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Abstract Recurrent event data are frequently encountered in clinical and observa-
tional studies related to biomedical science, econometrics, reliability and demography.
In some situations, recurrent events serve as important indicators for evaluating dis-
ease progression, health deterioration, or insurance risk. In statistical literature, non
informative censoring is typically assumed when statistical methods and theories are
developed for analyzing recurrent event data. In many applications, however, there
may exist a terminal event, such as death, that stops the follow-up, and it is the cor-
relation of this terminal event with the recurrent event process that is of interest. This
work considers joint modeling and analysis of recurrent event and terminal event
data, with the focus primarily on determining how the terminal event process and the
recurrent event process are correlated (i.e. does the frequency of the recurrent event
influence the risk of the terminal event). We propose a joint model of the recurrent
event process and the terminal event, linked through a common subject-specific latent
variable, in which the proportional intensity model is used for modeling the recurrent
event process and the additive hazards model is used for modeling the terminal event
time.
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1 Introduction

In many studies, the event of interest can be experienced more than once per subject.
Such outcomes have been termed as recurrent events, which are commonly encoun-
tered in longitudinal follow-up studies. Examples of recurrent events include, among
others, bladder tumor recurrence times among patients in a randomized treatment trial
(Byar 1980), times to the development of mammary tumors for rats in a carcinogenic-
ity experiment (Gail et al. 1980), infection occurrence times among leukemia patients
receiving bone marrow transplants (Prentice et al. 1981), times to valve seat replace-
ment on diesel engines in a service fleet (Lawless and Nadeau 1995), and times to
inpatient hospital admissions among intravenous drug users (Wang et al. 2001).

In practice, the data collection will have a fixed termination date, beyond which the
occurrence times are censored. Recurrent events occur as naturally ordered multivari-
ate failure time data. As a result, recurrent event data are often analyzed usingmethods
of multivariate survival analysis (e.g., Prentice et al. 1981; Andersen and Gill 1982;
Wei et al. 1989). However, applying these methods to recurrent event data requires
care, since they are designed for a larger class of general data structures amenable to
multivariate survival analysis. Correspondingly, the analysis of recurrent event data
continues to be the subject of much methodological research, with interest focused on
assessing the effects of covariates on certain features of the recurrent event process.

Let N∗
i (t) = ∫ t

0 dN
∗
i (u) be the number of recurrent events in (0, t] for subject i ,

where dN∗
i (t) = N∗

i (t + dt) − N∗
i (t) denotes the number of events in the small time

interval (t, t + dt]. Assume that subject i is observed over the period [0,Ci ] , and is
observed to experience events at times Ti1, . . . , Ti,mi ,where Ci denotes the follow-up
or censoring time andmi denotes the total number of recurrent events for subject i . For
subject i , let T̃i j = Ti j −Ti, j−1 denote the time elapsed from the ( j −1)th occurrence
of the event to the j th occurrence of the event with Ti,0 ≡ 0, j = 1, . . . ,mi . N∗

i (t)
is thus a subject-specific counting process since (1) N∗

i (t) ≥ 0, (2) N∗
i (t) is integer-

valued, (3) for s < t, N∗
i (s) ≤ N∗

i (t) and (4) for s < t, the number of events in (s, t]
is given by N∗

i (t) − N∗
i (s) (e.g., Ross 1989).

Recurrent event data are usually analyzed in the context of counting or point process
models (Andersen et al. 1993). Following classical survival analysis, these methods
are based on modeling the intensity and hazard functions. Because the mean number
of events is more easily interpreted than the hazard, some authors propose modeling
the mean and rate functions (Pepe and Cai 1993; Lawless and Nadeau 1995; Lin et al.
2000). We now define these terms formally: intensity function, mean function and rate
function.

Let N ∗
i (t) = {N∗

i (s); 0 ≤ s < t} denote the event history of the i th subject up to
time t−. If

E{dN∗
i (t)|N ∗

i (t)} = λi (t |N ∗
i (t))dt

then λi (t |N ∗
i (t)) is called the intensity function of N∗

i (t). The probability distrib-
ution of {dN∗

i (t); t ≥ 0} can be determined completely in terms of λi (t |N ∗
i (t))

as discussed by Andersen et al. (1993). For Poisson processes, the intensity func-
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tion is non-stochastic; that is λi (t |N ∗
i (t)) = λi (t), and for renewal processes,

λi (t |N ∗
i (t)) = hi (t − Ti,N∗

i (t−)) where hi (·) is the hazard function for the inter-event
times (which are iid) of the i th subject (Chiang 1968). The recurrent event process
can be modeled as a Poisson process when event counts are of interest. The mean
function of N∗

i (t) is defined byμi (t) = E[N∗
i (t)]. If E[dN∗

i (t)] = ri (t)dt, then ri (t)
is called the rate function of N∗

i (t). When one wants to assess the effect of covariates
on the process, analysis of the mean and rate functions is suggested, particularly since
assumptions on the intra-subject dependence structure are avoided.

For recurrent event data, there are various models proposed in the survival analysis
literature. These include conditional intensity models (Prentice et al. 1981; Andersen
and Gill 1982; Chang andWang 1999; Zeng and Lin 2006), marginal intensity models
(Wei et al. 1989; Lee et al. 1992), the frailty model approach (Nielsen et al. 1992;
Murphy 1994, 1995; Zeng and Lin 2007), and marginal means and rates models
(Pepe and Cai 1993; Lawless and Nadeau 1995; Lin et al. 2000, 2001; Ghosh 2004;
Schaubel et al. 2006; Sun and Su 2008; Liu et al. 2010; Sun et al. 2011, 2012). Cook
and Lawless (2007) provided a broad review of the existing literature for the analysis
of this type of data.

Often, however, there may exist a dependent terminal event that stops the recurrent
events and the follow-up. This terminal event is usually correlated with the recurrent
events of interest, and this correlation should be accounted for in the analysis. Indeed,
this correlation can be counter intuitive. For example, frequent visits to the hospital for
treatments can be positively correlated (e.g. aggressive, invasive, or risky therapies)
or negatively correlated (physical therapy or dialysis) with a high death rate. Mazroui
et al. (2010) emphasized the importance of ascertaining the nature of the dependence
between the terminal event and the recurrent event process in the medical context,
citing the reason that some therapies may be beneficial in slowing the rate of disease
recurrence, but not prolonging survival. Not surprisingly, modeling the dependence
between the terminal event and the recurrent events (as opposed to simply studying
the recurrent event process) has gained more importance over the past few years.

The existing methods for handling recurrent event data in the presence of a terminal
event generally fall into two approaches: frailtymethods andmarginalmethods. Frailty
models use random effects to account for the correlation between the recurrent and
terminal events (Mazroui et al. 2010; Wang et al. 2001; Huang and Wang 2004; Liu
et al. 2004; Ye et al. 2007; Zeng and Lin 2009). Marginal methods focus on the
marginal rates of the recurrent and terminal events, leaving the correlation between
the recurrent and terminal events unspecified (Cook and Lawless 1997; Ghosh and Lin
2000, 2002; Miloslavsky et al. 2004; Pan and Schaubel 2009; Zeng and Cai 2010).

We note that Huang and Wang (2004) just used the proportional hazards model for
the terminal event. It is known that sometimes the proportional hazards model may
not fit failure time data well. When this is the case, one alternative is the additive
hazards model. The latter describes a different aspect of the relationship between the
survival time and covariates and in many situations could be more plausible than
the proportional hazards model ( Lin and Ying 1994). For example, in public health
studies, the risk difference described by the additive hazards model is the quantity
used more often than the risk ratio described by the proportional hazards model. This
is discussed further in Breslow and Day (1987). Dunson and Herring (2005) proposed
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766 X. Che, J. Angus

a new Bayesian model selection and averaging procedure which can be used to choose
between proportional and additive models.

In this paper, we propose a joint model with the recurrent event process and the
terminal event linked through a common subject-specific latent variable, with the
proportional intensity model used for modeling the recurrent event process and the
additive hazards model used for modeling the terminal event time. This model is flexi-
ble in that no parametric assumptions on the distributions of censoring times and latent
variables are made. In Sect. 2, we describe the proposed models. An estimating pro-
cedure and asymptotic properties for the parameter estimators are established in Sect.
2.1. Section 2.2 reports some results from simulation studies conducted for evaluating
the finite sample performance of the proposed method. In Sect. 3, the methodology is
applied to hospitalization data for heart failure patients from the clinical data reposi-
tory at University of Virginia Health System. All technical proofs are included in the
Appendix.

2 Model specification

Let N∗(t) denote the number of recurrent events over the time interval (0, t], and
let X be a p-dimensional vector of covariates. A non negative latent variable v is
associated with the recurrent process, satisfying the property that E(v|X) = 1. Let
D be the terminating event time (e.g., death) and C be the follow-up or censoring
time. Write Y = C ∧ D and δ = I (D ≤ C), where a ∧ b = min(a, b), and
I (·) is the indicator function. The deterministic time τ > 0 signifies the end of the
observation period, so that C ≤ τ with probability 1. Due to censoring, N∗(·) is not
fully observed, and the number of observed events is denoted by N (t) = N∗(t ∧ Y ).
We denote bym the total number of recurrent events to occur; that is,m = N (Y ). The
random object (N∗(·), X,C, D,Y, v, δ,m)will signify amodel for a subject chosen at
random, and subscripts assigned to distinguish subjects. Thus, for a random sample of
n subjects,

(
N∗
i (·), Xi ,Ci , Di ,Yi , vi , δi ,mi

)
, i = 1, 2, . . . , n will be the associated

independent and identically distributed random objects. Note that for this sequence,
only (Ni (·),Yi , δi , Xi ,mi ) , i = 1, . . . , n, is observable.

For the recurrent event process, we assume that conditional on Xi and a latent
variable vi , N∗

i (·) is a Poisson process with intensity function

E(dN∗
i (t)|vi , Xi ) = d�i (t) = vi exp{γ ′

0Xi }d�0(t) (1)

where �0(t) is the unspecified deterministic baseline cumulative intensity function
and γ0 is the regression parameter. Note that the intensity function E(dN∗

i (t)|vi , Xi )

inmodel (1) is not conditional on the event history. It is valid in our case because, due to
the memory-less property of the Poisson Process, the intensity function is equivalent
to the rate function of the recurrent event process. The latent variable vi is treated
as a nuisance parameter and no parametric assumptions are imposed. Since any other
positive value of the mean of vi can be absorbed into�0(t), for identifiability of model
(1), we assume that vi is non negative and has conditional mean 1 given Xi . Thus, vi
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plays the role of a frailty parameter in the recurrent event process, with the intensity
of recurrent events increasing with vi .

We specify the additive hazards model for the terminal event time Di as

αi (t) = α0(t) + η′
0Xi + θ0vi (2)

for t ≥ 0, where α0(·) is an unspecified deterministic baseline hazard function, η0
is a p-dimensional vector of unknown regression parameters, and θ0 is an unknown
parameter. Note that (2) defines the conditional (on vi and Xi ) hazard function when
the quantity on the right is non negative. This hazard function is 0 otherwise.

It is assumed that conditional on Xi and vi , Di ,Ci and N∗
i (·) are mutually indepen-

dent. Thus, (1) and (2) link the recurrent event process with the terminal event for a
given individual i through the random effect vi . The parameter θ0 conveys information
about the correlation (conditional on Xi ) between the conditional hazard function for
the terminal event time, and the conditional intensity function of the recurrent event
process for a given individual. Specifically, if we denote (with t and Xi held fixed)
fi (vi ) = vi exp{γ ′

0Xi }d�0(t)/dt and gi (vi ) = max{0, α0(t) + η′
0Xi + θ0vi }, then

fi and gi are both non-decreasing in vi when θ0 ≥ 0 , and when θ0 ≤ 0 , fi is non-
decreasing in vi while gi is non-increasing in vi . Therefore, the conditional (on Xi )
covariance of f (vi ) and g(vi ) is non-negative if θ0 ≥ 0 , and is non-positive if θ0 ≤ 0.
It follows that the conditional recurrent event intensity and conditional hazard function
for the terminal event time for individual i are non-negatively correlated when θ0 ≥ 0,
and non-positively correlated when θ0 ≤ 0 . Thus, testing the null hypothesis θ0 = 0
versus the alternatives θ0 > 0 or θ0 < 0 will provide evidence on how the recurrent
event process influences the risk of the terminal event; if the null hypothesis is rejected
in favor of θ0 > 0, then higher intensities of recurrent events are associated with an
increased risk of the terminal event occurring, while if the null hypothesis is rejected
in favor of θ0 < 0, then higher intensities of recurrent events are associated with lower
risk of the terminal event occurring.

2.1 Estimation of regression parameters

Themodel we have outlined is semiparametric, since it involves both finite and infinite
dimensional unknowns. Since we make no assumptions about the form of the distribu-
tion of the latent variable or follow-up/censoring times, we use estimating-equation
procedures to form our parameter estimators. Estimators formed in this way can be
semiparametric efficient under certain regularity conditions. We do not attempt such
a discussion here, opting instead for our minimal assumptions and the tractability of
the estimating-equation technique.

Note that we are using the same informative censoring model that was studied by
Wang et al. (2001), who focused on the estimation of parameters in model (1). They
treated the nonparametric distributions of the censoring and latent variable as nuisance
parameters, and were able to formulate consistent, asymptotically normal estimators
for the regression parameters γ0. Thus, our focus is mainly on estimation results for
model (2), with distributional results being asymptotic. Our purpose is to demon-
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768 X. Che, J. Angus

strate the importance of taking into account the association between the recurrent
event process and the terminal event process when drawing inferences on the covari-
ate effects on the terminal event. In Sect. (3), we examine this issue using marginal
p-values (based on asymptotic distributions) computed using data from hospitalization
data for heart failure patients from the clinical data repository at University of Vir-
ginia Health System. For this, we find it sufficient here to derive the joint asymptotic
distribution of the parameter estimators in model (2) only, rather than to solve the
more complicated problem of doing this for the joint distribution of all the parameter
estimators in both models (1) and (2). It will be seen in this section that we use esti-
mating equations for all the parameters in both models, but only solve the equations
and develop the asymptotic distributions for the parameters from model (2). For the
marginal asymptotic distribution needed for model (1), we use the results from Wang
et al. (2001) in our analysis in Sect. (3) and in our simulation results. For analyses
requiring simultaneous inferences on the parameters in both models (1) and (2), it will
be necessary to derive the joint asymptotic distribution of the parameter estimators for
both models. For now, we leave this as a open question for future research.

Let ND(t) = I (Y ≤ t, δ = 1), 
(t) = I (t ≤ Y ), and τ be the end time of the
study. Estimation equations involving the parameters of interest can be written down
easily based on the following population equations, where Q(t), t ≥ 0, is a (possibly
data-dependent) weight function:

E
[
dN D(t) − {

η′X + θv + α0(t)
}

(t)dt

]
= 0

E

[∫ τ

0
Q(t)X

{
dN D(t) − {η′X + θv + α0(t)}
(t)dt

}]

= 0

E

[∫ τ

0
Q(t)v

{
dN D(t) − {η′X + θv + α0(t)}
(t)dt

}]

= 0

Note that if v can be observed, then using the generalized estimating equation approach
(Liang andZeger 1986), the parameters for the terminal event time (2) can be estimated
as follows. Adding subject-specific subscripts, and since

(
ND
i (·),
i , Xi , vi

)
, i =

1, 2, . . . , n are independent and identically distributed, the estimating equationswould
be:

n∑

i=1

dN D
i (t) − {η′Xi + θvi + α0(t)}
i (t)dt = 0,

n∑

i=1

∫ τ

0
Q(t)Xi

{
dN D

i (t) − {η′Xi + θvi + α0(t)}
i (t)dt
}

= 0,

n∑

i=1

∫ τ

0
Q(t)vi

{
dN D

i (t) − {η′Xi + θvi + α0(t)}
i (t)dt
}

= 0.

However, in practice, vi can not be observed. For this, define �∗
i (t) = �0(t)eγ ′

0Xi

and V ∗
i = mi�

∗
i (Yi )

−1for subject i . Note that E(V ∗
i |Xi ,Yi , δi , vi ) = vi and
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A new joint model of recurrent event data with… 769

E(V ∗
i (mi − 1)�∗

i (Yi )
−1|Xi ,Yi , δi , vi ) = v2i .

Thus, for given γ0 and �0(t), we can estimate α0(t), η0 and θ0 using the following
three unbiased estimating equations:

n∑

i=1

dN D
i (t) − {η′Xi + θV ∗

i + α0(t)}
i (t)dt = 0, (3)

n∑

i=1

∫ τ

0
Q(t)Xi

{
dN D

i (t) − {η′Xi + θV ∗
i + α0(t)}
i (t)dt

}
= 0, (4)

n∑

i=1

∫ τ

0
Q(t)V ∗

i

{
dN D

i (t) − {η′Xi + θ(mi − 1)�i (Yi )
−1 + α0(t)}
i (t)dt

}
= 0.

(5)

Of course, γ0 and �0(t) are unknown, but they can be consistently estimated by
fitting themodel (1). FollowingWang et al. (2001), given vi and Xi , the recurrent event
process is a non homogeneous Poisson process under model (1). Sincemi denotes the
total number of recurrent events for subject i , it follows that given (vi , Xi , Yi ), mi has
a Poisson distribution with mean vi�0(Yi )eγ ′

0Xi . Define F(t) = �0(t)/�0(τ ). Then
F(t) can be estimated by

F̂(t) =
∏

t<s≤τ

(

1 −
∑n

i=1 dN
D
i (s)

∑n
i=1 
i (s)ND

i (s)

)

.

Let X∗
i = (1, X ′

i )
′, α1 = log�0(τ ) and α = (α1, γ

′
0)

′. Using the generalized
estimating equation approach, α can be estimated by solving

1

n

n∑

i=1

X∗
i (mi F̂

−1(Yi ) − exp{α′X∗
i }) = 0. (6)

Let α̂ = (̂α1, γ̂
′)′ denote the solution to the foregoing estimating equation. Then

�0(t) can be estimated by �̂0(t) = eα̂1 F̂(t). Define �̂i (Yi ) = �̂0(Yi )eγ̂ ′Xi and
V̂i = mi �̂i (Yi )−1.

Let A0(t) = ∫ t
0 α0(s)ds. Then for given η and θ, by replacing V ∗

i with V̂i in the
estimating equation (3), a reasonable estimator for A0(t) is the solution to

n∑

i=1

dN D
i (t) − {η′Xi + θ V̂i + α0(t)}
i (t)dt = 0,

The solution to the above estimating equation is

Â0(t; η, θ) =
∫ t

0

∑n
i=1 dN

D
i (s) − {η′Xi + θ V̂i }
i (s)ds

∑n
i=1 
i (s)

.
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On replacement of A0(t) with Â0(t; η, θ) in (4) and (5), and by replacing V ∗
i

and �i (Yi ) with V̂i and �̂i (Yi ), respectively, we obtain the following two estimating
functions for η and θ :

U1(η, θ) =
n∑

i=1

∫ τ

0
Q(t){Xi − X̄(t)}

{
dN D

i (t) − {η′Xi + θ V̂i }
i (t)dt
}
,

U2(η, θ) =
n∑

i=1

∫ τ

0
Q(t)

[
{V̂i − V̄ (t)}{dN D

i (t) − η′Xi
i (t)dt
}

− θ{�̂i − V̂i V̄ (t)}
i (t)dt
]
,

where
�̂i = mi (mi − 1)�̂i (Yi )

−2,

and

X̄(t) =
∑n

i=1 
i (t)Xi∑n
i=1 
i (t)

,

V̄ (t) =
∑n

i=1 
i (t)V̂i∑n
i=1 
i (t)

.

Let η̂ and θ̂ denote the solutions to U1(η, θ) = 0 and U2(η, θ) = 0. Then η̂ and θ̂

have the explicit form
(

η̂

θ̂

)

= Â−1

{
1

n

n∑

i=1

∫ τ

0
Q(t)

(
Xi − X̄(t)
V̂i − V̄ (t)

)

dN D
i (t)

}

,

where

Â =
(
Â11 Â12

Â′
12 Â22

)

,

and

Â11 = 1

n

n∑

i=1

∫ τ

0
Q(t)

{
Xi − X̄(t)

}{
Xi − X̄(t)

}′

i (t)dt,

Â12 = 1

n

n∑

i=1

∫ τ

0
Q(t)

{
Xi − X̄(t)

}{V̂i − V̄ (t)
}

i (t)dt,

Â22 = 1

n

n∑

i=1

∫ τ

0
Q(t)

{
�̂i − V̂i V̄ (t)

}

i (t)dt.

By using the law of large numbers and the consistency of γ̂ and �̂0(t) (Wang et al.
2001), one can show that η̂ and θ̂ are consistent. To establish the asymptotic normality
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of η̂ and θ̂ , let Ti j denote the occurrence time of the j th event of the i th subject, and let
P1n(x, y,m) and P2n(x, y,m, δ) denote the joint probability measures of (Xi ,Yi ,mi )

and (Xi ,Yi ,mi , δi ), respectively.Herewe assume that the randomvectors (Xi ,Yi ,mi )

and (Xi ,Yi ,mi , δi ) are defined in the same sample space for all subjects i , and are
independent and identically distributed, so the probability measures P1n and P2n do
not depend on i . Define

Ĥ(t) = 1

n

n∑

i=1

mi∑

j=1

I (Ti j ≤ t),

R̂(t) = 1

n

n∑

i=1

mi∑

j=1

I (Ti j ≤ t ≤ Yi ),

κ̂i (t) =
mi∑

j=1

{ ∫ τ

t

I (Ti j ≤ u ≤ Yi )d Ĥ(u)

R̂2(u)
− I (t < Ti j ≤ τ)

R̂(Ti j )

}
,

êi = X∗
i

[ mi

F̂(Yi )
− exp{̂α′X∗

i }
]

−
∫

x∗mκ̂i (y)dP1n(x∗, y,m)

F̂(y)
,

and

D̂1 = 1

n

n∑

i=1

exp{̂α′X∗
i }X∗⊗2

i ,

where v⊗2 = vv′ for a column vector v. Furthermore, let φ̂1i denote the vector D̂
−1
1 êi

without the first entry and φ̂2i denote the first entry of D̂
−1
1 êi . Set ϕ̂i (t) = κ̂i (t)+ φ̂2i ,

b̂i (c, w) = ϕ̂i (c) + φ̂′
1iw and ξ̂i = (̂ξ ′

1i , ξ̂2i )
′, where

ξ̂1i =
∫ τ

0
Q(t){Xi − X̄(t)}d M̂D

i (t)

+ θ̂

∫ τ

0
Q(t)

∫
{x − X̄(t)}mI (y ≥ t)

�̂0(y)eγ̂ ′x b̂i (y, x)dP1n(x, y,m)dt,

and

ξ̂2i =
∫ τ

0
Q(t)

[
{V̂i − V̄ (t)}{dN D

i (t) − 
i (t)
(
η̂′Xidt + dÂ0(t)

)}

− θ̂{�̂i (t) − V̂i V̄ (t)}
i (t)dt
]

−
∫

Q(y)
mδ

�̂0(y)eγ̂ ′x b̂i (y, x)dP2n(x, y,m, δ)

+
∫ τ

0
Q(t)

∫
{̂η′x − θ̂ V̄ (t)}mI (y ≥ t)

�̂0(y)eγ̂ ′x b̂i (y, x)dP1n(x, y,m)dt

+
∫ τ

0
Q(t)

∫
mI (y ≥ t)

�̂0(y)eγ̂ ′x b̂i (y, x)dP1n(x, y,m)dÂ0(t)

+ θ̂

∫ τ

0
Q(t)

∫
2m(m − 1)I (y ≥ t)

{�̂0(y)eγ̂ ′x }2 b̂i (y, x)dP1n(x, y,m)dt,
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where d M̂D
i (t) = dN D

i (t) − 
i (t){̂η′Xi + θ̂ V̂i }dt − 
i (t)dÂ0(t). The asymptotic
joint normality of η̂ and θ̂ is established in the following theorem with the proof given
in the Appendix.

Theorem 2.1 Under the regularity conditions (R1)-(R4) stated in the Appendix,
n1/2(̂η − η0) and n1/2(θ̂ − θ0) have asymptotic joint normal distribution with mean
zero and covariance matrix that can be consistently estimated by Â−1�̂ Â−1, where
�̂ = n−1 ∑n

i=1 ξ̂⊗2
i .

We note finally that the estimates Â0(t; η̂, θ̂ ) and �̂0(t) may not be non decreasing
functions. To correct for this, we could replace them above by

Â�
0(t; η̂, θ̂ ) = max

s≤t
Â0(s; η̂, θ̂ )

�̂∗
0(t) = max

s≤t
�̂0(s)

as suggested in Lin and Ying (1994). Lin and Ying (1994) pointed out however that

under regularity conditions, we would have Â�
0(·) − Â0(·) = op(n− 1

2 ) and �̂∗
0(·) −

�̂0(·) = op(n− 1
2 ), so that the asymptotic distribution of

(
n1/2(̂η − η0), n1/2(θ̂ − θ0)

)

would be unaffected.

2.2 Simulation studies

In this section,we conduct simulation studies to examine the finite sample performance
of the estimators proposed for the models in Sect. 2.1. In the simulation studies, for
each subject i , we generate the covariate Xi = (Xi1, Xi2)

′ where Xi1 is generated
from a Bernoulli distribution with success probability 0.5 and Xi2 is generated from
a uniform distribution on (0,1). The latent variable vi is generated from a gamma
distribution with mean 1 and variance 1 if Xi1 = 1 and a uniform distribution on
(0.5, 1.5) otherwise. It can be easily verified that vi is non negative and E(vi |Xi ) = 1.
Given Xi and vi , the terminal event time Di is assumed to follow an additive hazards
model:

αi (t) = 1 + η′
0Xi + θ0vi ,

where η0 = (−0.5, 0.5)′ or (0.5,−0.5)′, and θ0 = −0.5 or 0.5. The censoring time
Ci is taken as min(E + 0.5, τ ), where E is exponentially distributed with mean 1 and
the end time τ is taken to be τ = 2.5, which yields a censoring percentage ranging
between 22 and 39%.

For the recurrent event process, given Xi , vi and Yi = Di ∧Ci , the recurrent event
times are generated from a Poisson process with the intensity function:

λi (t) = vi exp{γ ′
0Xi }λ0(t),

where γ0 = (−0.5, 0.5)′ or (0.5,−0.5)′, and λ0(t) = 2.5(1+ t). The average number
of the recurrent events per subject ranges from 2.31 to 4.23 for different model para-
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meters. For each simulation study, we take the weighting function to be Q(·) ≡ 1.
Sample sizes are chosen to be n = 200 and n = 300. In order to help assess the
accuracy of our simulation estimates, we apply a stratified sampling scheme in the
simulation. For each n, we simulate 4000 replications inm = 20 groups of 200 replica-
tions each. For each replication, we compute the estimator, and average it over the 200
replications within each of them groups (strata). By the Central Limit Theorem, these
20 averages are nearly iid and normally distributed, and thus a confidence interval for
the true parameter using the standard confidence interval based on the t-distribution
with m − 1 = 19 degrees of freedom can be computed from the tabled values using
the standard errors in parentheses next to each simulation estimate. This allows one to
assess howmany significant digits are likely to be accurate in the simulation estimates.

Tables 1, 2, and 3 present the simulation results for the estimation of γ0, η0 and
θ0 respectively. The tables include the bias (BIAS) which is equal to the estimated
valueminus the true value, themodel-based standard deviation estimates (SE), the non
model-based standard deviation estimates (ESE), and the empirical coverage proba-
bilities (CP) for the normal-approximation-based nominal 95% confidence interval
based on Theorem 2.1. As mentioned above, the stratified sampling allows us to cal-
culate the simulation standard errors of all the estimates, and these standard errors are
reported in parentheses after each estimate in the tables.

To make all the definitions clear, and take the estimation of η for example, let η̂i
be the estimate of η for the i th simulation run, where i = 1, 2, . . . , 4000. Also let σ̂i
be the estimated standard deviation of η̂i according to Theorem 2.1. Define η̄ j and σ̄ j

be the mean of η̂i and σ̂i respectively within the j th stratum, where j = 1, 2, . . . , 20.
Also let σ̃ j denote the sample standard deviation of η̂i within the the j th stratum. SE
and ESE are the average values of {σ̄ j } and {σ̃ j } respectively over all j , and the sample
standard deviations of {η̄ j }, {σ̄ j } and {σ̃ j } over all j and then divided by √

m give the
simulation standard errors of all three estimates.

Tables 1, 2, and 3 show that our proposedmethod performs reasonablywell. Specifi-
cally, the proposed estimators are usually close to the true parameter values, but appear
to be slightly biased. We followed up by checking our simulation results based on a
larger range of values of n and verified (statistically) that the bias is O(n−1) and there-
fore negligible in terms of the asymptotic normality result of Theorem 2.1, which
makes our estimation method at least comparable to the Monte Carlo EM algorithm
proposed by Liu et al. (2004). There is also good agreement between the model-based
and non model-based standard deviations. The performance of the proposed estimator
becomes better when the sample size increases from 200 to 300 as expected. And,
the confidence intervals based on Theorem 2.1 all have reasonable estimated coverage
probabilities.

3 An application

Nowwe apply the proposedmethod to the hospitalization data for heart failure patients
from the clinical data repository at University of Virginia Health System. They inves-
tigated 1475 heart failure patients in the study, in which about 20% of the patients
died before the censoring time. In the study, they measured three baseline covariates
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Table 4 Application results for
recurrent events

Est SE p value

Race −0.2225 0.0873 0.0108

Gender −0.0304 0.0701 0.6647

Age 0.1539 0.0386 0.0001

Table 5 Application results for terminal events

Our model Lin and Ying (1994)

Est SE p value Est SE p value

Race −0.0080 0.0049 0.1027 −0.2266 0.1277 0.0760

Gender 0.0031 0.0039 0.4266 0.2495 0.1193 0.0365

Age 0.0077 0.0030 0.0103 0.2784 0.0758 0.0002

θ0 0.0479 0.0061 <0.0001

for each patient: race, gender and age (ranged from 60 to 90). For individual i , let
Xi1 be a binary indicator of race (white = 1, nonwhite = 0), Xi2 be a binary indicator
of gender (male = 1, female = 0) and Xi3 be the regulated age (centered at 72 and
divided by 10). The dataset also consists of the information of longitudinal medical
cost, however, we disregard this part of the data because we are only interested in the
analysis of the hospitalization as recurrent event data.

Table 4 shows the application results of model (1) for the recurrent hospitalizations
using the procedure proposed in Sect. 2.1. Table 5 shows the application results of
model (2) for the terminal event with Q(·) ≡ 1 comparing with those in Lin and Ying
(1994) without taking into account of the recurrent events.

Est is the estimate of the parameter, and SE is the standard error estimate. The results
using our model suggest that white patients tend to be at less risk for hospitalization,
and so are younger patients. Age also has a significant effect on the hazard rate of
failure, but race is not so significant. The estimate of the parameter θ0 indicates that,
not surprisingly in this application, the correlation between the death rate and the rate
of hospitalization is positive, significant at 4.08 × 10−15 level. When comparing our
results to those from the additive hazards model alone, we see that covariate effects,
especially that of gender, diminish after adjusting for the frailty term, which further
strengthens our belief that association between the recurrent event process and the
terminal event process is important to be taken into account.

To check the adequacy of the model for the data, following Lin et al. (2000) and
Zeng and Cai (2010), we examine the total summation of the residuals for each subject

M̂D
i =

∫ Yi

0

[
dN D

i (t) − {̂η′Xi + θ̂ V̂i }dt − dÂ0(t; η̂, θ̂ )
]
,

which has an approximate mean zero and should be approximately independent of
Xi under model (2). Thus, a simple graphical procedure for assessing the adequacy
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of the assumed model is to plot the residual against the covariate Xi . In Fig. 1, we
divide the patients into four different groups based on their race and gender (Male and
White, Male and Nonwhite, Female and White, Female and Nonwhite), and plot the
cumulative residuals M̂D

i versus age for each group. It can be seen from the figure that
the residuals have no trend, which indicates that our model fits the data well.

More formally, we apply some model checking techniques to check the goodness-
of-fit of the proposed model by doing randomness tests on the distribution of the
Median-Absolute-Deviation (MAD) normalized residuals, where the MAD of the
residuals is defined as

MAD = mediani (|M̂D
i − median j (M̂

D
j )|).

First we define themeasure of discrepancy between two cumulative distributions func-
tions (CDF) to be D(F1,F2) = sup−∞≤t≤∞ |F1(t) − F2(t)|. Let G be the empirical
CDF of the MAD-divided residuals from the fit to the hospitalization data. Then we
generate n = 20 independent sets of residuals by fitting the model using the estimated
parameters from the fit to the hospitalization data, which gives us n empirical CDFs
that are independent and identically distributed estimates of the null CDF of the nor-
malized residuals. LetFn be the average of these n empirical CDFs and D(G,Fn) the
discrepancy between the real data fit from the simulated null distribution.

To estimate the p-value associated with D(G,Fn), we apply bootstrap simula-
tions of N = 1000 replications to generate N independent and identically distributed
observations {D1, D2, . . . , DN }. For each replication i (i = 1, 2, . . . , N ), we generate
n = 20 new independent runs of the simulation using real-data fitted parameters, and
again this gives us n estimates of the null CDFs of the normalized residuals. Let Hn

be the average of these n empirical CDFs. We then generate one additional empirical
CDF T using the real-data fitted parameters, and Di = D(T ,Hn). The bootstrap
estimate of the p-value associated with D(G,Fn) is the fraction of cases in which
Di < D(G,Fn), i = 1, 2, . . . , N .

The algorithm yields the statistic D(G,Fn) = 0.021 with a p-value of 0.430 based
on 1000 realizations of D(T ,Hn). This result indicates that there is no significant
evidence to reject the goodness-of-fit of our model.

4 Conclusions

Frailty models are common for modeling jointly repeated measures and survival time
data (Henderson et al. 2000; Lin et al. 2002). Here, we have proposed a joint model of
the recurrent event process and the terminal event through a common subject-specific
latent variable, in which the proportional intensity model is used for modeling the
recurrent event process and the additive hazards model is used for modeling the termi-
nal event time. The latent variable (frailty) is assumed to act as amultiplicative factor in
the intensity function and an additive factor in the hazard function, and hence induces
correlation between the recurrent event process and the terminal event time. A specific
feature of our proposedmodel is that the frailty distribution is treated as a nuisancepara-
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meter and no parametric assumptions are imposed. Our estimation procedures can be
easily implemented, and simulation results show that the proposedmethods workwell.

Our analysis is applicable under settingswhere recurrent event data are available for
a large number of processes exhibiting a relatively small number of recurrent events.
These types of processes arise frequently in medical studies, where information is
often available on many individuals, each of whom may experience transient clinical
events repeatedly over a period of observation. If the study ends not only with the
censoring scheme but also can endwith a terminal event such as death, this is where our
proposed model would be most useful. Therefore our work can significantly influence
applications in the biomedical fields. More precisely, by performing inferences based
on the estimated parameters, we are able to analyze different effects of all kinds of
possible determinants (such as age, gender, race, environmental condition, genetic
information, or medical treatment) on the rates of the repeated clinical events and the
risk of the death, and also to infer the correlation between the recurrent event rate and
the risk of the terminal event . Note that a terminal event does not necessarily have to
be death. For example, a major injury that causes the retirement of a race horse can be
treated as a terminal event, while the injuries during its career are considered to be the
recurrent event process. All these types of data sets can be analyzed through ourmodel.

In applying our model to the heart failure data, the frailty term coefficient in (2)
allows us to determine that the recurrent event process (the rate of hospitalization) and
the terminal event process (death rate) are significantly correlated (positively, in this
case). To our knowledge, ours is the first model of this type to allow explicit inference
on this correlation, making it particularly important in biomedical applications.

Acknowledgments We are deeply indebted to three anonymous referees for their considerable time and
effort in reviewing this work. Their conscientiousness and expertise led to numerous significant improve-
ments of the manuscript. We would also like to thank Dr. Norbert Henze, Editor for Metrika, for his
responsiveness, efficiency, and excellence in the management of the editorial process.

5 Appendix: Proofs of asymptotic results

In this section,wewill use the samenotationdefined above inSect. 2.1, and all limits are
taken asn → ∞. LetVi = mi {�0(Yi )eγ ′

0Xi }−1 and�i = mi (mi−1){�0(Yi )eγ ′
0Xi }−2.

Recall that (Ni (·),Yi , δi , Xi , Di ,Ci , vi ) , i = 1, 2, . . . are assumed to be independent
and identically distributed copies of (N (·),Y, δ, X, D,C, v), each i corresponding to
a subject sampled at random.

In order to study the asymptotic distributions of η̂ and θ̂ , we need the following
regularity conditions:

(R1) P(Y ≥ τ, v > 0) > 0, P(Y > τε) = 1, where τε = inf{t : �0(t) > ε} for
some ε > 0, and E{N (τ )2} < ∞.

(R2) G(t) = E{v I (Y ≥ t) exp(γ ′
0X)} is a continuous function for t ∈ [0, τ ].

(R3) The weight function Q(t) has bounded variation and converges to a determin-
istic function q(t) in probability uniformly in t ∈ [0, τ ];

(R4) A is non singular and � = E(ξiξ
′
i ) exists.

A =
(
A11 A12
A′
12 A22

)

,

123



A new joint model of recurrent event data with… 781

A11 = E
{ ∫ τ

0
q(t){X − x̄(t)}⊗2
(t)dN (t)

}
,

A22 = E
{ ∫ τ

0
q(t){V − v̄(t)}2
(t)dN (t)

}
,

A12 = E
{ ∫ τ

0
q(t){X − x̄(t)}{V − v̄(t)}
(t)dN (t)

}
,

where 
(t) = I (t ≤ Y ), ξi is defined in Lemma 5.2 below, and x̄(t) and v̄(t) are
the limits (in probability) respectively, of X̄(t) and V̄ (t), which are well defined by
regularity condition R1.

Define R(t) = G(t)�0(t),

H(t) =
∫ t

0
G(u)d�0(u),

D1 = E{exp{α′
0X

∗
i }X∗⊗2

i },

κi (t) =
mi∑

j=1

{ ∫ τ

t

I (Ti j ≤ u ≤ Yi )dH(u)

R2(u)
− I (t < Ti j ≤ τ)

R(Ti j )

}
,

and

ei = X∗
i

[ mi

F(Yi )
− exp{α′

0X
∗
i }

]
−

∫
x∗mκi (y)dP1(x∗, y,m)

F(y)
,

where Ti j denotes the occurrence time of the j th event of the i th subject, and
P1(x∗, y,m) is the joint probability measure of (X∗

i ,Yi ,mi ). Note that Xi and X∗
i

share the same random variables, hereafter we use P1(x, y,m) to denote the joint
probability measure of (Xi ,Yi ,mi ). Let φ1i denote the vector D−1

1 ei without the
first entry and φ2i denote the first entry of D−1

1 ei . Set ϕi (t) = κi (t) + φ2i , and
bi (y, x) = ϕi (y) + φ′

1i x .
Under conditions (R1) and (R2), it follows from Wang et al. (2001) that

n1/2{�̂0(t) − �0(t)} = n−1/2�0(t)
n∑

i=1

ϕi (t) + op(1) (7)

and

n1/2{γ̂ − γ0} = n−1/2
n∑

i=1

φ1i + op(1) (8)

Lemma 5.1 (Lemma A.1 of Lin and Ying 2001) Let Hn(t) and Mn(t) be two
sequences of bounded processes. Suppose that Hn(t) is monotone and converges uni-
formly to H(t) in probability (i.e., supt |Hn(t) − H(t)| converges to 0 in probability)
and that Mn(t) converges weakly to a zero-mean process with continuous sample
paths. Then

∫ t
0 {Hn(s) − H(s)}dMn(s) converges in probability to 0 uniformly in t.
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Lemma 5.2 Under the joint models specified in Sect. 2 and condition (R4),
n−1/2 ∑n

i=1 ξi has an asymptotically normal distribution with mean zero and covari-
ance matrix � = E(ξiξ

′
i ), where ξi = (ξ ′

1i , ξ
′
2i )

′ with

ξ1i =
∫ τ

0
q(t){Xi − x̄(t)}dMD

i (t)

+ θ0

∫ τ

0
q(t)

∫
{x − x̄(t)}mI (y ≥ t)

�0(y)eγ ′
0x

bi (y, x)dP1(x, y,m)dt,

and

ξ2i =
∫ τ

0
q(t)

[
{Vi − v̄(t)}{dN D

i (t) − (
η′
0Xi + α0(t)

)

i (t)dt

}

− θ0{�i (t) − Vi v̄(t)}
i (t)dt
]

−
∫

q(y)
mδ

�0(y)eγ ′
0x
bi (y, x)dP2(x, y,m, δ)

+
∫ τ

0
q(t)

∫
{η′

0x + α0(t) − θ0v̄(t)}mI (y ≥ t)

�0(y)eγ ′
0x

bi (y, x)dP1(x, y,m)dt

+ θ0

∫ τ

0
q(t)

∫
2m(m − 1)I (y ≥ t)

{�0(y)eγ ′
0x }2 bi (y, x)dP1(x, y,m)dt,

where dMD
i (t) = dN D

i (t) − 
i (t){η′
0Xi + θ0Vi + α0(t)}dt, and P1(x, y,m)

and P2(x, y,m, δ) denote the joint probability measures of (Xi ,Yi ,mi ) and
(Xi ,Yi ,mi , δi ), respectively.

Proof Note that under the joint models specified in Sect. 2.1, ξi , i = 1, . . . , n are
independent and identically distributed. Recalling the Central Limit Theorem and
condition (R4), it suffices to verify that E(ξi ) = 0. By the definition of dMD

i (t),
under model (2) and the Poisson model (1), it has mean zero given the covariates.
Hence, the first term of ξ1i has mean zero. In addition, for fixed x and y, under model
(1), we have

E(bi (y, x)) = E(κi (y)) + E(φ2i ) + x ′E(φ1i ) = 0.

By the Fubini theorem, we exchange the order of expectation, and can verify that the
second term of ξ1i has mean zero. So, we have verified that E(ξ1i ) = 0. Similarly, we
can verify E(ξ2i ) = 0, which completes the proof.

Lemma 5.3 Under the regularity conditions (R1)-(R3), we have

V̂i − Vi = −mi {�0(Yi )e
γ ′
0Xi }−1n−1

⎧
⎨

⎩

n∑

j=1

ϕ j (t) +
n∑

j=1

φ′
1 j Xi

⎫
⎬

⎭
+ op(n

−1/2) (9)
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and

�̂i −�i = −2mi (mi −1){�0(Yi )e
γ ′
0Xi }−2n−1{

n∑

j=1

ϕ j (t)+
n∑

j=1

φ′
1 j Xi

}+op(n
−1/2)

(10)

Proof By using the Taylor expansion theorem and (7), (8), we have for (9)

V̂i − Vi = mi {�̂0(Yi )e
γ̂ ′Xi }−1 − mi {�0(Yi )e

γ ′
0Xi }−1

= −mi {�0(Yi )e
γ ′
0Xi }−2{eγ ′

0Xi {�̂0(Yi )−�0(Yi )}+�0(Yi )e
γ ′
0Xi (γ̂−γ0)

′Xi
}

+ o(||γ̂ − γ0|| + |�̂0(Yi ) − �0(Yi )|)

= −mi {�0(Yi )e
γ ′
0Xi }−1n−1{

n∑

j=1

ϕ j (t) +
n∑

j=1

φ′
1 j Xi

} + op(n
−1/2),

where op(.) is independent of i since (7) holds uniformly in t (Huang andWang 2004).
Similarly, we can show that (10) holds.

Lemma 5.4 Under the regularity conditions (R1)-(R3),we have

n−1/2U1(η0, θ0) = n−1/2
n∑

i=1

∫ τ

0
Q(t){Xi−x̄(t)}dMD

i (t)

− θ0n
−1/2

n∑

i=1

∫ τ

0
Q(t){Xi − x̄(t)}{V̂i − Vi

}

i (t)dt + op(1),

(11)

and

n−1/2U2(η0, θ0) = n−1/2
n∑

i=1

∫ τ

0
Q(t)

[
{Vi−v̄(t)}{dN D

i (t)−(
η′
0Xi+α0(t)

)

i (t)dt

}

− θ0{�i (t) − Vi v̄(t)}
i (t)dt
]

+ n−1/2
n∑

i=1

∫ τ

0
Q(t)

{
V̂i−Vi

}{
dN D

i (t)−(
η′
0Xi+α0(t)

)

i (t)dt

}

− θ0n
−1/2

n∑

i=1

∫ τ

0
Q(t)

{
�̂i−�i−{V̂i−Vi }v̄(t)

}

i (t)dt+op(1).

(12)

Proof Straightforward calculations give

n−1/2U1(η0, θ0) = n−1/2
n∑

i=1

∫ τ

0
Q(t){Xi − x̄(t)}dMD

i (t)
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− θ0n
−1/2

n∑

i=1

∫ τ

0
Q(t){Xi − x̄(t)}{V̂i − Vi

}

i (t)dt

−
∫ τ

0
Q(t){X̄(t) − x̄(t)}n−1/2

n∑

i=1

{
dMD

i (t) − θ0{V̂i − Vi }
i (t)dt
}
.

To obtain (11), it suffices to show that the third term is op(1). We first show that

∫ τ

0
Q(t){X̄(t) − x̄(t)}n−1/2

n∑

i=1

dMD
i (t) = op(1) (13)

To see this, let Mn(t) = ∫ t
0 −1/2

∑n
i=1 dM

D
i (t). Then, by the functional Central

Limit Theorem(Vaart andWellner 1996), under conditions(R1)-(R3),Mn(t) converges
weakly to a Gaussian process G with continuous paths. By the Skorohod embedding
theorem, there exists a sequence M̃n(t) which is equal to Mn(t) in law and converges
uniformly to a Gaussian process G̃ with continuous paths. In addition, by the uniform
law of large numbers, Q(t){X̄(t)− x̄(t)} converges uniformly to 0 almost surely. Then,
integrating by parts and applying Lemma 5.1, we have that

∫ τ

0
Q(t){X̄(t) − x̄(t)}d M̃n(t) = op(1),

which implies that

∫ τ

0
Q(t){X̄(t) − x̄(t)}dMn(t) = op(1).

Hence, (13) is obtained. Applying the expansion (9), we have

∫ τ

0
Q(t){X̄(t) − x̄(t)}n−1/2

n∑

i=1

{V̂i − Vi }
i (t)dt

= −
∫ τ

0
Q(t){X̄(t) − x̄(t)}

{
{n−1

n∑

i=1

mi {�0(Yi )e
γ ′
0Xi }−1
i (t)}{n−1/2

n∑

j=1

ϕ j (t)}

+ {n−1
n∑

i=1

mi {�0(Yi )e
γ ′
0Xi }−1Xi
i (t)}′{n−1/2

n∑

j=1

φ1 j }
}
dt + op(1). (14)

By the uniform law of large numbers, we have that X̄(t) − x̄(t) = op(1),
n−1 ∑n

i=1 mi {�0(Yi )eγ ′
0Xi }−1
i (t) = Op(1) and n−1 ∑n

i=1 mi {�0(Yi )eγ ′
0Xi }−1Xi


i (t) = Op(1) uniformly in t . By the functional form of the Central Limit Theorem,
we have n−1/2 ∑n

j=1 ϕ j (t) = Op(1) uniformly in t. n−1/2 ∑n
j=1 φ1 j = Op(1) fol-

lows by the Central Limit Theorem. Note that Q(t) converges uniformly to q(t) by

123



A new joint model of recurrent event data with… 785

assumption (R3), so applying Lemma 5.1 again we obtain

∫ τ

0
Q(t){X̄(t) − x̄(t)}n−1/2

n∑

i=1

{V̂i − Vi }
i (t)dt = op(1),

which completes the proof of (11). In a similar way, we can show that (12) also holds.

Lemma 5.5 Under the regularity conditions (R1)-(R3), n−1/2U (η0, θ0) has asymp-
totically a normal distribution with mean zero and covariance matrix � = E(ξiξ

′
i ),

where U (η, θ) = (U1(η, θ)′,U2(η, θ)′)′ and ξi is defined in Lemma 5.2.

Proof Combing the results of Lemmas 5.3 and 5.4, with justifications similar to those
in the proof of (11), we obtain that

n−1/2U (η0, θ0) = n−1/2
n∑

i=1

ξi + op(1).

Hence, the proof can be completed by applying Lemma 5.2.

Lemma 5.6 Under the regularity conditions (R1)–(R4),

n1/2
(

η̂ − η0
θ̂ − θ0

)

= A−1n−1/2U (η0, θ0) + op(1).

Proof Note that −n−1∂U (η0, θ0)/∂(η′, θ ′) = Â is independent of η0 and θ0 and
converges in probability to A, which is defined in condition (R4). Straightforward
calculation gives

n−1U (̂η, θ̂ ) − n−1U (η0, θ0) = − Â

(
η̂ − η0
θ̂ − θ0

)

.

Therefore, based on the consistency of η̂ and θ̂ proved in Sect. 2.1, we complete
the proof.
Proof of Theorem 2.1

Proof Combining Lemmas 5.5 and 5.6, we have, η̂ and θ̂ converge in probability to
η0 and θ0, respectively. In addition n1/2(̂η−η0) and n1/2(θ̂ − θ0) have asymptotically
a joint normal distribution with mean zero and covariance matrix A−1�A−1.

References

Andersen PK, Gill RD (1982) Cox’s regression model for counting processes: a large sample study. Ann
Stat 10:1100–1120

Andersen PK, Borgan O, Gill RD, Keiding N (1993) Statistical models based on counting process. Springer,
New York

Breslow NE, Day NE (1987) Statistical methods in cancer research. Volume II: the design and analysis of
cohort studies. IARC Sci Publ 82:1–406

123



786 X. Che, J. Angus

ByarDP (1980)TheVeterans administration study of chemoprophylaxis for recurrent stage I bladder tumors:
comparisons of placebo, pyridoxine and topical thiotepa. In: Pavone-Macaluso M, Smith PH, Edsmyr
F (eds) Bladder tumors and other topics in urological oncology. Plenum, New York, pp 363–370

Chang SH, Wang MC (1999) Conditional regression analysis for recurrence time data. J Am Stat Assoc
94:1221–1230

Chiang CL (1968) Introduction to stochastic processes in biostatistics. Wiley, New York
Cook RJ, Lawless JF (1997) Marginal analysis of recurrent events and a terminating event. Stat Med

16:911–924
Cook RJ, Lawless JF (2007) The statistical analysis of recurrent events. Springer, New York
Dunson DB, Herring AH (2005) Bayesian model selection and averaging in additive and proportional

hazards models. Lifetime Data Anal 11:213–232
Gail MH, Santner TJ, Brown CC (1980) An analysis of comparative carcinogenesis experiments based on

multiple times to tumor. Biometrics 36:255–266
Ghosh D (2004) Accelerated rates regression models for recurrent failure time data. Lifetime Data Anal

10:247–261
Ghosh D, Lin DY (2000) Nonparametric analysis of recurrent events and death. Biometrics 56:554–562
Ghosh D, Lin DY (2002)Marginal regressionmodels for recurrent and terminal events. Stat Sin 12:663–688
Henderson R, Diggle P, Dobson A (2000) Joint modelling of longitudinal measurements and event time

data. Biostatistics 1:465–480
Huang CY, Wang MC (2004) Joint modeling and estimation of recurrent event processes and failure time

data. J Am Stat Assoc 99:1153–1165
Lawless JF, Nadeau C (1995) Some simple robust methods for the analysis of recurrent events. Technomet-

rics 37:158–168
Lee EW, Wei LJ, Amato DA (1992) Cox-type regression analysis for large numbers of small groups of

correlated failure time observations. In: Klein JP, Goel PK (eds) Survival analysis: state of the art.
Kluwer Acad. Publ, Dordrecht, pp 237–247

Liang KY, Zeger SL (1986) Longitudinal data analysis using generalized linear models. Biometrika 73:13–
22

Lin DY, Ying Z (1994) Semiparametric analysis of the additive risk model. Biometrika 81:61–71
Lin DY, Ying Z (2001) Semiparametric and nonparametric regression analysis of longitudinal data. J Am

Stat Assoc 96:103–126
LinDY,Wei LJ, Yang I, Ying Z (2000) Semiparametric regression for themean and rate function of recurrent

events. J R Stat Soc B 69:711–730
Lin DY,Wei LJ, Ying Z (2001) Semiparametric transformation models for point processes. J Am Stat Assoc

96:620–628
Lin H, Turnbull BW, McCulloch CE, Slate EH (2002) Latent class models for joint analysis of longitudinal

biomarker and event process data: Application to longitudinal prostate-specific antigen readings and
prostate cancer. J Am Stat Assoc 97:53–65

LiuL,WolfeRA,HuangX (2004) Shared frailtymodels for recurrent events and a terminal event. Biometrics
60:747–756

Liu YY,WuYS, Cai JW, ZhouHB (2010) Additive-multiplicative rates model for recurrent events. Lifetime
Data Anal 16:353–373

Mazroui Y, Mathoulin-Pelissier S, Soubeyran P, Rondeau V (2010) General joint frailty model for recurrent
event datawith a dependent terminal event: application to follicular lymphomadata. StatMed31:1162–
1176

Miloslavsky M, Keles S, Van der Laan MJ, Butler S (2004) Recurrent events analysis in the presence of
time-dependent covariates and dependent censoring. J R Stat Soc B 66:239–257

Murphy SA (1994) Consistency in a proportional hazards model incorporating a random effect. Ann Stat
22:712–731

Murphy SA (1995) Asymptotic theory for the frailty model. Ann Stat 23:182–198
Nielsen GG, Gill RD, Andersen PK, Sorensen TIA (1992) A counting process approach to maximum

likelihood estimation in frailty models. Scand J Stat 19:25–43
Pan Q, Schaubel DE (2009) Flexible estimation of differences in treatment-specific recurrent event means

in the presence of a terminating event. Biometrics 65:753–761
Pepe MS, Cai J (1993) Some graphical displays and marginal regression analysis for recurrent failure times

and time-dependent covariates. J Am Stat Assoc 88:811–820

123



A new joint model of recurrent event data with… 787

Prentice RL, Williams BJ, Peterson AV (1981) On the regression analysis of multivariate failure time data.
Biometrika 68:373–379

Ross SM (1989) Introduction to probability models. Academic Press, New York
Schaubel DE, ZengD, Cai J (2006) A semiparametric additive rates model for recurrent event data. Lifetime

Data Anal 12:389–406
Sun L, Su B (2008) A class of accelerated means regression models for recurrent event data. Lifetime Data

Anal 14:357–375
Sun L, TongX, ZhouX (2011) A class of Box–Cox transformationmodels for recurrent event data. Lifetime

Data Anal 17:280–301
Sun L, Zhao X, Zhou J (2012) A class of mixed models for recurrent event data. Can J Stat (in press)
van der Vaart AW, Wellner JA (1996) Weak convergence and empirical processes. Springer, New York
Wang MC, Qin J, Chiang CT (2001) Analyzing recurrent event data with informative censoring. J Am Stat

Assoc 96:1057–1065
Wei LJ, Lin DY, Weissfeld L (1989) Regression analysis of multivariate incomplete failure time data by

modeling marginal distributions. J Am Stat Assoc 84:1065–1073
Ye Y, Kalbfleisch JD, Schaubel DE (2007) Semiparametric analysis of correlated recurrent and terminal

events. Biometrics 63:78–87
Zeng D, Cai J (2010) Semiparametric additive rate model for recurrent events with informative terminal

event. Biometrika 97:699–712
Zeng D, Lin DY (2006) Efficient estimation of semiparametric transformation models for counting

processes. Biometrika 93:627–640
Zeng D, Lin DY (2007) Semiparametric transformation models with random effects for recurrent events. J

Am Stat Assoc 102:167–180
Zeng D, Lin DY (2009) Semiparametric transformation models with random effects for joint analysis of

recurrent and terminal events. Biometrics 65:746–752

123


	A new joint model of recurrent event data with the additive hazards model for the terminal event time
	Abstract
	1 Introduction
	2 Model specification
	2.1 Estimation of regression parameters
	2.2 Simulation studies

	3 An application
	4 Conclusions
	Acknowledgments
	5 Appendix: Proofs of asymptotic results
	References




