015 [s]. We decide to keep only realizations with
more than 2000 observations (Tj/δ ≥ 2000). Finally we have N = 240 realizations
with J = 2000 observations and for j = 1, . . . , N , T = Tj = 0.3 [s]. Also the data
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are normalized in order to begin with zero at the initial time. The study of the units
of measurement can highlight the collections given in Sect. 4. One can notice that the
unit of measurement of v in the integrand must be [s/V] (same unit as 1/Z j,τ ) such
that the exponential terms are without unit. The unit of s is [√s/V], and the choice of
M with the same unit as v seems natural.

It is interesting to note that the normality of the Z j,T is rejected by Shapiro andWilk
test (p-value 10−7) and Kolmogorov–Smirnov test (p-value 10−3). This suggests that
the φ j ’s are not Gaussian. Thus we want to estimate nonparametrically their density.
In the following we compare our results to the estimation obtained in Picchini et al.
(2010) under the parametric Gaussian assumption.

6.2 Comparison of estimators

The estimation of the density f obtained by Picchini et al. (2010) under the Gaussian
assumption on these data, with α = 0.039 are N (μ = 0.278, η2 = (0.041)2). Using
a maximum-likelihood estimator on the (Z j,T )’s we obtain for the mean 0.270 and for
the standard deviation 0.046. We notice that these two estimations are close to that of
Picchini et al. (2010). We use our two nonparametric estimators to see how close to a
Gaussian density they are.

On Fig. 4 we represent both estimators f̂ĥ and f̃m̃ ,̃s applied on the real data and
the density N (μ, η2). The two estimations are close, and close to the estimation of
Picchini et al. (2010).However, it is also legitimate to think about aGammadistribution
to model the random parameters φ j ’s because, as the data have been normalised, the
estimated random effects are positive. Then it seems reasonable to use a non-negative
random variable to model this local average input. Thus, a Gamma distribution may
seem more appropriate than a Gaussian distribution, even if the chosen Gaussian has
small probability to be negative. We look for the Gamma distribution which has for
mean μ = 0.278 and for standard deviation η = 0.041. This corresponds to a Gamma
distributionwith the shape parameter 46.3 and the scale parameter 0.006.Wenotice the
similarity between the previous Gaussian curve and the new one. Thus this distribution
seems also suitable to fit the distribution of the φ j ’s, as Fig. 4 shows.

The Gaussian assumption is strong and leads to parametric tractable models. The
present work confirms that this approximation is acceptable. However, the nonpara-
metric estimation gives a density for the φ j ’s that can be used to simulate the random
effect and could be closer to the true one.

Notice that, as mentioned in introduction, Comte et al. (2013)’s estimator cannot
handle small values of T while our new proposals are successful in such case. Let us
precise this point. If the number of points is large enough, the variable Z j,T can be
approximate:

Z j,T ≈
(
X j (T ) − X j (0) + δ

α

J∑
l=1

X ((l − 1)δ)

)
1

T
.

It is unchanged when we change the units: V,s to mV,ms thus T = 0.3 to T = 300.
However, the deconvolution estimator of Comte et al. (2013) for τ = T is changing
when the value of T is changing. In fact, the estimator is
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Fig. 4 Real data. In bold green (grey) estimator f̂ĥ , in bold red (black) f̃m̃ ,̃s , the black dotted and bold line

the density N (μ, η2) from Picchini et al. (2010) and the black dotted thin line the density Γ (46.3, 0.006)

f̂T (x) = 1

2π

∫ √
T

−√
T
e−iux 1

N

N∑
j=1

eiuZ j,T e
u2σ2
2T du

≈ 1

2π

npas∑
k=1

⎛
⎝(uk+1 − uk)e

−iuk x 1

N

N∑
j=1

eiuk Z j,T e
u2kσ2

2T

⎞
⎠

and according to T = 0.3 or T = 300 the values of u and thus the interval of integration
and the three exponential terms are changing. Finally estimator f̂T is changing with
the units. And the interval of integration is not large enough in the case T = 0.3 to
give a good estimation.

To solve this problem we have proposed a new estimator f̃m̃ ,̃s to allow the user to
deal with data with the units he/she wants and to not oblige him/her to change it.

But one can wonder if the new estimators are robust when increasing T . Indeed,
our method works for larger T . Precisely changing volts in millivolts and seconds
in milliseconds implies T = 300, σ = 0.426, and on simulated data we adequately
reconstruct the shape of the density.

7 Discussion

In this work we study a stochastic differential Ornstein–Uhlenbeck mixed-effects
model. We propose two estimators of the density of the random effect. Both estima-
tors are not very sensitive to the effect of the time of observation T . Indeed the kernel
strategy corresponds to a context with large T while we built a deconvolution estima-
tor especially for small values of T . Both are data-driven and satisfy an oracle-type
inequality. According to the numerical study, the kernel estimator seems to be the
efficient one: the numerical results are convincing and close to the ones obtained by
cross-validation. Besides we provide non-asymptotic theoretical results. Furthermore
we study neuronal data with nonparametric estimation strategy. Instead of making any
parametric assumptions for the random effect distribution, we build an estimator of
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its density. Future work based on this estimation could be more precise and closer to
the real neuronal data. To complete the study, the method for different times of obser-
vation Tj could be settled up. Besides, some goodness-of-fit tests could be produced;
we refer to Bissantz et al. (2007) who construct confidence bands for an estimator of
f in the ordinary smooth deconvolution problem.
The model can be completed by adding another random effect: the time constant of

the neuron. Picchini and Ditlevsen (2011) have investigated this model in a parametric
way and Dion and Genon-Catalot (2015) in a nonparametric way. A recent work
Delattre et al. (2016) assumes that the density of the random effect is a Gaussian
mixture and uses data clustering method, which is an interesting approach for the
data described in the present paper. The question of a random effect in the diffusion
coefficient also is open (see Delattre et al. 2015). Moreover, a model with a drift
b(X j (t)) + φ j , where b is a known function, can be treated with the same method.
However, dealing with a diffusion σ(X j (t)) where σ is a known function is a more
complex problem.

Acknowledgments The author would like to thank Fabienne Comte and Adeline Samson for very useful
discussions and advice.

8 Appendix 1: Proofs

8.1 Proof of Theorem 3.1

Given h ∈ HN ,T , we denote:

V (h) = κ1
‖K‖21‖K‖2

Nh
+ κ2

σ 4‖K‖21‖K ′′‖2
T 2h5

=:V1(h) + V2(h).

Using the definition of A(h) and of ĥ we obtain

‖ f̂ĥ − f ‖2 ≤ 3‖ f̂ĥ − f̂h ,̂h‖2 + 3‖ f̂h ,̂h − f̂h‖2 + 3‖ f̂h − f ‖2
≤ 3

(
A(h) + V (̂h)

)+ 3
(
A(̂h) + V (h)

)+ 3‖ f̂h − f ‖2
≤ 6A(h) + 6V (h) + 3‖ f̂h − f ‖2.

Thus,

E[‖ f̂ĥ − f ‖2] ≤ 6E[A(h)] + 6V (h) + 3E[‖ f̂h − f ‖2],

hence, we only have to study the term E[A(h)]. We can decompose ‖ f̂h,h′ − f̂h′ ‖2 as
follows:

‖ f̂h,h′ − f̂h′ ‖2 ≤ 5‖ f̂h,h′ − E[ f̂h,h′ ]‖2 + 5‖E[ f̂h,h′ ] − fh,h′ ‖2 + 5‖ fh,h′

− fh′ ‖2 + 5‖ fh′ − E[ f̂h′ ]‖2 + 5‖E[ f̂h′ ] − f̂h′ ‖2
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thus

A(h) ≤ 5(D1 + D2 + D3 + D4 + D5)

with:

D1 := sup
h′∈HN ,T

‖ fh,h′ − fh′ ‖2,

D2 := sup
h′∈HN ,T

(
‖ f̂h′ − E[ f̂h′ ]‖2 − V1(h′)

10

)
+

,

D3 := sup
h′∈HN ,T

(
‖ f̂h,h′ − E[ f̂h,h′ ]‖2 − V1(h′)

10

)
+

D4 := sup
h′∈HN ,T

(
‖E[ f̂h′ ] − fh′ ‖2 − V2(h′)

10

)
+

,

D5 := sup
h′∈HN ,T

(
‖E[ f̂h,h′ ] − fh,h′ ‖2 − V2(h′)

10

)
+

.

According to Young’s inequality (see Theorem 9.1), we obtain

‖ fh,h′ − fh′ ‖2 = ‖Kh′�( fh − f )‖2 ≤ ‖Kh′ ‖21‖ fh − f ‖2 = ‖K‖21‖ fh − f ‖2

thus
D1 ≤ ‖K‖21‖ fh − f ‖2. (18)

Let us study the term D2. We denote B(1) = {g ∈ L
2(R), ‖g‖ = 1}. We define

νN ,h(g) := 〈g, f̂h − E[ f̂h]〉

then |νN ,h(g)| ≤ ‖g‖‖ f̂h − E[ f̂h]‖ thus, the estimator f̂h satisfies:

‖ f̂h − E[ f̂h]‖2 = sup
g∈B(1)

(νN ,h(g))
2.

We can also compute the scalar product which defines νN ,h and we obtain

νN ,h(g) = 1

N

N∑
j=1

(
g�K−

h (Z j,T ) − E[g�K−
h (Z j,T )]) (19)

with K−
h (x) := Kh(−x). This finally conducts to:

E[D2] ≤
∑

h′∈HN ,T

E

[
sup

g∈B(1)
(νN ,h′(g))2 − V1(h′)

10

]
+

.
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This bound andEq. (19) leads to apply Talagrand’s Theorem (9.2).We have to compute
3 quantities: M , H2 and v.
First:

sup
g∈B(1)

‖g�K−
h′ ‖∞ = sup

g∈B(1)
sup
x∈R

∣∣∣∣
∫

g(y)K−
h′ (x − y)dy

∣∣∣∣
= sup

g∈B(1)
sup
x∈R

|〈g, K−
h′ (. − x)〉|

≤ sup
g∈B(1)

‖g‖‖Kh′ ‖ = ‖K‖√
h′ := M. (20)

Secondly, the bound of Proposition 3.1 gives

E

[
sup

g∈B(1)
(νN ,h(g))

2

]
= E

[
‖ f̂h − E[ f̂h]‖2

]
≤ ‖K‖2

Nh
:= H2. (21)

Thirdly:

sup
g∈B(1)

(
Var(g�K−

h′ (Z1,T ))
) ≤ sup

g∈B(1)
E[(g�K−

h′ (Z1,T ))2]

≤ 2 sup
g∈B(1)

E[(g�K−
h′ (φ1))

2]

+ 2 sup
g∈B(1)

E[(g�(K−
h′ (Z1,T ) − K−

h′ (φ1))
2].

Let us investigate the two terms separately. Young’s inequality gives:

E

[
(g�K−

h′ (φ1))
2
]

=
∫ (

g�K−
h′ (x)

)2
f (x)dx ≤ ‖ f ‖‖g�K−

h′ ‖24

= ‖ f ‖‖K‖24/3√
h′ := v1. (22)

Then, one can write: Kh′(x − Z1,T )− Kh′(x −φ1) = (φ1 − Z1,T )
∫ 1
0 (Kh′)′(x −φ1 +

u(φ1 − Z1,T ))du, thus

(g�K−
h′ (Z1,T ) − g�Kh′(φ1))

2

= (φ1 − Z1,T )2
(∫

g(x)
∫ 1

0
(Kh′)′(x − φ1 + u(φ1 − Z1,T ))dudx

)2

≤ (φ1 − Z1,T )2
∫

g2(x)

(∫ 1

0
(Kh′)′2(x − φ1 + u(φ1 − Z1,T ))du

)
dx

≤ (φ1 − Z1,T )2‖g‖2
∫

(Kh′)′2(y)dy = (φ1 − Z1,T )2‖(Kh′)′‖2.
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With E[(φ1 − Z1,T )2] = σ 2

T 2E[W1(T )2] = σ 2

T , the assumption T−1 ≤ h5/2 leads to

E

[
(g�K−

h′ (Z1,T ) − g�Kh′(φ1))
2
]

≤ ‖K ′‖2σ 2

h′3T
≤ ‖K ′‖2σ 2

√
h′ := v2. (23)

Finally v = v1 + v2 = A0/
√
h′ with A0 = ‖ f ‖‖K‖24/3 + ‖K ′‖2σ 2.

If κ1‖K‖21 ≥ 40, with the assumption 1/(Nh) ≤ 1, Talagrand’s inequality (under the
assumptions of the Theorem 3.1) gives

E

(
sup

g∈B(1)
(νN ,h′(g))2 − V1(h′)

10

)
+

≤ C1

N
√
h′ e

−C2/
√
h′ + C3

1

h′N 2 e
−C4

√
N

≤ C5

N

∑
h′∈HN ,T

1√
h′ e

−C6/
√
h′ ≤ C5S(C6)

N
.

One can lead the study of D3 as we have done for D2, using the same steps and
tools. However Kh�Kh′ instead of Kh′ , adds ‖K‖1 in M and ‖K‖21 in H2 and v.
Then, let us study the term D4. If κ2 ≥ 10/(3‖K‖21), the bound (9) leads us to

D4 = sup
h′∈HN ,T

(
‖E[ f̂h′ ] − fh′ ‖2 − V2(h′)

10

)
+

≤ sup
h′∈HN ,T

(
‖K ′′‖2σ 4

3h′5T 2
− κ2‖K‖21‖K ′′‖2σ 4

10T 2h ′5

)
+

= 0

thus D4 = 0. Finally, similarly, if κ2 ≥ 10/3, we obtain

D5 = sup
h′∈HN ,T

(
‖E[ f̂h,h′ ] − fh,h′ ‖2 − V2(h′)

10

)
+

≤ sup
h′∈HN ,T

(
‖K ′′‖2‖K‖21σ 4

3h5T 2
− κ2‖K‖21‖K ′′‖2σ 4

10T 2h ′5

)
+

= 0.

Thus finally we obtained that:

E[A(h)] ≤ 5
(
‖K‖21‖ fh − f ‖2 + c

N

)
(24)

with c a constant depending on ‖ f ‖, ‖K‖1, ‖K‖, ‖K‖4/3. Finally we have shown that
for all h ∈ HN ,T :

E[‖ f̂ĥ − f ‖2] ≤ 6κ1
‖K‖21‖K‖2

Nh
+ 6κ2

‖K‖21‖K ′′‖2σ 4

T 2h5

+ 3

(
2‖ f − fh‖2 + ‖K‖2

Nh
+ 2‖K ′′‖2σ 4

3T 2h5

)
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+ 30
(
‖K‖21‖ f − fh‖2 + c

N

)

≤
(
6 + 3

‖K‖21κ1

)
V1(h) +

(
6 + 9

2‖K‖21κ2

)
V2(h)

+ (30‖K‖21 + 6)‖ fh − f ‖2 + C

N

≤ C1 inf
h∈HN ,T

{‖ f − fh‖2 + V (h)} + C2

N
.

where C1 = max(7, 30‖K‖21 + 6) and C2 depends on ‖ f ‖, ‖K‖1, ‖K‖, ‖K‖4/3. ��

8.2 Proof of Proposition 4.1

The bias term is ‖ f −E[ f̃m,s]‖2. Let us compute E[ f̃m,s]. As the Z j,τ are i.i.d. when
τ is fixed and due to the independence of φ1 and W1, we obtain:

E[ f̃m,s(x)] = 1

2π

∫ m

−m
e−iux

E

[
eiuZ1,m2/s2+u2σ 2s2/(2m2)

]
du

= 1

2π

∫ m

−m
e−iux

E

[
eiuφ1+iuσW1(m2/s2)s2/m2+u2σ 2s2/(2m2)

]
du

= 1

2π

∫ m

−m
e−iux+u2σ 2s2/(2m2) f ∗(u)E

[
eiuσW1(m2/s2)s2/m2

]
du

= 1

2π

∫ m

−m
e−iux+u2σ 2s2/(2m2) f ∗(u)e−u2σ 2s2/(2m2)du

= 1

2π

∫ m

−m
e−iux f ∗(u)du=: fm(x).

Therefore this gives E[ f̃m,s(x)] = fm(x), and ‖ f − E[ f̃m,s]‖2 = ‖ f − fm‖2 =
1
2π

∫
|u|≥m | f ∗(u)|2du.

The variance term is:

E

[
‖ f̃m,s − fm‖2

]
= 1

2π
E

⎡
⎢⎣∫ m

−m

∣∣∣∣∣∣
1

N

N∑
j=1

eiuZ j,m2/s2 e
u2σ2s2

2m2 − f ∗(u)

∣∣∣∣∣∣
2

du

⎤
⎥⎦

= 1

2πN

∫ m

−m
e
u2σ2s2

m2 Var
(
eiuZ1,m2/s2

)
du

≤ 1

2πN

∫ m

−m
e
u2σ2s2

m2 du = m

πN

∫ 1

0
es

2σ 2v2du.

�
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8.3 Proof of Theorem 4.1

Let us study the term ‖ f̃m̃ ,̃s − f ‖2. We decompose it into a sum of three terms and
the definition of (m̃, s̃) (15) implies for all (m, s) ∈ C

‖ f̃m̃ ,̃s − f ‖2 ≤ 3
(
‖ f̃m̃ ,̃s − f̃(m̃ ,̃s)∧(m,s)‖2 + ‖ f̃(m̃ ,̃s)∧(m,s) − f̃m,s‖2 + ‖ f̃m,s − f ‖2

)
≤ 3

(
Γm,s + pen(m̃, s̃)

)+ 3
(
Γm̃ ,̃s + pen(m, s)

)+ 3‖ f̃m,s − f ‖2
≤ 6Γm,s + 6pen(m, s) + 3‖ f̃m,s − f ‖2 (25)

Now we study Γm,s . First:

‖ f̃(m,s)∧(m′,s′) − f̃m′,s′ ‖2
≤ 3

(
‖ f̃m′,s′ − fm′ ‖2 + ‖ fm′ − fm∧m′ ‖2 + ‖ fm∧m′ − f̃(m′,s′)∧(m,s)‖2

)
.

Thus:

Γm,s ≤ max
(m′,s′)∈C

(
3‖ f̃m′,s′ − fm′ ‖2 + 3‖ fm′ − fm∧m′ ‖2 + 3‖ fm∧m′

− f̃(m′,s′)∧(m,s)‖2 − pen(m′, s′)
)

+

≤ 3 max
(m′,s′)∈C

(
‖ f̃m′,s′ − fm′ ‖2 − 1

6
pen(m′, s′)

)
+

+ 3 max
(m′,s′)∈C

(
‖ f̃(m′,s′)∧(m,s) − fm∧m′ ‖2 − 1

6
pen(m′, s′)

)
+

+ 3 max
m′∈M

‖ fm′ − fm∧m′ ‖2.

The last maximum can be explicit. If m′ ≤ m, then ‖ fm′ − fm∧m′ ‖2 = ‖ fm′ − fm′ ‖2
= 0. Otherwise,

‖ fm′ − fm∧m′ ‖2 = ‖ fm′ − fm‖2 =
∫
m≤|u|≤m′

| f ∗(u)|2du ≤ ‖ f − fm‖2.

Finally:

max
m′∈M

‖ fm′ − fm∧m′ ‖2 ≤ ‖ f − fm‖2.

We get the following bound for Γm,s :

Γm,s ≤ 3 max
(m′,s′)∈C

(
‖ f̃m′,s′ − fm′ ‖2 − 1

6
pen(m′, s′)

)
+

+ 3 max
(m′,s′)∈C

(
‖ f̃(m′,s′)∧(m,s) − fm∧m′ ‖2 − 1

6
pen(m′, s′)

)
+

+ 3‖ f − fm‖2. (26)
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Then we gather Eqs. (25) and (26):

‖ f̃m̃ ,̃s − f ‖2 ≤ 6pen(m, s) + 3‖ f̃m,s − f ‖2 + 18‖ f − fm‖2

+ max
(m′,s′)∈C

18

(
‖ f̃m′,s′ − fm′ ‖2 − 1

6
pen(m′, s′)

)
+

+ max
(m′,s′)∈C

18

(
‖ f̃(m′,s′)∧(m,s) − fm∧m′ ‖2 − 1

6
pen(m′, s′)

)
+

.

We first notice that our penalty function is increasing in s and m, thus we get the
following bound for the last term:

E

[
max

(m′,s′)∈C

(
‖ f̃(m′,s′)∧(m,s) − fm∧m′ ‖2 − 1

6
pen((m′, s′) ∧ (m, s))

)
+

]

≤ E

[
max

m′≤m,s′≤s

(
‖ f̃m′,s′ − fm′ ‖2 − 1

6
pen(m′, s′)

)
+

]

+E

[
max

m≤m′,s≤s′

(
‖ f̃m,s − fm‖2 − 1

6
pen(m, s)

)
+

]

+E

[
max

m≤m′,s′≤s

(
‖ f̃m,s′ − fm‖2 − 1

6
pen(m, s′)

)
+

]

+E

[
max

m′≤m,s≤s′

(
‖ f̃m′,s − fm′ ‖2 − 1

6
pen(m′, s)

)
+

]

≤ 4
∑

m′∈M

∑
s′∈S

E

[
‖ f̃m′,s′ − fm′ ‖2 − 1

6
pen(m′, s′)

]
+

.

Moreover, according to Proposition 4.1 and using the inequality
∫ 1
0 eσ 2s2v2dv ≤ eσ 2s2 ,

we obtain, for all (m, s) ∈ C,

E

[
‖ f̃m̃ ,̃s − f ‖2

]
≤ 5 × 18

∑
m′∈M

∑
s′∈S

E

[
‖ f̃m′,s′ − fm′ ‖2 − 1

6
pen(m′, s′)

]
+

+ 6pen(m, s)

+ 3
m

πN
eσ

2s2 + 21‖ f − fm‖2.

Then we obtain the announced result with the following Lemma.

Lemma 8.1 There exists a constant C ′ > 0 such that for pen(m, s) defined by
pen(m, s) = κ m

N e
σ 2s2 ,

∑
m′∈M

∑
s′∈S

E

[
‖ f̃m′,s′ − fm′ ‖2 − 1

6
pen(m′, s′)

]
+

≤ C ′(P + 1)

N
.
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According to Lemma 8.1, to be proved next, we choose pen(m, s) = κ m
N e

σ 2s2 , thus,
there exist two constants C = 145, C ′ > 0 such that,

E

[
‖ f̃m̃ ,̃s − f ‖2

]
≤ 5 × 18

∑
m′∈M

∑
s′∈S

E

[
‖ f̃m′,s′ − fm′ ‖2 − 1

6
pen(m′, s′)

]
+

+
(
6κ + 3

π

)
m

N
eσ 2s2 + 21‖ f − fm‖2

≤ C inf
(m,s)∈C

{
‖ f − fm‖2 + m

N
eσ 2s2

}
+ C ′

N
.

�

Proof of Lemma 8.1 For a couple (m, s) ∈ C fixed, let us consider the subset Sm :=
{t ∈ L

1(R) ∩ L
2(R), supp(t∗) = [−m,m]}. For t ∈ Sm ,

νN (t) = 1

N

N∑
j=1

(
ϕt (Z j,m2/s2) − E

[
ϕt
(
Z j,m2/s2

)])

with ϕt (x) := 1
2π

∫
t∗(u)eiux+σ 2u2s2/(2m2)du, then νN (t) = 1

2π 〈t∗, ( f̃m,s − fm)∗〉.
This leads to

‖ f̃m,s − fm‖2 = sup
t∈Sm , ‖t‖=1

|νN (t)|2. (27)

We also have by Cauchy–Schwarz inequality

‖ϕt‖∞ ≤ 1

2π

∫
|t∗(u)|eσ 2u2s2/(2m2)du ≤ 1

2π

(∫ m

−m
|t∗(u)|2du

)1/2 (∫ m

−m
eσ 2u2s2/m2

du

)1/2

≤
√
2m√
2π

eσ 2s2/2

thus

sup
t∈Sm ,‖t‖=1

‖ϕt‖∞ ≤
√
m√
π
eσ 2s2/2 := M.

Then, by Proposition 4.1,

E

[
sup

t∈Sm ,‖t‖=1
|νN (t)|2

]
= E

[
‖ f̃m,s − fm‖2

]
≤ m

πN

∫ 1

0
eσ

2s2v2dv ≤ m

πN
eσ

2s2 := H2.

Using Fubini and Cauchy–Schwarz inequalities we obtain for all (m, s) ∈ C:

4π sup
t∈Sm , ‖t‖=1

Var(ϕt (Z j,m2/s2 )) ≤ sup
t∈Sm ,‖t‖=1

∫∫
t∗(u)t∗(−v)E

[
e
i(u−v)Z j,m2/s2

]

×e(u
2+v2)σ 2s2/(2m2)dudv
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≤ 2π

(∫∫
[−m,m]2

| f ∗(u − v)|2e(u2+v2)σ 2s2/m2
dudv

)1/2

≤ 2π

(
e2σ

2s2
∫∫

[−m,m]2
| f ∗(u − v)|2dudv

)1/2

≤ 2πeσ
2s2

√
2m

(∫ 2m

−2m
| f ∗(z)|2dz

)1/2

≤ 2
√
2m

√
2π

√
πeσ

2s2‖ f ‖=:4π2v,

v :=
√
meσ

2s2‖ f ‖√
π

.

Finally using that m ≤ N , s ≤ 2/σ and
∑

s∈S s = (4/σ)(1 − (1/2)P+1) < 4/σ ,
the Talagrand’s inequality with α = 1/2 if 4H2 ≤ pen(m, s)/6 implies,

∑
s∈S

∑
m∈M

E

[
‖ f̃m,s − fm‖2 − 1

6
pen(s,m)

]
+

≤
∑
s∈S

∑
m∈M

(
C1‖ f ‖

N
eσ 2s2√me−C2

√
m

‖ f ‖ + C3
m

N 2 e
σ 2s2e−C4

√
N
)

≤
∑
s∈S

C1‖ f ‖
N

eσ 2s2
( ∑
m∈M

√
me−C2

√
m

‖ f ‖

)
+
∑
s∈S

∑
m∈M

C3e
4 1

N
e−C4

√
m

≤ C1‖ f ‖(P + 1)e4

N

( ∑
m∈M

√
me−C2

√
m

‖ f ‖

)
+ C3e

4 P + 1

N

∑
m∈M

e−C4
√
m

≤ C ′(P + 1)

N

because with the definition of M,
∑

m∈M
√
me−C2

√
m

‖ f ‖ ≤ a1
∑

k∈N k1/4e−a2k1/4 <

+∞, and
∑

m∈M e−C4m1/2 ≤ ∑
k∈N e−a3k1/4 < +∞, with a1, a2, a3 three positive

constants. Notice that C ′ > 0 depends on σ, ‖ f ‖, Δ.
We choose pen(m, s) = κmeσ 2s2/N with κ ≥ 24. ��

9 Appendix 2

9.1 Young inequality

This inequality can be found in Briane and Pagès (2006) for example.

Theorem 9.1 Let f be a function belonging to Lp(R) and g belonging to Lq(R), let
p, q, r be real numbers in [1,+∞] and such that

1

p
+ 1

q
= 1

r
+ 1.
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Then,

‖ f �g‖r ≤ ‖ f ‖p‖g‖q .

9.2 Talagrand’s inequality

The following result is a consequence of the Talagrand concentration inequality Tala-
grand (1996) given in Birgé and Massart (1997).

Theorem 9.2 Consider n ∈ N
∗,F a class at most countable of measurable functions,

and (Xi )i∈{1,...,N } a family of real independent random variables. One defines, for all
f ∈ F ,

νN ( f ) = 1

N

N∑
i=1

( f (Xi ) − E[ f (Xi )]).

Supposing there are three positive constants M, H and v such that sup
f ∈F

‖ f ‖∞ ≤ M,

E[ sup
f ∈F

|νN f |] ≤ H, and sup
f ∈F

(1/N )
∑N

i=1 Var( f (Xi )) ≤ v, then for all α > 0,

E

[(
sup
f ∈F

|νN ( f )|2 − 2(1 + 2α)H2

)
+

]
≤ 4

a

(
v

N
exp

(
−aα

NH2

v

)

+ 49M2

aC2(α)N 2 exp

(
−

√
2aC(α)

√
α

7

NH

M

))

with C(α) = (
√
1 + α − 1) ∧ 1, and a = 1

6 .

9.3 Discretization

Indeed, if we assume that the times of observations are the tk = kδ, k = 1, . . . , N and
0 < δ < 1, we must study the error applied by discretization of the Z j,τ . Then, for
any 0 < m2/s2 ≤ T we use:

Ẑ j,m2/s2 = s2

m2

⎡
⎣X j (δ[m2/(s2δ)]) − X j (0) + δ

α

[m2/(s2δ)]∑
k=1

X j ((k − 1)δ)

⎤
⎦ (28)

to approximate Z j,m2/s2 given by (2). The corresponding estimator of f is

̂̃f m,s(x) = 1

2π

∫ m

−m
e−iux 1

N

N∑
j=1

eiu Ẑ j,m2/s2 e
u2σ2s2

2m2 du. (29)
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We investigate the error:

E[‖̂̃f m,s − f ‖2] ≤ 2E[‖̂̃f m,s − f̃m,s‖2] + 2E
[
‖ f̃m,s − f ‖2

]

where the second term of the right hand side is bounded by Proposition 4.1. Then,
Plancherel–Parseval’s Theorem implies:

E[‖̂̃f m,s − f̃m,s‖2] ≤ 1

2π
E

⎡
⎣∫ m

−m

1

N

N∑
j=1

eu
2σ 2s2/m2

∣∣∣eiu Ẑ j,m2/s2 − eiuZ j,m2/s2
∣∣∣2 du

⎤
⎦

≤ 1

2π

∫ m

−m
eu

2σ 2s2/m2
E

[∣∣∣eiu Ẑ1,m2/s2 − eiuZ1,m2/s2
∣∣∣2] du

and

E

[∣∣∣eiu Ẑ1,m2/s2 − eiuZ1,m2/s2
∣∣∣2] ≤ |u|2E

[∣∣Ẑ1,m2/s2 − Z1,m2/s2
∣∣2]

thus we study the last term. For all (m, s) ∈ C, m2/s2 ≤ T ,

Z1,m2/s2 − Ẑ1,m2/s2 = s2

m2

(
X j (m

2/s2) − X j (δ[m2/(s2δ)])
)

+ s2

αm2

[m2/(s2δ)]∑
k=1

∫ kδ

(k−1)δ
(X j (s) − X j ((k − 1)δ))ds

then by Cauchy–Schwarz’s inequality we obtain

(Z1,m2/s2 − Ẑ1,m2/s2)
2 ≤ 2s4

m4

(
X j (m

2/s2) − X j (δ[m2/(s2δ)])
)2

+ 2s4

α2m4

⎡
⎣[m2/(s2δ)]∑

k=1

∫ kδ

(k−1)δ
(X j (s) − X j ((k − 1)δ))ds

⎤
⎦
2

.

Höder’s inequality yields

⎡
⎢⎢⎣
[
m2

s2δ

]
∑
k=1

∫ kδ

(k−1)δ
(X j (s) − X j ((k − 1)δ))ds

⎤
⎥⎥⎦
2

≤

[
m2

s2δ

]
∑
k=1

[∫ kδ

(k−1)δ
(X j (s) − X j ((k − 1)δ))ds

]2 [
m2

s2δ

]

≤
[
m2

s2δ

]
δ

[
m2

s2δ

]
∑
k=1

∫ kδ

(k−1)δ
(X j (s) − X j ((k − 1)δ))2ds.
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Let us study E[(X j (s) − X j ((k − 1)δ))2], for (k − 1)δ ≤ s ≤ kδ:

X j (s) − X j ((k − 1)δ) =
∫ s

(k−1)δ

(
φ j − X j (u)

α

)
du +

∫ s

(k−1)δ
σdWj (u)

and Cauchy–Schwarz’s inequality gives

E[(X j (s) − X j ((k − 1)δ))2] ≤ 2E

[(∫ s

(k−1)δ

(
φ j − X j (u)

α

)
du

)2
]

+ 2E

[(∫ s

(k−1)δ
σdWj (u)

)2
]

≤ 2E

[∫ s

(k−1)δ

(
φ j − X j (u)

α

)2

du

]
+ 2δσ 2

≤ 4δ2
(
E(φ2

j ) + 1

α2 sup
s≥0

E[X j (s)
2]
)

+ 2δσ 2. (30)

Finally, after simplification and using for all x ∈ R
+, [x] ≤ x ,

E

[
(Z1,m2/s2 − Ẑ1,m2/s2)

2
]

≤ 2s4

m4 E[
(
X j (m

2/s2) − X j (δ[m2/(s2δ)])
)2]

+ 2

α2

(
4δ2

(
E(φ2

j ) + 1

α2 sup
s≥0

E[X j (s)
2]
)

+ 2δσ 2

)

and we can deal with the term E[(X j (m2/s2) − X j (δ[m2/(s2δ)]))2] using formula
(30) and m2/s2 − δ[m2/(s2δ)] ≤ δ. Thus:

E

[
(Z1,m2/s2 − Ẑ1,m2/s2 )

2
]

≤
(
2s4

m4 + 2

α2

)(
4δ2

(
E(φ2

j ) + 1

α2 sup
s≥0

E[X j (s)
2]
)

+ 2δσ 2

)
.

Besides, for model (1), Eq. (17) implies E[X j (s)2] ≤ 3x2j + 3α2
E[φ2

j ] + 3σ 2, and
0 < δ < 1 implies

E

[
(Z1,m2/s2 − Ẑ1,m2/s2)

2
]

≤ Cδ

(
2s4

m4 + 2

α2

)

with C a positive constant which does not depend on δ or m2/s2. Finally,

E[‖̂̃f m,s − f̃m,s‖2] ≤ Cδ

(
2s4

m4 + 2

α2

)
1

2π

∫ m

−m
u2eu

2σ 2s2/m2
du

≤ C ′δ
(∫ 1

0
v2ev2σ 2s2dv

)(
s4

m
+ m3

α2

)
.
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But s ≤ 2/σ and m = √
kΔ/σ , with k ∈ N

∗ and 0 < Δ < 1, thus we obtain

E[‖̂̃f m,s − f̃m,s‖2] ≤ C ′

σ 3

(∫ 1

0
v2ev2σ 2s2dv

)(
24

√
k

(
δ√
Δ

)
+ k3/2

α2

(
δΔ3/2

))
.

Proposition 9.1 Under (A), assuming E[φ2
j ] < +∞, the estimator ̂̃f m,s given by

(29) satisfies

E
[‖ f̃m,s − f ‖2] ≤ ‖ fm − f ‖2 +

√
kΔ

σπN
eσ 2s2 + C ′

σ 3

eσ 2s2

2σ 2s2

(
24

√
k

(
δ√
Δ

)
+ k3/2

α2

(
δΔ3/2)) .

Finally if Δ is fixed and δ is small, the error is acceptable. For example if δ = Δ the
error is of order

√
δ.

For study on the kernel estimator we refer to Comte et al. (2013).
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