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Abstract In reliability and survival analysis, to model lifetime data, size-biased dis-
tributions are useful. In this paper, a mixture model of size-biased distributions is
introduced and studied. Several reliability properties of this model are investigated. In
addition, some implications of well-known stochastic orders and aging classes con-
cerning the model are established. To underline the usefulness of the model, some
examples of interest in reliability and statistics are given.

Keywords Length-biased distribution · Likelihood ratio order · Hazard rate order ·
TP2 · ILR (DLR) · IFR (DFR)

1 Introduction

The problem of modeling lifetime of systems and components in reliability theory and
survival analysis among other sciences is very important. In some practical situations
observations are not recorded according to the original distribution of the data. This
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may be due to the fact that the units of a population have unequal chances in order to be
recorded by investigator. In a special case, the probability that the data from the main
population are recorded, depends on size (length) of the data. The random sample that
is drawn in this way is called a size-biased sample. Let X be a non-negative random
variable (rv) with distribution function (df) F, survival function (sf) F̄ = 1 − F and
probability density function (pdf) f, whenever it exists. The non-negative random
variable Xθ with the pdf

g(x | θ) = xθ f (x)

E
[
X θ

] , x > 0; (1)

is said to have size-biased distribution of order θ ∈ [0,∞). The parameter θ in
the model is named the moment parameter. When θ = 1, model is referred to as
length-biased distribution. The study of reliability relations and some applications in
forestry regarding size-biased distributions have been carried out by several authors (cf.
Blumenthal 1967; Soheaffer 1972; Patil and Ord 1976; Patil and Rao 1978; Mahfoud
and Patil 1982; Gupta and Keating 1986; Gupta and Kirmani 1990; Nanda and Jain
1999; Bartoszewicz and Skolimowska 2006; Gove 2003a, b). It is known that in many
practical circumstances that the parameter θ maynot be constant due tovarious reasons,
and the occurrence of heterogeneity is sometimes unpredictable and unexplained. The
heterogeneity sometimes may not be possible to be neglected. In addition, it often
happens that data from several populations is mixed and information about which
subpopulation gave rise to individual data points is unavailable. Mixture models are
used to model such data sets in nature. For example, measurements of life lengths of
a device may be gathered without regard to the manufacturer, or data may be gathered
on humans without regard, say, to blood type. If the ignored variable (manufacturer or
blood type) has a bearing on the characteristic beingmeasured, then the data are said to
come fromamixture.Actually, it is hard to find data that are not some kind of amixture,
because there is almost always some relevant covariate that is not observed. The
study of reliability properties in various mixture models has recently received much
attention in the literature.Oncewemodel reliability data bymixturemodels, themixing
operation can change the pattern of aging for the lifetime unit under consideration in
some favorite way (see Block and Joe 1997; Finkelstein and Esaulova 2006; Gupta
and Kirmani 2006; Marshall and Olkin 2007; Shaked and Shanthikumar 2007; Gupta
and Gupta 2009; Li and Zhao 2011).

The purpose of this paper is to propose and analyze a mixture model of size-biased
distributions where the moment parameter in the model is taken as a random variable.
In view of the model, the dependence structure between the mixing and the overall
random variables is determined and some closure properties with respect to somewell-
known stochastic orders are established. In addition, reliability aspects of the model
using some aging properties are discussed. To underline the usefulness of the model
and clarify some useful facts, some examples of interest in reliability and statistics are
given. The rest of the paper is organized as follows. In Sect. 2, for ease of reference, we
present some definitions and basic properties which will be used in the sequel. In Sect.
3, the newmodel and its representation are described. In that section, we provide some
illustrative examples to describe the usefulness of the proposed model. In Sect. 4, we
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discuss the dependence structure of the model and establish some closure properties
of the model with respect to some stochastic orders. In that section, we present a few
preservation properties of some aging classes under the structure of the model. In Sect.
5 we obtain preservation properties of some stochastic orders in the model. Finally in
Sect. 6, we give a summary and brief discussion and then conclude the paper.

Throughout the paper, the terms increasing and decreasing stand for non-decreasing
and non-increasing, respectively. All the expectations and integrals are implicitly
assumed to exist wherever they appear.

2 Preliminaries

In reliability and survival studies, the hazard rate (HR) and the reversed hazard rate
(RHR) functions are very important measures. For the random variable X, the HR
function is given by rX (x) = f (x)/F̄(x), x ≥ 0 and the RHR function is given
by r̃X (x) = f (x)/F(x), x > 0. In the following, we present definitions of some
stochastic orders and aging notions used throughout the paper. For stochastic orders
we refer to Shaked and Shanthikumar (2007) and for the aging notions we refer to
Barlow and Proschan (1975) and Lai and Xie (2006).

Definition 2.1 Let X and Y be two non-negative random variables with df’s F and
G, sf’s F̄ and Ḡ, pdf’s f and g, HR functions rX and rY , and RHR functions r̃X and
r̃Z , respectively. We say that X is smaller than Z in the:

(i) Stochastic order (denoted as X ≤st Y ), if F̄(x) ≤ Ḡ(x), for all x ≥ 0.
(ii) Likelihood ratio order (denoted as X ≤lr Y ), if g(x)/ f (x), is increasing in

x > 0.
(iii) Hazard rate order (denoted as X ≤hr Y ), if rX (x) ≥ rY (x), for all x ≥ 0.
(iv) Reversed hazard rate order (denoted as X ≤rh Y ), if r̃X (x) ≤ r̃Y (x), for all

x > 0.
(v) Up likelihood ratio (up hazard rate) [up reversed hazard rate] order (denoted as

X ≤lr↑ (hr↑) [rh↑] Y ) if, for all x ≥ 0, X − x ≤lr (hr) [rh] Y.

Definition 2.2 The non-negative random variable X is said to have:

(i) Increasing (decreasing) likelihood ratio property [ILR (DLR)], if f is a log-
concave (log-convex) function on (0,∞).

(ii) Increasing (decreasing) failure rate property [IFR (DFR)], if rX is an increasing
(decreasing) function on (0,∞).

(iii) Decreasing reversed failure rate property (DRFR) property if F is log-concave
on (0,∞).

Notions of total positivity, general composition theorem according to Karlin (1968)
and positive likelihood ratio dependence according toNelsen (2006) are defined below.

Definition 2.3 A non-negative function β(x, y) is said to be totally positive (reverse
regular) of order 2, denoted as TP2 (RR2), in (x, y) ∈ χ × γ , if

∣∣∣∣
β(x1, y1) β(x1, y2)
β(x2, y1) β(x2, y2)

∣∣∣∣ ≥ (≤) 0,
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for all x1 ≤ x2 ∈ χ , and y1 ≤ y2 ∈ γ, in which χ and γ are two real subsets of the
real line R.

Definition 2.4 Let h(y, θ) be the joint density of (Y,�). The random variables Y and
� are said to be positive likelihood ratio dependent (PLRD) if the joint density h(y, θ)

is TP2 in (y, θ).
Finally, the next identities indicate the structure of some reliability measures of the

size-biased distribution with respect to those of the baseline distribution. Denote by
G(x | θ), Ḡ(x | θ), r(x | θ) and α(x | θ) the df, the sf, the HR and the RHR of the
random variable that has pdf (1). Then, one can observe that, for all x > 0

G(x | θ) = E
[
X θ | X ≤ x

]

E
[
X θ

] F(x), (2)

Ḡ(x | θ) = E
[
X θ | X > x

]

E
[
X θ

] F̄(x), (3)

r(x | θ) = xθ

E
[
X θ | X > x

]r(x), (4)

and

α(x | θ) = xθ

E
[
X θ | X ≤ x

]α(x). (5)

3 Structure of the model

We first introduce our mixture model of size-biased distributions using some well
known reliability measures. Then, we provide some examples to describe the useful-
ness of the proposed model in practical situations. Let � be a non-negative rv with df
H (and pdf h if it exists). Then, the model of (1) could be extended to

g∗(x) =
∫ ∞

0

xθ

E
[
X θ

] f (x) dH(θ)

= f (x) E

[
x�

μ(�)

]
, x > 0; (6)

where μ(θ) = ∫ ∞
0 xθ f (x)dx (which is the θ th moment of X ) and the expectation is

being taken with respect to �. The density in (6) is a weighted average of the density
in (1) upon considering a prior distribution H for the parameter θ. In the sequel, the
rv that has pdf g∗ (and df G∗) is denoted by Y ∗. In the context of the model of (6),
the rvs X, � and Y ∗ are called baseline, mixing and overall variables, respectively.
It is noticeable here that [Y ∗ | � = θ ] has the same pdf as in (1). Furthermore, when
� is degenerate such that P(� = 0) = 1 and that P(� = 1) = 1, once at a time,
then the original and the length-biased distributions are, respectively, resulted. The
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A mixture model of size-biased distributions 517

model in (6), therefore, gives more flexibility in modeling data based on size-biased
distributions. By using the well-known Fubini theorem, the df of Y ∗ in terms of the
df of X is obtained as

G∗(x) =
∫ x

0
f (t)E

[
t�

μ(�)

]
dt

=
∫ x

0

∫ ∞

0

tθ f (t)

μ(θ)
dH(θ)dt

=
∫ ∞

0

∫ x

0

tθ f (t)

μ(θ)
dtdH(θ)

= F(x) E

[
μ(x,�)

μ(�)

]
, for all x > 0, (7)

where μ(x, θ) = E
[
X θ | X ≤ x

]
. Likewise, we can get

Ḡ∗(x) = F̄(x) E

[
ν(x,�)

μ(�)

]
, for all x > 0, (8)

where ν(x, θ) = E
[
X θ | X > x

]
. Denote by q and β the HR and the RHR functions

of Y ∗, respectively. Then, in view of (4), we can get

q(x) =
∫ ∞

0

g(x | θ)

Ḡ∗(x)
dH(θ)

=
∫ ∞

0
r(x | θ)

Ḡ(x | θ)

Ḡ∗(x)
dH(θ)

= r(x)
∫ ∞

0

xθ

ν(x, θ)
d	(θ | Y ∗ > x)

= r(x) E

[
x�

ν(x,�)
| Y ∗ > x

]
, for all x > 0, (9)

where 	(θ | Y ∗ > x) is the df of the rv (� | Y ∗ > x) which is given by

	(θ | Y ∗ > x) =
∫ θ

0 Ḡ(x | w) dH(w)

Ḡ∗(x)
.

By the identity in (5), we can similarly derive

β(x) = α(x) E

[
x�

μ(x,�)
| Y ∗ ≤ x

]
, (10)

for all x > 0. In the following examples we describe some useful situations where the
mixture model of (6) is applicable.
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Example 3.1 (Weighted distributions). The random variable Xw is the weighted ver-
sion of X, if it admits the pdf

fw(x) = w(x)

E [w(X)]
f (x) (11)

where w is a non-negative function such that 0 < E [w(X)] < ∞. Thus, the model

of (6) corresponds to a weighted distribution with w(x) = E
[

x�

μ(�)

]
, for which

E [w(X)] = 1.

Example 3.2 (Characterization of the mixing variable). Suppose that w is a weight
function so thatw(x) = ∑∞

k=0 ck x
k, for all x > 0,where ck’s are some non-negative

constants. Assume that μ(k) is the kth moment of X . Then, Xw can be characterized
using the distribution of Y , if an appropriate mixing variable is chosen. Let � take on
non-negative integer values. We have

w(x)

E [w(X)]
=

∑∞
k=0 ckx

k

∑∞
k=0 ck μ(k)

, x > 0.

In addition, it holds that

E

[
x�

μ(�)

]
=

∞∑

k=0

P(� = k)

μ(k)
xk, for all x > 0.

Thus the model in (6) coincides with the model in (11), if and only if

∞∑

k=0

ck∑∞
k=0 ck μ(k)

xk =
∞∑

k=0

P(� = k)

μ(k)
xk, for all x > 0.

From mathematical analysis, the above equality guarantees

ck∑∞
k=0 ck μ(k)

= P(� = k)

μ(k)
, for all k = 0, 1, ... .

That is

P(� = k) = ck μ(k)
∑∞

k=0 ck μ(k)
, k = 0, 1, ... .

For example, the weight functions w(x) = exp(ax) with a > 0, and w(x) = ax with
a > 1, can be applied here because

exp(ax) =
∞∑

k=0

ak

k! xk, for all x > 0,
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and

ax =
∞∑

k=0

(ln a)k

k! xk, for all x > 0.

Also, the weight function w(x) = 1 + x leads to a mixing variable � with P(� =
0) + P(� = 1) = 1, such that

P(� = 0) = 1

1 + E(X)
,

and

P(� = 1) = E(X)

1 + E(X)
,

i.e. � has binary distribution with success probability E(X)
1+E(X)

.

4 Dependence, closure properties and aging properties

In this section, it is first proven that Y ∗ and � in the model of (6) admit the strongest
positive dependence structure. Then, some stochastic orders are established between
the baseline variable X and the overall variable Y ∗ in the mixture model given in (6).

Theorem 4.1 In view of (6), Y ∗ and � are PLRD.

Proof Denote by h(·) the pdf of �. Note that Y ∗ and � have joint density

h(y, θ) = g(y | θ) h(θ)

= yθ

μ(θ)
f (y) h(θ), y > 0, θ ≥ 0.

For all y1 ≤ y2 ∈ (0,∞), and θ1 ≤ θ2 ∈ [0,∞), we get

h(y2, θ1)

h(y1, θ1)
= f (y2)

f (y1)

[
y2
y1

]θ1

≤ f (y2)

f (y1)

[
y2
y1

]θ2

= h(y2, θ2)

h(y1, θ2)
.

Hence h(y, θ) is TP2 and so (Y ∗, θ) is PLRD. �	
The following result reveals some closure properties of the weighted average size-

biased model given in (6) with respect to the above mentioned stochastic orders. For
similar kind of such results, we refer to Misra et al. (2008).
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Theorem 4.2 Let X and Y ∗ have the pdfs f and g∗, satisfying (6). Then:

(i) X ≤lr Y ∗.
(ii) If X has ILR (IFR) [DR FR] property, then X ≤lr↑ (hr↑) [rh↑] Y ∗.

Proof (i) Note that

g∗(x)
f (x)

= E

[
x�

μ(�)

]

is increasing in x > 0.
(ii) We know that X is ILR (IFR) [DRFR] if and only if

f (x)

f (t + x)

(
F̄(x)

F̄(t + x)

) [
F(x)

F(t + x)

]

is increasing in x, for all t ≥ 0. Also, X ≤lr↑ (hr↑) [rh↑] Y ∗ if and only if

g∗(x)
f (t + x)

(
Ḡ∗(x)

F̄(t + x)

) [
G∗(x)

F(t + x)

]

is increasing in x, for all t ≥ 0. Set K1(x, θ) = xθ /μ(θ), K2(x, θ) =
E

[
X θ | X > x

]
/μ(θ), and K3(x, θ) = E

[
X θ | X ≤ x

]
/μ(θ). It is not hard

to see that K1, K2 and K3 are increasing in x, for all θ ≥ 0. Then, in view of (6),
(7) and (8), we have

g∗(x)
f (t + x)

= f (x)

f (t + x)
E[K1(x, θ)],

Ḡ∗(x)
F̄(t + x)

= F̄(x)

F̄(t + x)
E[K2(x, θ)],

and

G∗(x)
F(t + x)

= F(x)

F(t + x)
E[K3(x, θ)],

which by assumption are increasing in x, for all t ≥ 0.

Theorem 4.3 Let a be a given non-negative value. Then:

(i) Y ∗ ≥lr [Y ∗ | � = a] holds if P(� ≥ a) = 1.
(ii) Y ∗ ≤lr [Y ∗ | � = a] holds if P(� ≤ a) = 1.

Proof The proof is straightforward and hence we omit it. �	
In rest of this section, we derive some implications involving some aging properties

in the mixture model of size-biased distributions given earlier. The following theorem
deals with mixture of size-biased distributions whose moment parameters are below
a given value.
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Theorem 4.4 Let P(� ≤ a) = 1, for some a ≥ 0. Then

(i) [Y ∗ | � = a] has ILR property if Y ∗ has ILR property.
(ii) Y ∗ has DLR property if [Y ∗ | � = a] has DLR property.

Proof We give the proof for the assertion (i). The other is similar. The identity given
in (6), gives, for all x > 0

ln g∗(x) = ln f (x) + ln E

[
x�

μ(�)

]
,

which by taking derivative yields

dg∗(x)
dx

g∗(x)
= f

′
(x)

f (x)
+ C(x)

x
, (12)

where

C(x) =
E

[
� x�

μ(�)

]

E
[

x�

μ(�)

] .

Set

φ(i, θ) =
{
1, for i = 1
θ, for i = 2

and set ψ(θ, x) = xθ /μ(θ). Denote, for i = 1, 2 and x > 0

C(i, x) = E [φ(i,�) ψ(�, x)]

=
∫ ∞

0
φ(i, θ) ψ(θ, x) dH(θ).

We know that φ(i, θ) is TP2 in (i, θ) ∈ {1, 2} × [0,∞) and that ψ(θ, x) is TP2
in (θ, x) ∈ [0,∞) × (0,∞). By general composition theorem of Karlin (1968), it
follows that C(i, x) is TP2 in (i, x) ∈ {1, 2} × (0,∞), from which we can say C(x)
is increasing in x . Now observe that the equality in (12) can be rewritten as

dg∗(x)
dx

g∗(x)
+ 1

x
[a − C(x)] = g

′
(x | a)

g(x | a)
, (13)

where g(· | a) is the pdf of [Y ∗ | θ = a]. Note that a − C(x) ≥ 0, because P(� ≤
a) = 1. By assumption dg∗(x)

dx /g∗(x) is decreasing in x . Thus the identity in (13)
directly provides the proof. �	
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The following result states that the DFR property passes from the baseline distrib-
ution into the overall distribution, if appropriate assumptions are imposed.

Theorem 4.5 Let μ(θ) < ∞, for all θ in support of � and let xr(x) be decreasing.
Then

X is DFR ⇒ Y ∗ is DFR.

Proof Recall that the HR of Y ∗ and the HR of X are connected via

q(x) = r(x) E

[
x�

ν(x,�)
| Y ∗ > x

]
, for all x > 0.

By assumption r is decreasing. Thus it suffices to prove that the other term is also
decreasing. We have

E

[
x�

ν(x,�)
| Y ∗ > x

]
=

∫ ∞

0

xw

ν(x, w)
d	(w | Y ∗ > x)

= E [φ(x,W )] ,

where W is a non-negative rv with pdf

γ (w | x) = Ḡ(w | x) h(w)

Ḡ(x)
, x > 0, w ≥ 0,

and φ(x, w) = xw/ν(x, w). We know that

φ(x, w) = 1

E
[( X

x

)w | X > x
] ,

which is obviously decreasing in w, for all x > 0. Since μ(w) < ∞, for all w in
support of �, then xw F̄(x) approaches to zero if x tends to infinity. Integration by
parts yields

φ(x, w) = xw F̄(x)
∫ ∞
x uw f (u) du

= 1 − w

∫ ∞
x uw−1 F̄(u) du
∫ ∞
x uw f (u) du

. (14)

Let w ≥ 0 be fixed. Define

ρ(i, x) =
∫ ∞

0
ϕ(i, u) ψ(u, x) du,
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where

ϕ(i, θ) =
{
uw f (u), for i = 1

uw−1 F̄(u), for i = 2

and ψ(u, x) = 1 if u > x and ψ(u, x) = 0 if u ≤ x . By the assumption that xr(x)
is decreasing, ϕ(i, u) is TP2 in (i, u) ∈ {1, 2} × (0,∞). Also, it is easily seen that
ψ(u, x) is TP2 in (u, x) ∈ (0,∞) × (0,∞). Thus, the general composition theorem
of Karlin (1968) implies that ρ(i, x) is TP2 in (i, x) ∈ {1, 2} × (0,∞). That is

∫ ∞
x uw−1 F̄(u) du
∫ ∞
x uw f (u) du

is increasing in x > 0. Therefore, from (14), for all w ≥ 0, φ(x, w) is decreasing
in x . By Theorem 4.1 it is concluded that [Y ∗ | � = w1] ≤lr [Y | � = w2], for
all w1 ≤ w2 ∈ [0,∞), which further implies that W is stochastically increasing in
x . Applying Lemma 2.2(ii) in Misra and Van Der Meulen (2003), E [φ(x,W )] is
decreasing in x . The proof is complete. �	

5 Stochastic order relations

In this section, first by assuming that the baseline variable in the mixture model of
size-biased distributions is fixed in law, we investigate that some stochastic orders
on two mixing variables, are translated to the overall variables. Then, by assuming
that the mixing variable is fixed in law, we show that under some conditions, some
stochastic orders are translated from overall variables into the baseline variables. Let
�i be a non-negative rv with pdf hi , df Hi and sf H̄i , for i = 1, 2. Then denote by Y ∗

i
a random variable that has density

g∗
i (x) = f (x) E

[
x�i

μ(�i )

]
(15)

and df G∗
i , for i = 1, 2. We assume that �1 and �2 are independent. The following

result deals with the likelihood ratio order.

Theorem 5.1 Let the identity given in (15) hold. Then

�1 ≤lr �2 ⇒ Y ∗
1 ≤lr Y

∗
2 .

Proof Note that Y ∗
1 ≤lr Y ∗

2 , if and only if, g∗
i (x) is TP2 in (i, x) ∈ {1, 2} × (0,∞).

In view of (15), we have

g∗
i (x) =

∫ ∞

0

f (x)xθ

μ(θ)
hi (θ) dθ
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for i = 1, 2. We know by assumption that hi (θ) is TP2 in (i, θ) ∈ {1, 2} × [0,∞),

because�1 ≤lr �2. In parallel, obviously,
f (x)xθ

μ(θ)
is TP2 in (x, θ) ∈ (0,∞)×[0,∞).

Thus, the general composition theorem of Karlin (1968) gives the desired result. �	
Theorem 5.2 In view of (15),

�1 ≤hr �2 ⇒ Y ∗
1 ≤hr Y

∗
2 .

Proof Following the identity in (8), we can write, for all x > 0

Ḡ∗
i (x) = F̄(x) E

[
ν(x,�i )

μ(�i )

]

=
∫ ∞

0
ψ(θ, x) dHi (θ), i = 1, 2;

where

ψ(θ, x) = F̄(x) ν(x, θ)

μ(θ)
, x > 0, θ ≥ 0.

Observe that

ν(x, θ) = E(X θ | X > x)

=
∫ ∞

x
uθ f (u)

F̄(x)
du

=
∫ ∞

0
ϕ(θ, u) φ(u, x) du

in which ϕ(θ, u) = uθ and

φ(u, x) =
{
0, for u ≤ x
f (u)

F̄(x)
, for u > x .

Clearly, ϕ is TP2 in (θ, u) and φ is TP2 in (u, x). Hence using the general
composition theorem of Karlin (1968) ν(x, θ) is TP2 in (x, θ). By knowing that
μ(θ) = ν(0, θ) and that ν is TP2 in (x, θ), ν(x, θ)/μ(θ) is increasing in θ. Thus
ψ(θ, x) is TP2 in (θ, x) and is increasing in θ. In addition, by assumption, H̄i (θ) is
TP2 in (i, θ) ∈ {1, 2}×[0,∞). Therefore, Lemma 4.2 of Li and Xu (2006) is applica-
ble here which gives Ḡ∗

i (x) is TP2 in (i, x) ∈ {1, 2} × (0,∞), and hence the result
follows. �	

Next result states that the reversed hazard rate order of twomixing variables implies
the reversed hazard rate order of their corresponding overall variables provided that
the baseline random variable is fixed in distribution.
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Theorem 5.3 Let the model of (15) be given. Then

�1 ≤rh �2 ⇒ Y ∗
1 ≤rh Y ∗

2 .

Proof Consider the equation given in (7). Note that Y ∗
1 ≤rh Y ∗

2 , if and only if,

G∗
i (x) = F(x) E

[
μ(x,�i )

μ(�i )

]

is TP2 in (i, x) ∈ {1, 2} × (0,∞). Equivalently, we need to show that

E

[
μ(x1,�1)

μ(�1)

μ(x2,�2)

μ(�2)

]
≥ E

[
μ(x1,�2)

μ(�2)

μ(x2,�1)

μ(�1)

]

for all x1 ≤ x2 ∈ (0,∞). Define

φ1(θ1, θ2) = μ(x1, θ2)

μ(θ2)
× μ(x2, θ1)

μ(θ1)
,

and

φ2(θ1, θ2) = μ(x1, θ1)

μ(θ1)
× μ(x2, θ2)

μ(θ2)
.

We have

μ(x, θ) = E(X θ | X ≤ x)

=
∫ x

0
uθ f (u)

F(x)
du

=
∫ ∞

0
ϕ(θ, u) φ(u, x) du

in which ϕ(θ, u) = uθ and

φ(u, x) =
{ f (u)

F(x) , for u ≤ x

0, for u > x .

Obviously,ϕ is TP2 in (θ, u) andφ is TP2 in (u, x).Thus using the general composition
theorem of Karlin (1968) μ(x, θ) is TP2 in (x, θ). Thus, for all θ1 ≤ θ2 and x1 ≤ x2

�φ21(θ1, θ2) = φ2(θ1, θ2) − φ1(θ1, θ2)

= 1

μ(θ1)μ(θ2)
[μ(x1, θ1)μ(x2, θ2) − μ(x1, θ2)μ(x2, θ1)]

≥ 0.
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It holds that μ(θi ) = μ(∞, θi ), for i = 1, 2. Because μ(x, θ) is TP2, thus the ratio
μ(x1, θ1)/μ(θ1) is decreasing in θ1 and furthermoreμ(x2, θ1)/μ(x1, θ1) is increasing
in θ1. Therefore

�φ21(θ1, θ2) = μ(x1, θ1)

μ(θ1)μ(θ2)

[
μ(x2, θ2) − μ(x1, θ2)

μ(x2, θ1)

μ(x1, θ1)

]

is non-negative and decreasing in θ1, for all θ1 ≤ θ2 ∈ [0,∞) and x1 ≤ x2 ∈ (0,∞).

Now Theorem 1.B.48 of Shaked and Shanthikumar (2007) completes the proof. �	
In the remaining part of this section, we consider another observation regarding the

mixture model of size-biased distributions. Let Xi be a non-negative rv with pdf fi
and df Fi , for i = 1, 2. Then denote by Yi the random variable that admits the density

gi (x) = fi (x) E

[
x�

μi (�)

]
, (16)

where μi (θ) = E(X θ
i ), for i = 1, 2. That is we have two mixture model in (6) with

two baseline variables X1 and X2, with two overall variables Y1 and Y2, and with a
common mixing variable �.

Theorem 5.4 Consider the model of (16). Let (� | Y1 > x) ≤st (� | Y2 > x), for all
x > 0. Then

X1 ≤hr X2 ⇒ Y1 ≤hr Y2.

Proof Denote by ri and qi , the HR functions of Xi and Yi , respectively, for i = 1, 2.
As given in (9), we can write, for all x > 0

qi (x) = ri (x) E

[
x�

νi (x,�)
| Yi > x

]
,

where νi (x, θ) = E(X θ
i | Xi > x), for i = 1, 2. We know that X1 ≤hr X2, if and

only if, (X1 | X1 > x) ≤st (X2 | X2 > x), for all x > 0. Thus it follows that

ν1(x, θ) = E(X θ
1 | X1 > x)

≤ ν2(x, θ)

= E(X θ
2 | X2 > x),

for all x > 0 and θ ≥ 0. Also, by assumption we have r1(x) ≥ r2(x), for all x > 0.
Therefore, for all x > 0

q1(x) − q2(x) =
∫ ∞

0

xθr1(x)

ν1(x, θ)
d	(θ | Y1 > x) −

∫ ∞

0

xθr2(x)

ν2(x, θ)
d	(θ | Y2 > x)

≥ r2(x)
∫ ∞

0

xθ

ν2(x, θ)
d [	(θ | Y1 > x) − 	(θ | Y2 > x)] . (17)
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Since xθ /ν2(x, θ) is decreasing in θ, by assumption we have

∫ w

0
d [	(θ | Y1 > x) − 	(θ | Y2 > x)] ≥ 0,

for all w > 0. Applying Lemma 7.1(b) of Barlow and Proschan (1975) to (17) we
conclude the proof. �	
Theorem 5.5 In view of the model given in (16), let (� | Y1 ≤ x) ≤st (� | Y2 ≤ x),
for all x > 0, and let (Y1 | � = θ1) ≤rh (Y2 | � = θ2), for all θ1 ≤ θ2 ∈ [0,∞).

Then Y1 ≤rh Y2.

Proof Denote by αi and βi , the RHR functions of Xi and Yi , respectively, for i = 1, 2.
As the identity in (10) we can write, for all x > 0

βi (x) = αi (x) E

[
x�

μi (x,�)
| Yi ≤ x

]
,

where μi (x, θ) = E
[
X θ
i | Xi ≤ x

]
, for i = 1, 2. The condition that (Y1 | � =

θ1) ≤rh (Y2 | � = θ2), for all θ1 ≤ θ2 ∈ [0,∞), implies that

xθα2(x)

μ2(x, θ)
= xθ f2(x)∫ x

0 uθ f2(u) du

≥ xθ f1(x)∫ x
0 uθ f1(u) du

= xθα1(x)

μ1(x, θ)
,

for all x > 0, and θ ≥ 0. Thus

β2(x) − β1(x) =
∫ ∞

0

xθα2(x)

μ2(x, θ)
d	(θ | Y2 ≤ x) −

∫ ∞

0

xθα1(x)

μ1(x, θ)
d	(θ | Y1 ≤ x)

≥ α1(x)
∫ ∞

0

xθ

μ1(x, θ)
d [	(θ | Y2 ≤ x) − 	(θ | Y1 ≤ x)] . (18)

It can be checked as in the proof of Theorem 4.5 that xθ /μ1(x, θ) is increasing in θ.

In parallel, by assumption,

∫ ∞

w

d [	(θ | Y2 ≤ x) − 	(θ | Y1 ≤ x)] ≥ 0,

for all w ≥ 0. Again, Lemma 7.1(a) of Barlow and Proschan (1975) can be applied to
(18) and it completes the proof. �	
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6 Summary and concluding remarks

Based on the concept of the mixture distribution, a new mixture model of size-biased
distributions is introduced where the moment parameter in the model is taken as a
random variable. The model is applicable in situations in which we are uncertain
about the exact value of the parameter θ which is the dimension of the size-biased
model. We established the strongest dependence structure between the mixing and the
overall random variables and we obtain some closure properties of the model with
respect to some well-known stochastic orders. In addition, we provide various closure
properties of the new model with respect to some stochastic orders like up likelihood
ratio, up hazard rate and up reversed hazard rate orders and in terms of some aging
classes such as DLR, DFR, and DRFR.We investigated a number of reliability aspects
of the model using some aging properties. Further properties and applications of the
new model can be considered in the future of this research.
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