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Abstract A broad class of local divergences between two probability measures or
between the respective probability distributions is proposed in this paper. The intro-
duced local divergences are based on the classic Csiszárφ-divergence and they provide
with a pseudo-distance between two distributions on a specific area of their common
domain. The range of values of the introduced class of local divergences is derived
and explicit expressions of the proposed local divergences are also derived when the
underlined distributions are members of the exponential family of distributions or they
are described by multivariate normal models. An application is presented to illustrate
the behavior of local divergences.

Keywords φ-divergence · Kullback–Leibler divergence · Cressie and Read power
divergence · Local divergence · Exponential family

Mathematics Subject Classification 62B10 · 62F99

1 Introduction

The concept of divergence is of fundamental importance, not only in mathematics but
in almost all branches of science and engineering. This concept has also a prominent
role in probability theory and mathematical statistics. The Kolmogorov–Smirnov test
is based, for instance, on a divergence measure between the empirical distribution
function and the respective function which is specified by the null hypothesis. The
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classical chi-square goodness-of-fit test is based on a divergence measure between the
theoretic probabilities and the expected ones. Many other statistical procedures base
their origins on a divergence measure between probability distributions.

The most important attempt to define a broad class of divergence measures between
two probability measures or between the respective Radon-Nikodym derivatives was
made by Csiszár (1963, 1967) and independently by Ali and Silvey (1966). Following
these authors, if P and Q are two probability measures on the measurable space
(X ,A) and μ is a σ -finite measure on the same measurable space, such that P � μ

and Q � μ, then for p and q the respective Radon-Nikodym derivatives, p = dP
dμ

and q = dQ
dμ

, a broad class of divergence measures between P and Q, or between p
and q, is defined by the following integral,

Dφ(P, Q) = Dφ(p, q) =
∫

X
φ

(
dP

dQ

)
dQ =

∫

X
q(x)φ

(
p(x)

q(x)

)
dμ(x), (1)

where φ is a real valued convex function, satisfying appropriate conditions (cf. Csiszár
1967). These conditions will be discussed and extended later on.

An important property of Dφ(P, Q) is that ifφ is strictly convex at 1withφ(1) = 0,
then (cf. Pardo 2006, p. 9),

Dφ(p, q) = 0 if and only if p(x) = q(x), a.e. x ∈ X . (2)

This is the reason why Dφ(P, Q) has been established in the literature as a measure of
divergence between the probability measures P and Q, or between the respective den-
sities p and q, and it is referred to as Csiszár φ-divergence, or simply, as φ-divergence.
As defined, Dφ(P, Q) is not symmetric, but can be expressed as a symmetric mea-
sure by taking Dφ̃(P, Q) = Dφ̃(Q, P) = Dφ(P, Q) + Dφ(Q, P), for the convex

functions φ̃(u) = φ(u) + uφ( 1u ), u > 0 (cf. Liese and Vajda 1987, p. 14). Moreover,
Dφ(P, Q) is not a distance in the usual sense of a metric since it does not satisfy in
general the triangular inequality. We can think of divergence measures as distances, in
the same way we treat a loss function in a decision theoretic problem; It simply tells
us if two probability measures are the same or not and the closer the value of Dφ to 0,
the closer P and Q are.

Following Csiszár (1967, p. 301), φ-divergence extends, in essence, the “informa-
tion for discrimination” or I -divergence, introduced by Kullback and Leibler (1951)
and the “information gain” or I -divergence of order α, introduced by Rényi (1960).
The Kullback–Leibler divergence measure is obtained when the convex function φ is
of the formφ(x) = x log x orφ(x) = x log x−x+1, x > 0, andRényi’s divergence is
obtained, as a function of Csiszár φ-divergence, for φ(x) = sgn(α −1)xα , x > 0 and
α > 0.Other choices of the convex functionφ lead to importantmeasures of divergence
(cf. Pardo 2006, p. 6, where measures of divergence are tabulated for specific choices
of φ). Among these measures of divergence the Cressie and Read or λ-divergence,
introduced independently by Cressie and Read (1984) and Liese and Vajda (1987),
plays a prominent role in the development of goodness of fit andλ-divergence tests. It is

obtained from (1), for φ(x) = φλ(x) = xλ+1−x−λ(x−1)
λ(λ+1) , λ �= 0,−1. Kullback–Leibler
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divergence, D0( f, g) = ∫
X

p(x) log
(
p(x)
q(x)

)
dμ(x), is the limiting case of Cressie and

Read λ -divergence, as λ → 0, that is, lim
λ→0

Dφλ(p, q) = D0(p, q).

After Csiszár (1963, 1967) pioneering work in the subject, a plethora of papers
and books have been published. Some of them are concentrated on the characteriza-
tion and the study of the properties of φ-divergence, while others on generalizations
of φ-divergence. A large portion of this literature is concerned with applications of
φ-divergence to formulate and solve a great variety of problems in probability and
statistics and in almost every branch of science and engineering. The books andmono-
graphs by Kullback (1959), Csiszár and Korner (1981), Liese and Vajda (1987), Vajda
(1989, 1995), Pardo (2006) and Basu et al. (2011) and the review papers by Papaioan-
nou (1986, 2001),Ullah (1996), Soofi (2000), Ebrahimi et al. (2010) and the references
in these works constitute a basis of the existing literature on φ-divergence measures.

The φ-divergence, as it is defined by (1), quantifies the difference between the
arguments P and Q, or p andq, in a domainX . However, there are situations in practice
where the interest is focused on the differences between two probability distributions
in a subset of the domain X . For example, suppose that a researcher is interested
in inferring about the homogeneity or similarity of two populations, regarding a joint
characteristic of theirmembers. Consider a population ofmen andwomen and suppose
that the joint characteristic under study is the level of blood cholesterol of themembers
of both populations. The joint characteristic of the two populations is described by
two probabilistic models, one for each population, and the homogeneity or similarity
of the two populations can be quantified by a divergence measure between the two
probabilistic models (densities) which describe the populations, with values close to
zero indicating equality of the two densities.

However, a divergence measure, resulting from (1) for a specific choice of φ, quan-
tifies the similarity of the populations in the whole domain. Hence, application of (1)
provides a misconception about the differences of the two populations if the interest is
focused on similarity in a subset of the whole domain, say, if the researcher is focused
in the investigation of whether the populations of men and women exhibit the same
behavior for high or low levels of blood cholesterol. A first solution to this problem
can be achieved if we use a measure, based on (1), by integrating over the desired
subset of X , instead of the entire space X . However, this option leads to intractable
measures of divergence and, mainly, based on Lemma 1.1 of Csiszár (1967), they lead
to measures of divergence that violate (2), which is essential in the characterization
of (1) as a divergence between probability measures. A second solution could be to
replace the probability distributions in (1), by the respective truncated distributions,
over the desired subset of X . However, this second approach is based on the diver-
gence of the truncated models, which are not necessarily the proper models to use to
describe the data under consideration. Consequently, a measure of divergence should
be defined that helps overcome these problems and in addition provide an indication
about the similarity of the two probability distributions in a subset of their common
domain.

Based on the above discussion, the main aim of this paper is to introduce a measure
of the local divergence between two probability measures or probability distributions
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and to study its range of values. Ergo, in the next Sect. 2 local φ-divergences are
introduced and some numerical examples that illustrate their behavior are given. The
range of values of the introduced divergences will be investigated in this section.
Section 3 concentrates on explicit forms for a particular case of the local φ -divergence
between members of the exponential family of distributions. The case of multivariate
normal distributions will also be considered. An application is presented in Sect. 4,
in order to illustrate the usefulness of the methodology introduced. Section 5 presents
some concluding remarks.

2 Local φ-divergence and its properties

The aim of this section is to present a measure of local divergence between two
probability measures or the respective probability distributions. This measure has its
origins on Csiszár φ-divergence, which is defined by (1). The local φ-divergence will
be introduced in the next subsection, while the subsequent subsection provides with
the range of values of the introduced local divergences. Special cases of local φ-
divergence have been studied in the past, see for example McElroy and Holan (2009)
for an application of the Kullback–Leibler divergence.

2.1 Local φ-divergence

Following Csiszár (1967, p. 299) and Pardo (2006, p. 5), consider the class �∗ of all
real convex functions φ defined on the interval [0,∞), such that φ(1) = 0, 0φ

( 0
0

) = 0

and 0φ
( u
0

) = u lim
v→+∞

φ(v)
v

, where the last two conditions are necessary in order to

avoid meaningless expressions in what follows. Moreover, it is assumed that φ is
strictly convex at 1. It should be noted, at this point, that all the convex functions φ

that lead to important particular cases of Csiszár φ-divergences, like Kullback and
Leibler (1951) divergence, Kagan (1963) divergence (φ(u) = (u−1)2, u > 0), Vajda
(1973) divergence (φ(u) = |1−u|α, u > 0, α ≥ 1), Cressie and Read (1984) λ-power
divergence, etc. satisfy all the above conditions.

Motivated by Csiszár φ-divergence, given by (1), a measure of local divergence
between two probability measures P and Q, or between the respective Radon-
Nikodym derivatives p and q, can be defined bymeans of (1), if an additional function,
say A(·, ω), would be inserted in Csiszár φ-divergence in order to shift the mass of the
integral (1) in the desired subset of X . The function A(·, ω) plays the role of a kernel
and in complete analogy with Csiszár divergence (1), a measure of local divergence
can be defined as follows,

DA
φ (P, Q) =

∫

X
A(x, ω)φ

(
dP

dQ

)
dQ =

∫

X
A(x, ω)q(x)φ

(
p(x)

q(x)

)
dμ(x).

Notice that if A(x, ω) = 1, then D1
φ(P, Q) = Dφ(P, Q). The introduction of the

kernel A(x, ω) weighs differently the distance between P and Q providing the ability
to focus on specific areas of the domainX thatmay be of particular interest. In practice,
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the kernel A(·, ·) can be thought of as a window that can be calibrated to highlight
specific features of P and Q and how they differ.

In what follows and in order to avoid problems related to the existence of the
above integral, we will restrict on functions A(x, ω) which are related to a probability
measure, say R, in the same measurable space (X ,A) and in particular, the function
A(x, ω) will be considered to be the Radon-Nikodym derivative of R with respect
to μ, with μ a σ -finite measure on (X ,A) . In this setting the definition of the local
φ-divergence is formulated as follows.

Definition 1 Let P , Q and R three probability measures on the measurable space
(X ,A), dominated by a σ -finite measure μ which is defined on the same measurable
space. Let p, q and r denote the respective Radon-Nikodym derivatives p = dP

dμ
,

q = dQ
dμ

and r = dR
dμ

and φ a convex function belonging to the class of convex
functions �∗, defined above. Then, the local φ-divergence between P and Q, driven
by R, is defined by

DR
φ (P, Q) =

∫

X

dR

dμ
φ

(
dP

dQ

)
dQ =

∫

X
r(x)q(x)φ

(
p(x)

q(x)

)
dμ(x). (3)

Remark 1 (i) Thedefinition canbemodified in such away as to be valid on aparametric
family of probability measures. Consider the measurable space (X ,A) and let {Pθ :
θ ∈ 	 ⊆ RM } be a parametric family of probability measures on (X ,A). Let μ

be a σ -finite measure on the same measurable space, such that Pθ � μ, for θ ∈ 	.
Denote by fθ = dPθ

dμ
, theRadon-Nikodymderivative, and consider a convex functionφ

belonging to the class of convex functions �∗. Further consider a probability measure
Pω � μ, ω ∈ 	, on (X ,A), with Radon-Nikodym derivative fω = dPω

dμ
, for ω ∈ 	.

The local φ-divergence between two members of the class {Pθ : θ ∈ 	 ⊆ RM },
Pθ1 and Pθ2 , or between the respective Radon-Nikodym derivatives fθ1 and fθ2 , with
kernel the function fω, is defined as follows,

Dω
φ (θ1, θ2) =

∫

X

dPω

dμ
φ

(
dPθ1

dPθ2

)
dPθ2 =

∫

X
fω(x) fθ2(x)φ

(
fθ1(x)

fθ2(x)

)
dμ(x). (4)

The localφ-divergence, as defined is ameasure of divergence between twomembers of
the above family, and is governed by another measure of the family that determines the
weights and the area over which the divergence is calculated. In the latter definition, fω
depends on a parameter ω that drives the window over which the integral is computed.
Calculation of the measure (4) in a closed form is accomplished easier when the
driving measure Pω or the corresponding density fω is in the same parametric family
of probability measures {Pθ : θ ∈ 	 ⊆ RM }, but that need not be the case in practice.
Consequently, the distribution fω can be chosen in such a way in order to smooth or
exemplify certain features of the area over which the integral is calculated.
(ii) If X is finite (or countable), X ={1, 2, ..., n}, and P , Q, R are represented by
the discrete probability distributions p = (p1, ..., pn), q = (q1, ..., qn) and r =
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(r1, ..., rn), respectively, then the local φ-divergence between p and q, driven by r, is
defined, in view of (3), by

Dr
φ(p,q) =

n∑
i=1

riqiφ

(
pi
qi

)
.

This last measure is known in the literature as the weighted φ -divergence and it has
been studied in the papers by Landaburu and Pardo (2000, 2003), Landaburu et al.
(2005) and the references therein.
(iii) An extension of the local φ-divergence, defined by (3) or (4), can be obtained
by a quite similar argument as that of Pardo (2006, p. 8). More precisely, if h is a
differentiable increasing real function, then the local (h, φ)-divergence is defined by

Dω
h,φ(P, Q) = h

(
Dω

φ (P, Q)
)
. This last measure allows us to define more general

measures of local divergence, for several choices of the functions h and φ. However,
the main reason for the above transformation of Dω

φ (P, Q) is that it allows us to obtain
Rényi’s local divergence by means of the local φ -divergence.
(iv) In general, we cannot obtain Dφ(P, Q) from DR

φ (P, Q) , unless R is, for example,

a uniformmeasure overX , in which case DR
φ (P, Q) is amultiple of Dφ(P, Q). Notice

that DR
φ (P, Q) = Dφ(P, Q) when Eq

[
(1 − r(X))φ

(
p(X)
q(X)

)]
= 0.

The local φ-divergence, defined by (3) or (4) above, is quite similar to the one
defined by (1). The only difference is the distribution function r or fω that enters
into the expression of the classic Csiszár φ-divergence and in particular the additional
parameter ω ∈ 	. The role of the parameter ω is decisive in the above definition, and
exactly this role will be investigated in the following examples. In the first example
normal distributions will be used in order to investigate how definition (4) actually
quantifies the divergence between two normal models in a subset of their domain. In
this example, we clarify the role of the parameter ω in the definition of Dω

φ .

Example 1 Normal Distributions.Let Pθ , θ ∈ 	 = {
(μ, σ 2) : μ, σ 2 ∈ R, σ 2 > 0

}
be the univariate normal distribution. For three cases of the parameter θ , θ1 = (μ1, σ

2
1 ),

θ2 = (μ2, σ
2
2 ) and ω = (μ, σ 2), denote by fθ1 , fθ2 and fω the respective uni-

variate normal densities. Consider Cressie and Read (1984) λ-power divergence and
more specifically its local version, as it is obtained from (4), for φ(u) = φλ(u) =
uλ+1−u−λ(u−1)

λ(λ+1) , λ �= 0,−1. The explicit form of this local divergence Dω
φλ

(θ1, θ2)

between fθ1 and fθ2 , driven by fω, is given by the following expression,

Dω
φλ

(θ1, θ2) = 1

λ(λ + 1)

{
Kλ,ω(θ1, θ2) − (λ + 1)E fθ1

[ fω(X)] + λE fθ2
[ fω(X)]

}
,

(5)
where

Kλ,ω(θ1, θ2) =
∫
X

fω(x) f λ+1
θ1

(x) f −λ
θ2

(x)dμ(x)

= (2π)−1/2σ−λ
1 σλ+1

2(
σ 2
1 σ 2

2 + (λ + 1)σ 2σ 2
2 − λσ 2σ 2

1

)1/2 exp

{
−1

2
(B1 + B2)

}
,
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with

B1 = −λ(λ + 1) (μ1 − μ2)
2

(λ + 1)σ 2
2 − λσ 2

1

, B2 = (μ − μ̃)2
(λ + 1)σ 2

2 − λσ 2
1

σ 2
1 σ 2

2 + (λ + 1)σ 2σ 2
2 − λσ 2σ 2

1

,

and

μ̃ = (λ + 1)μ1σ
2
2 − λμ2σ

2
1

(λ + 1)σ 2
2 − λσ 2

1

.

Moreover,

E fθi
[ fω(X)] =

(
2π(σ 2 + σ 2

i )
)−1/2

exp

{
− (μ − μi )

2

2(σ 2 + σ 2
i )

}
, i = 1, 2.

The aforementioned expressions can be obtained as particular cases of the local
φ-divergence between members of the exponential family of distributions, which will
be obtained in a subsequent section. Using (5), we present Dω

φ2/3
(θ1, θ2), Dω

φ2/3
(θ2, θ1)

and the symmetric version Dω
φ2/3

(θ1, θ2) +Dω
φ2/3

(θ2, θ1), for θ1 = (0, 1), θ2 = (0, 2)

and several values of the parameter ω = (μ, σ 2), in Table 1. We concentrate on
the value λ = 2/3 because this choice for the power λ is considered ideal in many
statistical applications of the classic Cressie and Read power divergence, which is
obtained from (1). Table 1 also includes the classic Cressie and Read power divergence

Dφ2/3(θ1, θ2) = ∫
X fθ2(x)φ2/3

(
fθ1 (x)
fθ2 (x)

)
dμ(x) and values of the integral

Ii, j =
∫

X
IA(x) fθ j (x)φ2/3

(
fθi (x)

fθ j (x)

)
dμ(x), i, j = 1, 2, i �= j,

Table 1 Values of Dφ2/3 (θ1, θ2), Dφ2/3 (θ2, θ1), Dω
φ2/3

(θ1, θ2), D
ω
φ2/3

(θ2, θ1), Dω
φ2/3

(θ1, θ2) +
Dω

φ2/3
(θ2, θ1), I1,2, I2,1 and I1,2 + I2,1 for normal distributions with parameters θ1 = (μ1, σ

2
1 ) = (0, 1),

θ2 = (μ2, σ
2
2 ) = (0, 2) and several values of ω = (μ, σ 2)

ω = (μ, σ 2) Dω
φ2/3

(θ1, θ2), D
ω
φ2/3

(θ2, θ1),

Dω
φ2/3

(θ1, θ2) + Dω
φ2/3

(θ2, θ1)

θ1 = (0, 1), θ2 = (0, 2)

A ⊆ X
A = (α, β)

I1,2, I2,1, I1,2 + I2,1

(0, 0.1) 0.0195, 0.0151, 0.0346 (−0.5, 0.5) 0.0199, 0.0154, 0.0353

(1, 0.1) 0.0040, 0.0035, 0.0075 (0.5, 1.5) 0.0037, 0.0032, 0.0069

(2, 0.1) 0.0115, 0.0217, 0.0332 (1.5, 2.5) 0.0116, 0.0216, 0.0332

(3, 0.1) 0.0120, 0.0509, 0.0629 (2.5, 3.5) 0.0121, 0.0513, 0.0634

(4, 0.1) 0.0033, 0.0448, 0.0481 (3.5, 4.5) 0.0032, 0.0450, 0.0482

(5, 0.1) 0.0004, 0.0247, 0.0251 (4.5, 5.5) 0.0004, 0.0246, 0.0250

(6, 0.1) 0.0000, 0.0104, 0.0104 (5.5, 6.5) 0.0000, 0.0103, 0.0103

Dφ2/3 (θ1, θ2) = 0.082, Dφ2/3 (θ2, θ1) = 0.3373 (−3σ2, 3σ2) 0.0804, 0.2383
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Fig. 1 Plot for normal distributions with parameters θ1 = (0, 1) and θ2 = (0, 2)

which is, in essence, Csiszár classic φ-divergence, restricted to the set A ⊆ X .
Based on this table, the Cressie and Read λ-divergence between two univariate nor-
mal models, N (0, 1) and N (0, 2), is equal to Dφ2/3(θ1, θ2) = 0.082 on the whole
domain X = R. Its value is significantly reduced if the interest is focused on specific
subsets A = (α, β) of X , as it is quantified by the integral Ii, j . This exemplifies
the role of the density fω, in (3), and more specifically the role of the parameter
ω which adjusts the subset of X over which the divergence between the normal
models, N (0, 1) and N (0, 2) is evaluated. Notice that when we focus on the tails
(outside the interval [−5, 5]) of the distributions the more similar the two densi-
ties become, as shown in Fig. 1. The choice of λ is of great importance, and some
measures will not be able to adequately capture the divergence between two distribu-
tions.

The next example examines the behavior of the local φ-divergence when the sym-
metric normal models are replaced by skewed models and more specifically by skew
normal models.

Example 2 Skew Normal Distributions. Consider the standard skew-normal model
with parameter α and density 2φ(x)�(αx), where φ and � are used to denote the
p.d.f. and the c.d.f. of the standard normal distribution. The next table presents values
of the Cressie and Read (1984) λ-power divergence Dω

φ2/3
(α1, α2), Dω

φ2/3
(a2, a1)

and the symmetric version Dω
φ2/3

(a1, a2) +Dω
φ2/3

(a2, a1), between two skew-normal
models with parameters α1 = 2 and α2 = −1. The density fω, of the local λ-power

divergence, defined by (3) and (4) for φ(u) = φλ(u) = uλ+1−u−λ(u−1)
λ(λ+1) , λ �= 0,−1,

is that of the univariate normal distribution with parameters ω = (μ, σ 2). Table 2
leads to quite similar conclusions as these of the previous example. It illustrates that
the divergence between two probability distributions in the whole domain X differs
significantly in some subsets of X where the kernel density fω centers the main mass
of the integral (4). Figure 2 helps us visualize the two skew normal distributions and
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Table 2 Values of Dφ2/3 (α1, α2), Dφ2/3 (α2, α1), Dω
φ2/3

(α1, α2), Dω
φ2/3

(α2, α1), Dω
φ2/3

(α1, α2) +
Dω

φ2/3
(α2, α1), I1,2, I2,1, and I1,2 + I2,1 for standard skew-normal distributions with parameters α1 = 2

and α2 = −1 and several values of ω = (μ, σ 2)

ω = (μ, σ 2) Dω
φ2/3

(α1, α2), D
ω
φ2/3

(α2, α1)

Dω
φ2/3

(α1, α2) + Dω
φ2/3

(α2, α1)

α1 = 2, α2 = −1

A ⊆ X
A = (α, β)

I1,2, I2,1, I1,2 + I2,1

(0, 0.1) 0.0878, 0.1314, 0.2192 (−0.5, 0.5) 0.0819, 0.1015, 0.1834

(1, 0.1) 0.7249, 0.1665, 0.8914 (0.5, 1.5) 0.7284, 0.1693, 0.8977

(2, 0.1) 1.0133, 0.0671, 1.0804 (1.5, 2.5) 1.0191, 0.0666, 1.0857

(3, 0.1) 0.6426, 0.0075, 0.6501 (2.5, 3.5) 0.6425, 0.0071, 0.6496

(4, 0.1) 0.2521, 0.0003, 0.2524 (3.5, 4.5) 0.2502, 0.0003, 0.2505

(5, 0.1) 0.0678, 5.29 × 10−6, 0.0678 (4.5, 5.5) 0.0668, 4.05 × 10−6, 0.0668

(6, 0.1) 0.0129, 3.57 × 10−8, 0.0129 (5.5, 6.5) 0.0126, 2.27 × 10−8, 0.0126

Dφ2/3 (α1, α2) = 3.0839, Dφ2/3 (α2, α1) = 2.32617 × 106 (−4, 4) 3.0786, 503072.48

Fig. 2 Plot for standard skew-normal distributions with parameters α1 = 2 and α2 = −1

how the values of Table 2 are exemplifying the different of the two distributions. Notice
that globally the measure suggests divergence while locally and in particular near the
tails, the distributions are similar.

In this subsection, the definition of the local φ-divergence was given and its use
as a measure of divergence or quasi distance between two probability distributions
has been illustrated by two examples. However, the usefulness of a new proposed
measure is assessed by the properties which it satisfies. The aim of the next sub-
section is to investigate the range of values of the local φ-divergence between two
distributions.
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2.2 Range of values of local φ-divergence

There is a vast list of properties that Csiszár classic φ -divergence, defined by (1), can
satisfy. Some are of a mathematical and statistical nature, while others are motivated
by particular problems of the research areas where the classic φ-divergence is applied.
Discussions on the properties of Csiszár φ-divergence, are provided in the review
papers by Papaioannou (1986, 2001), in the recent paper by Liese and Vajda (2006)
and in the books by Liese and Vajda (1987) and Vajda (1989), to name a few.

Typically, measures are non-negative quantities. Hence, in order to avoid negativity
of the local φ-divergence, defined by (3) or (4), interest is restricted to real convex
functions φ which are defined on the interval [0,∞) and belong to the class of convex
functions

�∗ =
{
φ : φ is strictly convex at 1, φ(1)=0, 0φ

(
0

0

)
= 0, 0φ

(u
0

)
=u lim

v→∞
φ(v)

v

}
.

(6)
In addition, following Stummer and Vajda (2010, p. 171), for a function φ ∈ �∗, the
function

φ(u) = φ(u) − φ′+(1)(u − 1), (7)

belongs to the class �∗ and it moreover satisfies,

φ(1) = φ
′
(1) = 0, (8)

where φ′+ is used to denote the right hand derivative of φ at the point 1. Based on
Stummer and Vajda (2010, p. 171), it holds φ(u) ≥ 0, for u ≥ 0. Taking into account
that φ(u) ≥ 0, for u ≥ 0 and based on (3) and (7),

0 ≤ DR
φ
(P, Q) =

∫

X
r(x)q(x)φ

(
p(x)

q(x)

)
dμ(x)

=
∫

X
r(x)q(x)

(
φ

(
p(x)

q(x)

)
− φ′+(1)

(
p(x)

q(x)
− 1

))
dμ(x)

= DR
φ (P, Q) − φ′+(1)

∫

X
r(x) (p(x) − q(x)) dμ(x). (9)

It is now clear, from (9), that the local divergence which is defined by means of the
convex function φ, given in (7), is always non-negative and hence it can be consid-
ered as a measure of a local divergence between two probability distributions. Thus,
motivated by Stummer and Vajda (2010, p. 171), we refine the definition of the local
φ-divergence as follows.

Definition 2 Let P , Q and R three probability measures on the measurable space
(X ,A), dominated by a σ -finite measure μ which is defined on the same measurable
space. If p, q and r denote the respective Radon-Nikodym derivatives and φ ∈ �∗,
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then the local φ-divergence between p and q, driven by r , is defined by

D̃R
φ (P, Q) = DR

φ
(P, Q) = DR

φ (P, Q)−φ′+(1)
∫

X
r(x) (p(x) − q(x)) dμ(x), (10)

where DR
φ
(P, Q) is defined by (3).

Based on (9), it is clear that the two divergences D̃R
φ (P, Q) and DR

φ (P, Q) coincide
if we include the property φ′(1) = 0 in the class �∗. Thus, if we consider local
divergences, defined by (3) and (4), in the set of convex functions

� = �∗ ∩ {φ : φ′(1) = 0}, (11)

then they are always non-negative (see also Pardo 2006, p. 6). It should be noted at this
point, that all convex functions φ that lead to important particular cases of Csiszár φ-
divergences, likeKullback andLeibler (1951) divergence (φ(u) = u log u−u+1, u >

0), Kagan (1963) divergence (φ(u) = (u − 1)2, u > 0), Cressie and Read (1984) λ

-power divergence
(
φλ(u) = uλ+1−u−λ(u−1)

λ(λ+1) , λ �= 0,−1
)
, and many more, belong to

the set �, defined by (11).
The theorem that follows investigates the range of values of the local φ-divergence,

as defined by (10). The detailed proof is given in “Appendix 1”.

Theorem 1 (a) For φ ∈ �∗, the local φ-divergence, as defined by (10), satisfies,

0 ≤ D̃R
φ (P, Q) ≤ φ(0)ξ0 + φ∗(0)ξ1 + φ′+(1) (ξ0 − ξ1) ,

with ξ0 = ∫
X r(x)q(x)dμ(x), ξ1 = ∫

X r(x)p(x)dμ(x) and φ∗ ∈ �∗, with φ∗ the
adjoint function defined by φ∗(u) = uφ

( 1
u

)
, u > 0.

(b) D̃R
φ (P, Q) = 0 if and only if P = Q.

(c) D̃R
φ (P, Q) = φ(0)ξ0 + φ∗(0)ξ1 + φ′+(1) (ξ0 − ξ1) if P ⊥ Q, where ⊥ denotes

singularity of probability measures. In addition, if φ(0) + φ∗(0) < ∞ and
D̃R

φ (P, Q) = φ(0)ξ0 + φ∗(0)ξ1 + φ′+(1) (ξ0 − ξ1), then P ⊥ Q.

3 Local φ-divergence for exponential family of distributions

Measures of entropy or divergence have been widely applied in several disciplines and
contexts not only in statistics, classic and contemporary, but in almost every branch of
science and engineering. Consequently, it is of great importance to tabulate expressions
for entropies or divergences for specific families of distributions. This tabulation is
very useful for the development of information theoretic concepts and methods. There
is an extensive literature where expressions are derived for Shannon entropy and hence
for mutual information, a particular case of Kullback–Leibler divergence. For more
details we refer to Soofi and Retzer (2002), Zografos and Nadarajah (2005), Zografos
(2008) and the references therein.
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Expressions for particular cases of Csiszár φ-divergence between two members of
the exponential family of distributions have been obtained in Liese andVajda (1987,
p. 43) and they have been utilized in testing statistical hypotheses in Morales et al.
(2000, 2004). The exponential family of distributions is a broad family which includes
the majority of the well known and used, in practice, statistical distributions.

Consider the exponential family of distributions with probability densities of the
form

fC (x, θ) = exp
{
θ t T (x) − C(θ) + h(x)

}
, x ∈ X , (12)

with natural parameters θ ∈ 	 ⊆ Rk and T (x) = (T1(x), ..., Tk(x))t , x ∈ X , where
the superscript t is used to denote the transpose of a vector or a matrix.

For two members of this family, fC (x, θi ), θi ∈ 	 ⊆ Rk , i = 1, 2, the Cressie and
Read local power divergence is defined, taking into account (4), for φ(u) = φλ(u) =
uλ+1−u−λ(u−1)

λ(λ+1) , λ �= 0,−1, by

Dω
φλ

(θ1, θ2) = 1

λ(λ + 1)

[
Kλ,ω(θ1, θ2) − (λ + 1)Eθ1 ( fω(X)) + λEθ2 ( fω(X))

]
,

(13)
for λ �= 0,−1, with

Kλ,ω(θ1, θ2) =
∫

X
fω(x)

f λ+1
C (x, θ1)

f λ
C (x, θ2)

dμ(x), (14)

Eθi ( fω(X)) =
∫

X
fω(x) fC (x, θi )dμ(x) (15)

and ω, θi ∈ 	 ⊆ Rk , i = 1, 2.
The next proposition presents the analytic expression for Dω

φλ
(θ1, θ2) when the

kernel density fω is defined on X and it does not necessarily belong to the class of
densities (12).

Proposition 2 Let the kernel density fω be defined on X and consider two members
fC (x, θ1) and fC (x, θ2) of (12). If (λ + 1)θ1 − λθ2 ∈ 	, for λ �= 0,−1, then the
Cressie and Read local power divergence between fC (x, θ1) and fC (x, θ2), driven by
the density fω, is given in view of (13) by

Dω
φλ

(θ1, θ2) = 1

λ(λ + 1)

{(
exp

[
M (1)

C,λ(θ1, θ2)
])

E(λ+1)θ1−λθ2 ( fω(X))

−(λ + 1)Eθ1 ( fω(X)) + λEθ2 ( fω(X))
}
, (16)

with
M (1)

C,λ(θ1, θ2) = λC(θ2) − (λ + 1)C(θ1) + C((λ + 1)θ1 − λθ2) (17)

and E(λ+1)θ1−λθ2 ( fω(X)), Eθi ( fω(X)), i = 1, 2, are defined by (15).
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Proof Based on (14), straightforward calculations give

Kλ,ω(θ1, θ2) =
∫

X
fω(x) exp

([(λ + 1)θ t1 − λθ t2]T (x)
)
exp (λC(θ2) − (λ + 1)C(θ1)

+ h(x)) dμ(x).

Hence,

Kλ,ω(θ1, θ2) =
∫

X
fω(x) exp

([(λ + 1)θ t1 − λθ t2]T (x) − C ((λ + 1)θ1 − λθ2)+h(x)
)

× exp (λC(θ2) − (λ + 1)C(θ1)) × exp (C ((λ + 1)θ1 − λθ2)) dμ(x),

which leads to the desired result, in view of (13) and (17). ��
The proposition that follows states the analytic expression for Dω

φλ
(θ1, θ2) when

the kernel density fω belongs to the class of densities (12). The proof is given in
“Appendix 2”.

Proposition 3 Consider two members fC (x, θ1) and fC (x, θ2) of (12) and consider
the kernel density fω(x) = fC (x, ω) as amember of (12). Then, subject to the assump-
tion θi + ω ∈ 	, i = 1, 2 and (λ + 1)θ1 − λθ2 + ω ∈ 	, for λ �= 0,−1, the Cressie
and Read local power divergence between fC (x, θ1) and fC (x, θ2), driven by fω, is
given by

Dω
φλ

(θ1, θ2) = 1

λ(λ + 1)

{(
exp

[
M (2)

C,λ(θ1, θ2, ω)
])

E(λ+1)θ1−λθ2+ω (exp (h(X)))

−(λ + 1) exp[C(θ1 + ω) − C(θ1) − C(ω)] × Eθ1+ω (exp (h(X)))

+λ exp[C(θ2 + ω) − C(θ2) − C(ω)] × Eθ2+ω (exp (h(X)))
}
, (18)

with

M (2)
C,λ(θ1, θ2, ω) = λC(θ2) − (λ + 1)C(θ1) −C(ω) +C((λ + 1)θ1 − λθ2 + ω) (19)

and

Eθi+ω (exp (h(X))) =
∫

X
{exp (h(X))} fC (x, θi + ω)dμ(x), i = 1, 2, (20)

E(λ+1)θ1−λθ2+ω (exp (h(X)))=
∫

X
{exp (h(X))} fC (x, (λ + 1)θ1 − λθ2 + ω)dμ(x).

(21)

The multivariate normal model is widely used in statistics and related fields and
it belongs to the exponential family model (12). The next proposition provides the
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explicit form of the local Cressie and Read power divergence, defined by (13), between
two k-variate normal distributions, as it is driven by another k-variate normal dis-
tribution. Let the kernel density fN (μ,), be the multivariate normal distribution
N (μ,) with mean vector μ ∈ Rk and covariance matrix . Consider also two
densities fN (μ1,1) and fN (μ2,2) on X =Rk , that follow k-variate normal distribu-
tions Nk(μ1, 1) and Nk(μ2, 2), with parameters (μ1, 1) and (μ2, 2).

The density function of the k-variate normal models with mean vectors μi ∈ Rk

and covariance matrices i , i = 1, 2, are given by,

(2π)−k/2|i |−1/2 exp

(
−1

2
(x − μi )

t−1
i (x − μi )

)
, i = 1, 2.

It can be easily seen that the above k-variate normal distributions are included in the
exponential family of distributions (12) with

θi = (θi1, θi2) =
(

−1
i μi ,−1

2
−1
i

)
, T (x) = (T1(x), T2(x)) = (

x, xxt
)
,

C(θi ) = log
(
(2π)k/2|i |1/2

)
+ 1

2
μt
i

−1
i μi = log(2π)k/2 − 1

2
log (| − 2θi2|)

−1

4
θ ti1θ

−1
i2 θi1, (22)

h(x) = 0,

where | | is used to denote the determinant of the respective matrix. It should be
noted that the inner product of α = (u, M) and β = (v, N ) which consist of two
parts, a vectorial part u and v and a matrix part M and N , is defined by αtβ =
utv + trace(Mt N ) (cf. Nielsen and Nock 2011, p. 6).

Proposition 4 TheCressie andRead local power divergence, defined by (13), between
two k-variate normal distributions Nk(μ1, 1) and Nk(μ2, 2), driven by a k-variate
normal distributions Nk(μ,), is given by

D(μ,)
φλ

((μ1, 1), (μ2, 2)) = 1

λ(λ + 1)

{
(2π)−

k
2 ||− 1

2 |1|− λ+1
2 |2| λ

2

∣∣∣(λ+1)−1
1

−λ−1
2 + −1

∣∣∣−
1
2

× exp

(
−1

2

(
μt−1μ + (λ + 1)μt

1
−1
1 μ1

−λμt
2

−1
2 μ2 − Bt

1B2B1

))

− (λ+1)(2π)−k/2||−1/2|1|−1/2
∣∣∣−1

1 +−1
∣∣∣−1/2

× exp

(
−1

2
(μ − μ1)

t ( + 1)
−1(μ − μ1)

)
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+ λ(2π)−k/2||−1/2|2|−1/2
∣∣∣−1

2 + −1
∣∣∣−1/2

× exp

(
−1

2
(μ − μ2)

t ( + 2)
−1(μ − μ2)

)}
,

with

B1 = (λ + 1)−1
1 μ1 − λ−1

2 μ2 + −1μ,

B2 =
(
(λ + 1)−1

1 − λ−1
2 + −1

)−1
,

provided that (λ + 1)−1
1 − λ−1

2 + −1 > 0, for λ �= 0,−1.

The proof of the proposition is given in “Appendix 3”.

Remark 2 Explicit expressions for Cressie and Read local power divergence between
univariate normal distributions can be derived by a direct application of the above
proposition. The respective formulas are presented in Eq. (5) of the numerical Exam-
ple 1.

The Kullback–Leibler local divergence is obtained from (3) or (4) for φ(u) =
u log u − u + 1. It is defined by

DR
0 (P, Q) =

∫

X

dR

dμ

dP

dQ
log

(
dP

dQ

)
dQ −

∫

X

dR

dμ
dP +

∫

X

dR

dμ
dQ

=
∫

X
r(x)p(x) log

(
p(x)

q(x)

)
dμ(x) −

∫

X
r(x)p(x)dμ(x)

+
∫

X
r(x)q(x)dμ(x). (23)

It should be noted that Kullback–Leibler classic divergence is obtained from (1) for
φ(u) = u log u or φ(u) = u log u−u+1. Both choices of the convex function φ lead
to the same quantity. This is not the case for Kullback–Leibler local divergence. It is
defined by (23), as a particular case of (3) or (4) for φ(u) = u log u − u + 1.

The next Proposition provides the explicit forms of Kullback–Leibler local diver-
gence between two members of the exponential family and between two multivariate
normal distributions, as well.

Proposition 5 (a) The Kullback–Leibler local divergence (23) between two members
fC (x, θ1) and fC (x, θ2) of the exponential family (12), driven by the kernel density
fC (x, ω) in (12), is given by

Dω
0 (θ1, θ2) = (exp (C(θ1+ω)−C(θ1)−C(ω)))

{
(C(θ2)−C(θ1)) Eθ1+ω (exp (h(X)))

+ (θ1 − θ2)
t Eθ1+ω (T (X) exp (h(X)))

}
− (exp (C(θ1 + ω) − C(θ1) − C(ω))) Eθ1+ω (exp (h(X)))

+ (exp (C(θ2 + ω) − C(θ2) − C(ω))) Eθ2+ω (exp (h(X))) ,
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and Eθi+ω (exp (h(X))), i = 1, 2 , are defined by (20).
(b) The Kullback–Leibler local divergence (23) between two multivariate normal dis-
tributions fN (μ1,1) and fN (μ2,2), on X =Rk, driven by the multivariate normal
density fN (μ,), is given by

D(μ,)
0 ((μ1, 1), (μ2, 2)) = 1

2
(2π)−

k
2 ||− 1

2 |1|− 1
2

∣∣∣−1 + −1
1

∣∣∣−
1
2

× exp

(
−1

2
(μ − μ1)

t ( + 1)
−1(μ − μ1)

)

×
{
log

|2|
|1| −trace

(
(−1+−1

1 )−1(−1
1 −−1

2 )
)

− (μ∗ − μ1)
t−1

1 (μ∗ − μ1)

+ (μ∗ − μ2)
t−1

2 (μ∗ − μ2)

}

− E(μ1,1)

(
fN (μ,)(X)

) + E(μ2,2)

(
fN (μ,)(X)

)
,

where

E(μi ,i )

(
fN (μ,)(X)

) = (2π)−
k
2 ||− 1

2 |i |− 1
2

∣∣∣−1 + −1
i

∣∣∣−
1
2

× exp

{
−1

2
(μ − μi )

t ( + i )
−1(μ − μi )

}
, i = 1, 2,

and
μ∗ = (−1 + −1

1 )−1(−1μ + −1
1 μ1).

The proof of the previous proposition is given in “Appendix 4”.

Remark 3 (a) Explicit expressions for Kullback–Leibler local divergence between
univariate normal distributions can be derived by a direct application of the part (b) of
above proposition. The respective formulas, are given by

D(μ,σ 2)
0 ((μ1, σ

2
1 ), (μ2, σ

2
2 )) = 1

2
(2π(σ 2 + σ 2

1 ))−
1
2 exp

(
− (μ − μ1)

2

2(σ 2 + σ 2
1 )

)

×
(
log

σ 2
2

σ 2
1

− σ 2(σ 2
2 −σ 2

1 )

σ 2
2 (σ 2+σ 2

1 )
− (μ∗−μ1)

2

σ 2
1

+ (μ∗−μ2)
2

σ 2
2

)

− E(μ1,σ
2
1 )

(
fN (μ,σ 2)(X)

) + E(μ2,σ
2
2 )

(
fN (μ,σ 2)(X)

)
,

where

E(μi ,σ
2
i )

(
fN (μ,σ 2)(X)

) =
(
2π(σ 2 + σ 2

i )
)−1/2

exp

{
− (μ − μi )

2

2(σ 2 + σ 2
i )

}
, i = 1, 2,
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Table 3 Normality tests and descriptive statistics for the three populations of GPA scores

Population Sample size Normality tests (p values) Sample mean and variance

n Shapiro-Wilk Kolmogorov–Smirnov

�1 31 0.86 0.2 (lower bound) (X1 = 3.40, S21 = 0.04)

�2 28 0.85 0.2 (lower bound) (X2 = 2.48, S22 = 0.03)

�3 26 0.11 0.2 (lower bound) (X3 = 2.99, S23 = 0.03)

Notice that normality is a reasonable assumption for all three populations

and

μ∗ = μσ 2
1 + μ1σ

2

σ 2 + σ 2
1

.

(b) Proposition 5 (b) can be used in order to obtain the explicit expression for the
Kullback–Leibler local divergence between twomultivariate normal distributionswith
common covariance matrix 1 = 2 = ∗. It is easily obtained by a straightforward
application of Proposition 5 (b) for 1 = 2 = ∗.

4 Application

We now illustrate the behaviour of local measures in real life situations. Consider
grade point average (GPA) scores for students seeking admission in a business school
(Johnson and Wichern 1992, p. 532, Example 11.11). There are three groups of
applicants who have been categorized as �1: admit, �2: don’t admit, and �3: border-
line, depending on their GPA scores. Note that the support of the three distributions
is the same. We are interested in exemplifying any differences between the three
populations of students, either globally, i.e., over the whole domain of the distrib-
utions describing each population, or locally, by focusing on a specific area of the
domain of observation where two populations might differ. The latter is accomplished
by considering the center of the kernel distribution to be a convex combination
of the means of the two populations under consideration. In this way, the kernel
acts as a window that can move across the domain of observation and focus on
a small region each time, that depends on the variability or spreadness of the ker-
nel.

In Table 3 we display normality tests along with basic descriptive statistics for the
three populations, including sample means and variances. Notice that the normality
assumption is reasonable for the three groups of students, and hence we adapt the three
univariate normal distributions in order to describe the data. Under normality, knowing
themean andvariance completely determines the behavior of the distributions. Figure 3
illustrates the three densities for �1 − �3 using the estimated means and variances
from Table 3.

Using the notation of Example 1, we utilize the Cressie–Read λ-power divergence
in order to compare populations �1 with �2,�1 with �3, and �2 with �3, in
Tables 4, 5 and 6, respectively. In all tables, we present the local Cressie–Read diver-
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Fig. 3 Plot for three densities of �1 − �3 using the estimated means and variances

gence Dω
φλ

(θ̂1, θ̂2) for different values of λ, namely, λ = −2,−0.5, 2
3 , 1 or 2. The

bottom rows show the values of the globalmeasure Dφλ(θ̂1, θ̂2). The kernel and popula-
tion models are univariate normal distributions, with estimated parameters for�1, �2
and �3 given by θ̂1 = (μ̂1, σ̂

2
1 ) = (3.40, 0.04), θ̂2 = (μ̂2, σ̂

2
2 ) = (2.48, 0.03), and

θ̂3 = (μ̂3, σ̂
2
3 ) = (2.99, 0.03), respectively. Using these estimators, we obtain convex

combinations of the means for different values of k, and treat the result as the mean of
the kernel. The kernel parameters are displayed in the second column of Tables 4, 5,
and 6, i.e., the parameters of the kernel are θ = (μ, σ 2) = (kμ̂1 + (1 − k)μ̂2, 0.1).
Notice that the variance of the kernel is 0.1 in all cases, a small value that puts
more weight on values about μ, thus highlighting the differences of the two pop-
ulations at a region near the mean of the kernel. The values of k considered are
k = 0, 0.1, 0.3, 0.5, 0.7, 0.9 and 1, and lead to a window in the domain of observa-
tion that moves from one population mean towards the other. When two populations
are close to each other in a certain window, we expect the local measure to take
smaller values, unless the two populations are completely different. This assertion
is supported by the results in Tables 4, 5 and 6, with all values away from zero,
indicating that all populations are different from each other. For example, when com-
paring �2 with �3, using λ = 2

3 , the global measure is Dφ2/3(θ̂2, θ̂3) = 110.3,
while a value of k = 0, yields a local measure with value Dω

φ2/3
(θ̂2, θ̂3) = 7.7. The

region we focus in this case is described by the kernel with mean being the same
as the mean of �3, but the kernel variance (σ 2 = 0.1) is much larger than that of
�3(̂σ

2
3 = 0.03).

We investigate the behavior of the local Kullback–Leibler measure in Table 7,
with similar results to the Cressie–Read divergence. All tables suggest that the three
populations are clearly different globally, although some values of λ indicate that
populations �2 and �3 are not as different locally, when the kernel focuses attention
near the mean of �3.
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Table 5 Displaying the local Cressie–Read divergence Dω
φλ

(θ̂1, θ̂3) for different values of λ, in order to
compare populations �1 and �3

k �1 − �3

Kernel (μ, σ 2) λ = −2 λ = −0.5 λ = 2
3 λ = 1 λ = 2

0 (2.99, 0.1) 12.41 1.26 3.85 20.88 5.33459 × 107

0.1 (3.03, 0.1) 11.36 1.29 4.78 28.19 1.03967 × 108

0.3 (3.12, 0.1) 8.91 1.33 7.59 53.60 4.54339 × 108

0.5 (3.20, 0.1) 6.83 1.35 11.06 91.09 1.63409 × 109

0.7 (3.28, 0.1) 5.00 1.36 15.53 148.82 5.70873 × 109

0.9 (3.36, 0.1) 3.53 1.36 20.95 233.62 1.93717 × 1010

1 (3.40, 0.1) 2.93 1.35 23.95 288.35 3.52976 × 1010

Global φλ − divergence 14.40 1.82 49.84 2369.73 1.7256 × 1021

The bottom row shows the value of the global measure Dφλ
(θ̂1, θ̂3). The kernel and population models

are univariate normal distributions, with estimated parameters for �1 and �3 given by θ̂1 = (μ̂1, σ̂
2
1 ) =

(3.40, 0.04) and θ̂3 = (μ̂3, σ̂
2
3 ) = (2.99, 0.03), respectively. Using these estimators, we obtain convex

combinations of the means for different values of k, and treat the result as the mean of the kernel. The kernel
parameters are displayed in the second column, i.e., θ = (μ, σ 2) = (kμ̂1 + (1 − k)μ̂3, 0.1). All values
indicate divergence between �1 and �3

Table 6 Displaying the local Cressie–Read divergence Dω
φλ

(θ̂2, θ̂3) for different values of λ, in order to
compare populations �2 and �3

k �2 − �3

Kernel (μ, σ 2) λ = −2 λ = −0.5 λ = 2
3 λ = 1 λ = 2

0 (2.99, 0.1) 1184.27 1.86 7.70 59.08 4.48366 × 106

0.1 (2.94, 0.1) 963.90 1.90 10.42 86.47 7.99876 × 106

0.3 (2.84, 0.1) 602.76 1.94 18.29 175.20 2.40296 × 107

0.5 (2.74, 0.1) 349.05 1.95 30.05 329.10 6.68441 × 107

0.7 (2.64, 0.1) 187.24 1.94 45.95 572.69 1.72176 × 108

0.9 (2.53, 0.1) 86.47 1.90 67.19 963.90 4.46054 × 108

1 (2.48, 0.1) 59.08 1.86 77.46 1184.27 6.66715 × 108

Global φλ − divergence 2912.25 2.65 110.30 2912.25 3.29495 × 1010

The bottom row shows the value of the global measure Dφλ
(θ̂2, θ̂3). The kernel and population models

are univariate normal distributions, with estimated parameters for �2 and �3 given by θ̂2 = (μ̂2, σ̂
2
2 ) =

(2.48, 0.03) and θ̂3 = (μ̂3, σ̂
2
3 ) = (2.99, 0.03), respectively. Using these estimators, we obtain convex

combinations of the means for different values of k, and treat the result as the mean of the kernel. The kernel
parameters are displayed in the second column, i.e., θ = (μ, σ 2) = (kμ̂2 + (1 − k)μ̂3, 0.1). All values
indicate divergence between �2 and �3
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Table 7 Displaying the local Kullback–Leibler divergence Dω
0 (., .), in order to compare all populations

k �1 − �2 �1 − �3 �2 − �3

(μ, σ 2) Dω
0 (θ1, θ2) (μ, σ 2) Dω

0 (θ1, θ3) (μ, σ 2) Dω
0 (θ2, θ3)

0 (2.48, 0.1) 1.38 (2.99, 0.1) 1.24 (2.99, 0.1) 1.65

0.1 (2.57, 0.1) 1.62 (3.03, 0.1) 1.35 (2.94, 0.1) 1.85

0.3 (2.76, 0.1) 2.70 (3.12, 0.1) 1.61 (2.84, 0.1) 2.31

0.5 (2.94, 0.1) 5.06 (3.20, 0.1) 1.87 (2.74, 0.1) 2.85

0.7 (3.13, 0.1) 9.04 (3.28, 0.1) 2.13 (2.64, 0.1) 3.41

0.9 (3.31, 0.1) 12.81 (3.36, 0.1) 2.37 (2.53, 0.1) 3.93

1 (3.40, 0.1) 13.99 (3.40, 0.1) 2.47 (2.48, 0.1) 4.10

Global D0(θ1, θ2) = 14.13 D0(θ1, θ3) = 2.82 D0(θ2, θ3) = 4.34

The bottom row shows the value of the global measure D0(., .). The kernel and population models are
univariate normal distributions, with estimated parameters for �1,�2 and �3 given by θ̂1 = (μ̂1, σ̂

2
1 ) =

(3.40, 0.04),θ̂2 = (μ̂2, σ̂
2
2 ) = (2.48, 0.03) and θ̂3 = (μ̂3, σ̂

2
3 ) = (2.99, 0.03), respectively. Using these

estimators, we obtain convex combinations of the means for different values of k, and treat the result as the
mean of the kernel. All values indicate divergence between �1 − �2, �1 − �3 and �2 − �3

5 Conclusions

This paper introduces a broad class of divergence measures between two probability
measures or between the respective probability distributions. The proposed measure
has its origins on Csiszár classic φ -divergence, a measure with numerous applications
not only in probability and statistics but in many areas of science and engineering. It
provides us with a tool to locally quantify the pseudo-distance between two distrib-
utions on a specific area of their common domain that might be of particular interest
from a theoretical or applied point of view. The range of values of the introduced class
of local divergences has been derived and the measures attain their minimum value
if and only if the underlined probability measures or the respective probability dis-
tributions coincide. Explicit expressions of the proposed local divergences have been
derived when the underlined distributions are members of the exponential family of
distributions or they are described by multivariate normal models.

Our simulations illustrated the robust behavior of the local against the global mea-
sure, in the sense that differences between two populations that cannot be captured
or are otherwise obscured globally, are exemplified by using the appropriate kernel
locally. Moreover, important aspects of the two models under comparison can be
asserted more efficiently at the local level using the right kernel, including tail behav-
ior, central tendency and local variability (see Example 2).

There are several extensions to thiswork thatwewill consider. Firstly, the theoretical
framework laid down in this paper will be extended to study other important properties
of the local divergence including sufficiency and robustness with respect to choice of
models and kernel. Secondly, we will explore the use of the local measure in the
creation of local tests for the difference in means and variances between the two
models. Finally, the local measure will be illustrated as a tool for local goodness-of-fit
tests. These are subjects of future research and will be explored elsewhere.
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Appendix 1

This appendix provides a detailed proof of Theorem 1.

Proof of Theorem 1 (a) It is clear, from (9) and (10), that 0 ≤ D̃R
φ (P, Q). We proceed

with the upper bound of D̃R
φ (P, Q). Given that φ(1) = 0 and motivated by a similar

proof in Stummer and Vajda (2010, p. 174), we can write

D̃R
φ (P, Q) =

∫

{p<q}
r(x)q(x)φ

(
p(x)

q(x)

)
dμ(x) +

∫

{q<p}
r(x)q(x)φ

(
p(x)

q(x)

)
dμ(x).

(24)
Define the function

φ∗(u) = φ∗(u) + φ′+(1)(u − 1). (25)

Then, for u = q(x)
p(x) = q

p , x ∈ X ,

rpφ∗
(
q

p

)
= rpφ∗

(
q

p

)
+ rpφ′+(1)

(
q

p
− 1

)
. (26)

Hence,

∫

{q<p}
r(x)p(x)φ∗

(
q(x)

p(x)

)
dμ(x) =

∫

{q<p}
r(x)p(x)φ∗

(
q(x)

p(x)

)
dμ(x) + φ′+(1)

×
∫

{q<p}
r(x) (q(x) − p(x)) dμ(x)

and taking into account that φ∗(u) = uφ (1/u), u > 0,

∫

{q<p}
r(x)p(x)φ∗

(
q(x)

p(x)

)
dμ(x) =

∫

{q<p}
r(x)q(x)φ

(
p(x)

q(x)

)
dμ(x) − φ′+(1)

×
∫

{q<p}
r(x) (p(x) − q(x)) dμ(x)

=
∫

{q<p}
r(x)q(x)φ

(
p(x)

q(x)

)
dμ(x). (27)
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Therefore, from Eqs. (24) and (27) we conclude

D̃R
φ (P, Q) =

∫

{p<q}
r(x)q(x)φ

(
p(x)

q(x)

)
dμ(x) +

∫

{q<p}
r(x)p(x)φ∗

(
q(x)

p(x)

)
dμ(x).

(28)
On the other hand, based on Stummer and Vajda (2010, p. 174), for a convex function
φ ∈ �∗ which is strictly convex at 1, with φ′+(1) = 0, it is true that

0 = φ(1) ≤ φ(t2) ≤ φ(t1) ≤ φ(0), for any 0 ≤ t1 ≤ t2 ≤ 1. (29)

Applying inequality (29) toφ = φ, it is clear that on the subset {x ∈X : p(x)<q(x)}
of X , it holds that 0 ≤ φ

(
p
q

)
≤ φ(0), and therefore

0 ≤
∫

{p<q}
r(x)q(x)φ

(
p(x)

q(x)

)
dμ(x) ≤ φ(0)

∫

{p<q}
r(x)q(x)dμ(x).

Moreover, based on the non-negativity of r and q on any subset of X , it is true that

0 ≤
∫

{p<q}
r(x)q(x)dμ(x) ≤

∫

X
r(x)q(x)dμ(x) = ξ0.

So, the last two inequalities lead to

0 ≤
∫

{p<q}
r(x)q(x)φ

(
p(x)

q(x)

)
dμ(x) ≤ φ(0)ξ0. (30)

In amanner quite similar to the above, applying inequality (29) to φ = φ∗, it is clear
that on the subset {x ∈ X : q(x) < p(x)} of X it holds that 0 ≤ φ∗

(
q
p

)
≤ φ∗(0),

and therefore

0 ≤
∫

{q<p}
r(x)p(x)φ∗

(
q(x)

p(x)

)
dμ(x) ≤ φ∗(0)

∫

{q<p}
r(x)p(x)dμ(x).

Hence,

0 ≤
∫

{q<p}
r(x)p(x)φ∗

(
q(x)

p(x)

)
dμ(x) ≤ φ∗(0)

∫

{q<p}
r(x)p(x)dμ(x) ≤ φ∗(0)ξ1.

(31)
A combination of (28), (30) and (31) gives

D̃R
φ (P, Q) ≤ φ(0)ξ0 + φ∗(0)ξ1.
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Based on (7) and (25), φ(0) = φ(0) + φ′+(1) and φ∗(0) = φ∗(0) − φ′+(1). These
identities along with the previous inequality complete the proof of part (a) of the
theorem.
(b) To proceed with the proof of part (b) of the theorem, suppose first that P = Q.
Then, it is clear from (10) that D̃R

φ (P, P) = DR
φ (P, P) = φ(1) = 0, because φ ∈ �∗.

Conversely, let D̃R
φ (P, Q) = 0. Taking into account (9) and the fact that φ(1) = 0,

φ

(
p(x)

q(x)

)
= φ(1) + φ′+(1)

(
p(x)

q(x)
− 1

)
, (32)

a.e. with respect to measure μ, for Radon-Nikodym derivative r positive on X . On
the other hand, based on Vajda (1989, p. 58)

φ (x) > φ(1) + φ′+(1) (x − 1) , for every x �= 1,

because φ is strictly convex at 1. Therefore, the only way equality ( 32) to be valid,
taking into account the above inequality, is when p(x)

q(x) = 1 or P = Q, which completes
the proof of part (b) of the theorem.
(c) Suppose that P ⊥ Q. Then, following Vajda (1972, p. 227), u = dQ

dP+dQ = 0 [P]
and u = dQ

dP+dQ = 1 [Q]. Taking into account that u = q
p+q , we conclude that if

P ⊥ Q, then q(x) = 0, a.e. x ∈ X [P] and p(x) = 0, a.e. x ∈ X [Q]. Equation
(28) is refined as follows,

D̃R
φ (P, Q) =

∫

{p<q}
r(x)φ

(
p(x)

q(x)

)
dQ(x) +

∫

{q<p}
r(x)φ∗

(
q(x)

p(x)

)
dP(x),

and subject to the condition P ⊥ Q,

D̃R
φ (P, Q) =

∫

{p<q}
r(x)φ

(
p(x)

q(x)

)
dQ(x) +

∫

{q<p}
r(x)φ∗

(
q(x)

p(x)

)
dP(x)

= φ (0)
∫

{p<q}
r(x)dQ(x) + φ∗ (0)

∫

{q<p}
r(x)dP(x). (33)

On the other hand, because of p(x) = 0, a.e. x ∈ X [Q], it is clear that

Q({p ≥ q})=Q({p > q})+Q({p = q})=Q({p > q}) = Q({q < 0}) = Q(∅) = 0
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since Q({q = p}) = 0, by taking into account that P ⊥ Q. This last equality leads to∫
{p≥q} r(x)dQ(x) = 0, and therefore

ξ0 =
∫

X
r(x)q(x)dμ(x) =

∫

X
r(x)dQ(x) =

∫

{p<q}
r(x)dQ(x) +

∫

{p≥q}
r(x)dQ(x)

=
∫

{p<q}
r(x)dQ(x). (34)

Similarly, it can be shown that P({q ≥ p}) = 0 and hence

ξ1 =
∫

X
r(x)q(x)dμ(x) =

∫

{q<p}
r(x)dP(x). (35)

Equations (33), (34) and (35) give that if P ⊥ Q then D̃R
φ (P, Q) = φ (0) ξ0+φ∗ (0) ξ1

which completes the proof of this part of the theorem in view of the equations φ(0) =
φ(0) + φ′+(1) and φ∗(0) = φ∗(0) − φ′+(1).

It remains to prove that if φ(0)+φ∗(0) < ∞ and D̃R
φ (P, Q) = φ (0) ξ0+φ∗ (0) ξ1,

then P ⊥ Q. Relationships (24) and (29) immediately lead to

D̃R
φ (P, Q) ≤ φ (0)

∫

{p<q}
r(x)dQ(x) + φ∗ (0)

∫

{q<p}
r(x)dP(x).

This last inequality with the assumption D̃R
φ (P, Q) = φ (0) ξ0 +φ∗ (0) ξ1 and φ(0)+

φ∗(0) < ∞ lead to

∫

{p<q}
r(x)dQ(x) = ξ0 and

∫

{q<p}
r(x)dP(x) = ξ1,

and therefore ∫

{p≥q}
r(x)dQ(x) =

∫

{q≥p}
r(x)dP(x) = 0.

This last equation lead to

Q({p ≥ q}) = 0 and P({q ≥ p}) = 0,

or
Q({p ≥ q}) = 0 and P({q > p}) = 0

forRadon-Nikodymderivative r positive onX . This last conclusion proves that P ⊥ Q
and the proof of the theorem is completed. ��
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Appendix 2

This appendix provides a detailed proof of Proposition 3.

Proof of Proposition 3. Based on (14), straightforward calculations give

Kλ,ω(θ1, θ2) = exp{λC(θ2) − (λ + 1)C(θ1) − C(ω) + C((λ + 1)θ1 − λθ2 + ω)}

×
∫

X
exp{h(x)} exp

{(
k∑

i=1

[(λ + 1)θ1i − λθ2i + ωi ]Ti (x)
)

−C((λ + 1)θ1 − λθ2 + ω) + h(x)}dμ(x).

Taking into account (19) and (21),

Kλ,ω(θ1, θ2) = exp
{
M (2)

C,λ(θ1, θ2, ω)
}
E(λ+1)θ1−λθ2+ω{exp(h(x))}. (36)

On theother hand, it canbe easily shown that Eθ j ( fω(X))=∫
X fω(x) fC (x, θ j )dμ(x),

j = 1, 2, defined by (15), is given by

Eθ j ( fω(X)) = exp{−C(θ j ) − C(ω) + C(θ j + ω)}

×
∫

X
exp(h(x)) exp

{(
k∑

i=1

(ωi + θ j i )Ti (x) − C(θ j + ω) + h(x)

)}

dμ(x), j = 1, 2,

and therefore

Eθ j ( fω(X)) = exp{−C(θ j ) − C(ω) + C(θ j + ω)}Eθ j+ω (exp (h(X))) , j = 1, 2.
(37)

The result (18) follows as an application of (13), (36) and (37). ��

Appendix 3

This appendix provides a detailed proof of Proposition 4.

Proof of Proposition 4. Based on Proposition 3,

D(μ,)
φλ

((μ1, 1), (μ2, 2))

= 1

λ(λ + 1)

{(
exp

[
M (2)

C,λ(θ1, θ2, ω)
])

E(λ+1)θ1−λθ2+ω (exp (h(X)))

−(λ + 1) exp[C(θ1 + ω) − C(θ1) − C(ω)] × Eθ1+ω (exp (h(X)))

+λ exp[C(θ2 + ω) − C(θ2) − C(ω)] × Eθ2+ω (exp (h(X)))
}

, (38)
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with θ1 = (θ11, θ12) = (−1
1 μ1,− 1

2
−1
1 ), θ2 = (θ21, θ22) = (−1

2 μ2,− 1
2

−1
2 ),

ω = (ω1, ω2) = (−1μ,− 1
2

−1) and

M (2)
C,λ(θ1, θ2, ω) = λC(θ2)− (λ+ 1)C(θ1)−C(ω)+C((λ+ 1)θ1 −λθ2 +ω). (39)

Based on (22),

C(θi ) = log
(
(2π)k/2|i |1/2

)
+ 1

2
μt
i

−1
i μi , i = 1, 2

C(ω) = log
(
(2π)k/2||1/2

)
+ 1

2
μt−1μ. (40)

On the other hand,

θ1 + ω =
(

−1
1 μ1 + −1μ,−1

2
(−1

1 + −1)

)
,

and it is immediate to see, by means of (22), that

C(θ1 + ω) = log
(
(2π)k/2|−1 + −1

1 |−1/2
)

+1

2

(
−1μ + −1

1 μ1

)t (
−1 + −1

1

)−1 (
−1μ + −1

1 μ1

)
. (41)

Taking into account the identity (cf. Pardo 2006, p. 49)

(
−1μ + −1

i μi

)t (
−1 + −1

i

)−1 (
−1μ + −1

i μi

)
− μt−1μ − μt

i
−1
i μi

= −(μ − μi )
t ( + i )

−1(μ − μi ), i = 1, 2,

straightforward algebra entails that

C(θi + ω) − C(θi ) − C(ω) = log
(
(2π)−k/2|−1 + −1

i |−1/2||−1/2|i |−1/2
)

−1

2
(μ − μi )

t ( + i )
−1(μ − μi ), i = 1, 2.

(42)

It remains to evaluate M (2)
C,λ(θ1, θ2, ω), given by (39). It is easy to see that

(λ + 1)θ1 − λθ2 + ω =
(
(λ + 1)−1

1 μ1 − λ−1
2 μ2 + −1μ,

(−1/2)
(
(λ + 1)−1

1 − λ−1
2 + −1

))
,
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and therefore

C((λ + 1)θ1 − λθ2 + ω) = log
(
(2π)k/2|(λ + 1)−1

1 − λ−1
2 + −1|−1/2

)

+1

2

(
(λ + 1)−1

1 μ1 − λ−1
2 μ2 + −1μ

)t

×
(
(λ + 1)−1

1 − λ−1
2 + −1

)−1

×
(
(λ + 1)−1

1 μ1 − λ−1
2 μ2 + −1μ

)
, (43)

with (λ + 1)−1
1 − λ−1

2 + −1 > 0, for λ �= 0,−1. Based now on (39), (40) and
(43),

M (2)
C,λ(θ1, θ2, ω) = log

(
(2π)−k/2

)
||− 1

2 |1|− λ+1
2 |2| λ

2

×
∣∣∣(λ + 1)−1

1 − λ−1
2 + −1

∣∣∣−
1
2

−1

2

(
μt−1μ + (λ + 1)μt

1
−1
1 μ1 − λμt

2
−1
2 μ2 − Bt

1B2B1

)
,

(44)

with

B1 = (λ + 1)−1
1 μ1 − λ−1

2 μ2 + −1μ,

B2 =
(
(λ + 1)−1

1 − λ−1
2 + −1

)−1
.

Taking into account that h(X) = 0 (cf. Eq. (22)), the result follows as an application
of (38), (42) and (44). ��

Appendix 4

This appendix provides a detailed proof of Proposition 5.

Proof of Proposition 5. (a)Basedon (23) and taking into account (12), straightforward
algebra leads to the desired result.
(b) Based on part (a) and on Eq. (22),

D(μ,)
0 ((μ1, 1), (μ2, 2)) = exp{C(θ1 + ω) − C(θ1) − C(ω)}

× (
C(θ2) − C(θ1) + (θ1 − θ2)

t Eθ1+ω (T (X))
)

− exp{C(θ1 + ω) − C(θ1) − C(ω)}
+ exp{C(θ2 + ω) − C(θ2) − C(ω)}, (45)
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with

θi =
(

−1
i μi ,−1

2
−1
i

)
, i = 1, 2, ω=

(
−1μ,−1

2
−1

)
and T (X)=(

X, XXt ) .

(46)
Simple algebraic manipulations lead to,

C(θ2) − C(θ1) = 1

2

(
log

|2|
|1| + μt

2
−1
2 μ2 − μt

1
−1
1 μ1

)
. (47)

On the other hand, taking into account that

Eθ1+ω(X) =
∫

X
x fC (x, θ1 + ω)dμ(x),

Eq. (46) entails,

Eθ1+ω(X) =
(
−1 + −1

1

)−1 (
−1μ + −1

1 μ1

)
. (48)

Then,

Eθ1+ω

(
XXt) = Varθ1+ω(X) + (

Eθ1+ω(X)
) (

Eθ1+ω(X)
)t

= (−1 + −1
1 )−1 +

{
(−1 + −1

1 )−1
(
−1μ + −1

1 μ1

)

×
(
−1μ + −1

1 μ1

)t
(−1 + −1

1 )−1
}

(49)

and

θ1 − θ2 =
(

−1
1 μ1 − −1

2 μ2,−1

2

(
−1

1 − −1
2

))
. (50)

Based on (46) and (50), algebraic manipulations entail that,

(θ1 − θ2)
t Eθ1+ω (T (X)) =

(
−1

1 μ1 − −1
2 μ2

)t
Eθ1+ω (X)

+ trace

{
−1

2

(
−1

1 − −1
2

)t
Eθ1+ω

(
XXt)} , (51)

Hence, taking into account (48), (49) and (51)

(θ1 − θ2)
t Eθ1+ω (T (X)) =

(
−1

1 μ1 − −1
2 μ2

)t
μ∗

−1

2

{
trace

((
−1

1 − −1
2

) (
−1 + −1

1

)−1
)

+ (μ∗)t
(
−1

1 − −1
2

)
μ∗

}
, (52)

123



332 G. Avlogiaris et al.

with μ∗ = Eθ1+ω(X). Based on the fact that, for i = 1, 2,

exp (C(θi + ω) − C(θi ) − C(ω)) = (2π)−
k
2 ||− 1

2 |i |− 1
2

∣∣∣−1 + −1
i

∣∣∣−
1
2

× exp

{
−1

2
(μ − μi )

t ( + i )
−1(μ − μi )

}

= E(μi ,i )

(
fN (μ,)(X)

)
,

Eqs. (42), (45), (47) and (52) complete the proof of part (b) of the proposition. ��
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