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Abstract Two new tests for exponentiality, of integral- and Kolmogorov-type, are
proposed. They are based on a recent characterization and formed using appropri-
ate V-statistics. Their asymptotic properties are examined and their local Bahadur
efficiencies against some common alternatives are found. A class of locally optimal
alternatives for each test is obtained. The powers of these tests, for some small sample
sizes, are compared with different exponentiality tests.
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1 Introduction

The exponential distribution is probably one of the most applicable distributions in
reliability theory, survival analysis, and many other fields. Therefore, ensuring that
the data come from the exponential family of distributions is of great importance.
Goodness of fit testing for exponentiality has been popular for decades, and in recent
times tests based on characterizations have become one of the primary directions.
Many interesting characterizations of the exponential distribution can be found in
Ahsanullah and Hamedani (2010), Arnold et al. (2008), Balakrishnan and Rao (1998)
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and Galambos and Kotz (1978). Goodness of fit tests based on characterizations of
the exponential distribution are studied in Ahmad and Alwasel (1999), Angus (1982),
Koul (1977, 1978), among others. In particular, the Bahadur efficiency of such tests
has been considered in, e.g., Nikitin (1996), Nikitin and Volkova (2010), Volkova
(2010).

Recently Obradović (2015) proved three new characterizations of the exponential
distribution based on order statistics in small samples. In this paper we propose two
new goodness of fit tests based on one of those characterizations:

Let X0, X1, X2, X3 be independent and identically distributed (i.i.d.) non-negative
random variables from a distribution that has a density f whose Maclaurin’s expan-
sion converges for x > 0. Let X(2;3) and X(3;3) be the median and maximum of
{X1, X2, X3}, respectively. If

X0 + X(2;3)
d= X(3;3)

then f (x) = λe−λx for some λ > 0.
Let X1, X2, . . . , Xn be i.i.d. observations having a continuous distribution function

F . We test the composite hypothesis H0 that F belongs to the family of exponential
distributions E(λ), where λ > 0 is an unknown parameter.

We shall consider the following integral and Kolmogorov-type test statistics which
are invariant with respect to the scale parameter λ:

In =
∞∫

0

∞∫

0

(Hn(t) − Gn(t))d Fn(t),

Kn = sup
t≥0

∣∣Hn(t) − Gn(t)
∣∣,

where

Gn(t) = 1

n4

n∑
i=1

n∑
j=1

n∑
k=1

n∑
l=1

I {Xi + med(X j , Xk, Xl) < t},

Hn(t) = 1

n3

n∑
j=1

n∑
k=1

n∑
l=1

I {max(X j , Xk, Xl) < t}.

In order to determine the quality of our tests that reject H0 for large values of In or
Kn , and to compare them with some other tests we shall use local Bahadur efficiency.
We choose this type of asymptotic efficiency since it is applicable to non-normally
distributed test statistics such as the Kolmogorov statistic. For asymptotically nor-
mally distributed test statistics the local Bahadur efficiency and the classical Pitman
efficiency coincide (see Wieand 1976).

The paper is organized as follows. In Sect. 2 we study the integral statistic In . We
find its asymptotic distribution, large deviations and calculate its asymptotic efficiency
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against some common alternatives. We also present a class of locally optimal alterna-
tives. In Sect. 3 we do the analogous study for Kolmogorov-type statistics. In Sects. 4
and 5 we compare our tests with some existing tests for exponentiality and give a real
data example.

2 Integral-type statistic In

The statistic In is asymptotically equivalent to the V -statistic with symmetric kernel
(Korolyuk and Borovskikh 1994)

Ψ (X1, X2, X3, X4, X5) = 1

5!
∑

π(1:5)

(
I {max(Xπ2 , Xπ3 , Xπ4) < Xπ5}

−I {Xπ1 + med(Xπ2 , Xπ3 , Xπ4) < Xπ5}
)
,

where π(1 : m) is the set of all permutations {π1, π2, ..., πm}.
Its projection on X1 under H0 is

ψ(s) = E(Ψ (X1, X2, X3, X4, X5)|X1 = s)

= 1

5

(
P{max(X2, X3, X4) < X5} − P{s + med(X2, X3, X4) < X5}

)

+3

5

(
P{max(s, X3, X4) < X5} − P{X2 + med(s, X3, X4) < X5}

)

+1

5

(
P{max(X3, X4, X5) < s} − P{X2 + med(X3, X4, X5) < s}

)
.

After some calculations we get

ψ(s) = − 1

20
+ 2

5
e−3s − 9

10
e−2s + 1

2
e−s .

The expected value of this projection is equal to zero, while its variance is

σ 2
I = E(ψ2(X1)) = 29

42000
.

Hence this kernel is non-degenerate. and therefore we can consider instead of V -
statistic In the corresponding U -statistic with the same kernel which has almost
identical asymptotic properties. Applying Hoeffding’s theorem (Hoeffding 1948) for
non-degenerateU -statistics the asymptotic distribution of

√
nIn is normalN (0, 29

1680 ).

2.1 Local Bahadur efficiency

One way of measuring the quality of the tests is calculating their Bahadur asymptotic
efficiency. This quantity can be expressed as the ratio of the Bahadur exact slope,
a function describing the rate of exponential decrease for the attained level under
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the alternative, and the double Kullback–Leibler distance between the null and the
alternative distribution. More about theory on this topic can be found in Bahadur
(1971), Nikitin (1995).

According to Bahadur’s theory the exact slopes are defined in the following way.
Suppose that, under an alternative indexed by a parameter θ , the sequence {Tn} of test
statistics converges in probability to some finite function b(θ). Suppose also that the
large deviations limit

lim
n→∞ n−1 ln PH0 (Tn ≥ t) = − f (t) (1)

exists for any t in an open interval I, on which f is continuous and {b(θ), θ > 0} ⊂ I .
Then the Bahadur exact slope is

cT (θ) = 2 f (b(θ)). (2)

The exact slopes always satisfy the inequality

cT (θ) ≤ 2K (θ), θ > 0, (3)

where K (θ) is the Kullback–Leibler distance between the alternative H1 and the null
hypothesis H0.

Given (3), the local Bahadur efficiency of the sequence of statistics Tn is defined as

eB(T ) = lim
θ→0

cT (θ)

2K (θ)
. (4)

Let G(·, θ), θ ≥ 0, be a family of distribution functions with densities g(·, θ), such
that G(·, 0) ∈ E(λ) and the regularity conditions from [Nikitin (1995), Chapter 6],
including differentiation along θ in all appearing integrals, hold. Let h(x) = g′

θ (x, 0).
It is obvious that

∫ ∞
0 h(x)dx = 0.

We now calculate the Bahadur exact slope for the test statistic In .

Lemma 1 For the stati stic In the function f I from (1) is analytic for sufficiently small
ε > 0, and we have

fI (ε) = 840

29
ε2 + o(ε2), ε → 0.

Proof The kernelΨ is bounded, centered and non-degenerate. Therefore we can apply
the theorem of large deviations for non-degenerateU -statistics (Nikitin and Ponikarov
2001) and get the statement of the lemma. 
�
Lemma 2 For a given alternative density g(x; θ) whose distribution belongs to G,
we have

b(θ) = 5θ

∞∫

0

ψ(x)h(x)dx + o(θ), as θ → 0.
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The proof follows from the general result in Nikitin and Peaucelle (2004).
The Kullback–Leibler distance from the alternative density g(x, θ) from G to the

class of exponential densities {λe−λx , x ≥ 0}, is

K (θ) = inf
λ>0

∫ ∞

0
ln[g(x, θ)/λ exp(−λx)]g(x, θ) dx . (5)

It can be shown (Nikitin and Tchirina 1996) that for small θ Eq. (5) can be expressed
as

2K (θ) =
⎛
⎜⎝

∞∫

0

h2(x)ex dx −
⎛
⎝

∞∫

0

xh(x)dx

⎞
⎠

2
⎞
⎟⎠ · θ2 + o(θ2). (6)

This quantity can be easily calculated as θ → 0 for particular alternatives.
In what follows we shall calculate the local Bahadur efficiency of our test for some

alternatives. These alternatives are:

– a Weibull distribution with density

g(x, θ) = e−x1+θ

(1 + θ)xθ , θ > 0, x ≥ 0; (7)

– a Makeham distribution with density

g(x, θ) = (1 + θ(1 − e−x )) exp(−x − θ(e−x − 1 + x)), θ > 0, x ≥ 0; (8)

– an exponential mixture with negative weights (EMNW(β)) (Jevremović 1991)
with density

g(x, θ) = (1 + θ)e−x − βθeβx , θ ∈
(
0,

1

β − 1

]
, x ≥ 0; (9)

– a generalized exponential distribution (GED) (Nadarajah andHaghighi 2010) with
density

g(x, θ) = e1−(1+x)1+θ

(1 + θ)(1 + x)θ θ > 0, x ≥ 0; (10)

– an extended exponential distribution (EE) (Gomez et al. 2014) with density

g(x, θ) = 1 + θx

1 + θ
e−x , θ > 0, x ≥ 0. (11)

In the following two examples we shall present the calculations of the local Bahadur
efficiency.

Example 1 Let the alternative hypothesis be a Weibull distribution with density func-
tion (7). The first derivative along θ of its density at θ = 0 is

h(x) = e−x + e−x log x − e−x x log x .
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Table 1 Local Bahadur
efficiency for the statistic In

Alternative Efficiency

Weibull 0.746

Makeham 0.772

EMNW (3) 0.916

GED 0.556

EE 0.481

Using (6) the Kullback–Leibler distance is K (θ) = π2

6 θ2 +o(θ2), θ → 0.Applying
Lemma 2 we have

bI (θ) = 5θ

∞∫

0

ψ(x)(e−x + e−x log x − e−x x log x)dx + o(θ)

= log

(
3

211/8

)
θ + o(θ) ≈ 0.146θ + o(θ), θ → 0.

According to Lemma 1 and (4) the local Bahadur efficiency is eB(I ) = 0.746.

The reasoning for alternatives (8–10) is analogous. Their efficiencies are given
in Table 1. The exception is the alternative (11) where Lemma 2 and (6) cannot be
applied. We present it in the following example.

Example 2 Consider the alternative (EE) with density function (11). Its first derivative
along θ at θ = 0 is

h(x) = −e−x + e−x x .

The expressions
∫ ∞
0 h(x)ψ(x)dx and

∫ ∞
0 h2(x)ex dx −

( ∫ ∞
0 xh(x)dx

)2
are equal

to zero, hence we need to expand the series for bI (θ) and 2K (θ) to the first non-zero
term. The limit in probability bI (θ) is equal to

bI (θ) = P{max(X2, X3, X4) < X5} − P{X1 + med(X2, X3, X4) < X5}

= 1

4
− 6

∞∫

0

g(x, θ)

∞∫

0

G(y, θ)(1 − G(y, θ))g(y, θ)

∞∫

x+y

g(z, θ)dzdydx

= θ2(168 + 356θ + 161θ2)

2304(1 + θ)4
= 7

96
θ2 + o(θ2), θ → 0.

The double Kullback–Leibler distance (5) from (11) to the family of exponential
distributions is

2K (θ) = 2
(1 + θ) log(1 + 2θ) − e1/θ θ Ei(−(1/θ))

(1 + θ)2
= θ4 + o(θ4), θ → 0, (12)
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where Ei(z) = ∫ ∞
−z u−1e−udu is the exponential integral. According to Lemma 1 and

(4) the local Bahadur efficiency is eB(I ) = 0.481.

We can notice from Table 1 that all efficiencies are reasonably high except for case
(11), the example which was included to show the exception in calculation.

2.2 Locally optimal alternatives

In this section we determine some of those alternatives for which the statistic In is
locally asymptotically optimal in the Bahadur sense. More on this topic can be found
in Nikitin (1995) and Nikitin (1984). We shall determine some of those alternatives in
the following theorem.

Theorem 1 Let g(x; θ) be a density from G that satisfies the condition

∞∫

0

ex h2(x)dx < ∞.

Then, for small θ , the alternative densities

g(x; θ) = e−x + e−xθ(Cψ(x) + D(x − 1)), x ≥ 0, C > 0, D ∈ R,

are locally asymptotically optimal for the test based on In.

Proof Put

h0(x) = h(x) − (x − 1)e−x

∞∫

0

h(s)sds. (13)

It is easy to show that this function satisfies the following equalities:

∞∫

0

h2
0(x)ex dx =

∞∫

0

ex h2(x)dx −
( ∞∫

0

h(x)xdx

)2

,

∞∫

0

ψ(x)h0(x)dx =
∞∫

0

ψ(x)h(x)dx .

(14)

The local asymptotic efficiency is

eB
I = lim

θ→0

cI (θ)

2K (θ)
= lim

θ→0

2 f (bI (θ))

2K (θ)
= lim

θ→0

2 · 840
29 b2I (θ)

2K (θ)
= lim

θ→0

b2I (θ)

25σ 2
I 2K (θ)
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= lim
θ→0

25θ2
( ∞∫

0
ψ(x)h(x)dx

)2

+ o(θ2)

25
∞∫
0

ψ2(x)e−x dx

(
θ2

(∞∫
0

ex h2(x)dx −
( ∞∫

0
h(x)xdx

)2
)

+ o(θ2)

)

=

( ∞∫
0

ψ(x)h(x)dx

)2

∞∫
0

ψ2(x)e−x dx

( ∞∫
0

ex h2(x)dx −
( ∞∫

0
h(x)xdx

)2)

=

( ∞∫
0

ψ(x)h0(x)dx

)2

∞∫
0

ψ2(x)e−x dx
∞∫
0

h2
0(x)ex dx

.

From the Cauchy–Schwarz inequality we have that eB
I = 1 if and only if h0(x) =

Cψ(x)e−x . Inserting this expression in (13) we obtain h(x). The densities from the
statement of the theorem have the same h(x), hence the proof is completed. 
�

3 Kolmogorov-type statistic Kn

For a fixed t > 0 the expression Hn(t) − Gn(t) is a V-statistic with kernel:

Ξ(X1, X2, X3, X4, t) = 1

4!
∑

π(1:4)

(
I {max(Xπ2 , Xπ3 , Xπ4) < t}

− I {Xπ1 + med(Xπ2 , Xπ3 , Xπ4) < t}
)
.

The projection of this family of kernels on X1 under H0 is

ξ(s, t) = E(Ξ(X1, X2, X3, X4, t)|X1 = s)

= 1

4

(
P{max(X2, X3, X4) < t} − P{s + med(X2, X3, X4) < t}

)

+ 3

4

(
P{max(s, X3, X4) < t} − P{X2 + med(s, X3, X4) < t}

)
.

After some calculations we get

ξ(s, t) = 1

4
I {s < t}e−s−3t

(
−es − 2e4s + 6e2t + 3es+t + 3e3s+t − es+2t (9 − 6s)

)

+ 1

4
I {s ≥ t}e−3t

(
−1 + 6et − 2e3t − e2t (3 − 6t)

)
.
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1 2 3 4 5

0.005

0.010

0.015

Fig. 1 Plot of the function σ 2
K (t)

Table 2 Critical values for the
statistic Kn

n α = 0.1 α = 0.05 α = 0.025 α = 0.01

10 0.49 0.56 0.62 0.70

20 0.33 0.39 0.43 0.48

30 0.26 0.30 0.34 0.38

40 0.23 0.26 0.29 0.31

50 0.20 0.23 0.25 0.28

100 0.14 0.16 0.17 0.19

The variances of these projections σ 2
K (t) under H0 are

σ 2
K (t) = 9

80
e−6t − 3

8
e−5t − 3

8
e−4t − 9

8
e−3t + 33

16
e−2t − 3

10
e−t .

The plot of this function is shown in Fig. 1.
We find that

σ 2
K = sup

t≥0
σ 2

K (t) = 0.017.

The supremum is attained for t0 = 1.892. Therefore, our family of kernels
Ξ(X1, X2, X3, X4, t) is non-degenerate as defined in Nikitin (2010). It can be shown
(see Silverman 1983) that the U -empirical process

√
n (Hn(t) − Gn(t)) , t ≥ 0,

converges weakly in D(0,∞) as n → ∞ to a centered Gaussian process ν(t) with
calculable covariance. Thus, the sequence of statistics

√
nKn converges in distribution

to the random variable supt≥0 |ν(t)| but its distribution is unknown.
Critical values for the statistic Kn for different sample sizes and levels of signifi-

cance are shown in the Table 2. They are calculated using Monte Carlo methods based
on 10,000 replications.
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3.1 Local Bahadur efficiency

The family of kernels {Ξ4(X1, X2, X3, X4, t), t ≥ 0} is centered and bounded in
the sense described in Nikitin (2010). Applying the large deviation theorem for the
supremum of the family of non-degenerate U - and V -statistics from Nikitin (2010),
we find the function f from (1).

Lemma 3 For the statistic Kn the function fK from (1) is analytic for sufficiently
small ε > 0, and

fK (ε) = 1

32σ 2
K

ε2 + o
(
ε2

)
≈ 1.84ε2 + o

(
ε2

)
, ε → 0.

Lemma 4 For a given alternative density g(x; θ) whose distribution belongs to G we
have

bK (θ) = 4θ sup
t≥0

∣∣
∫ ∞

0
ξ(x; t)h(x)dx

∣∣ + o(θ), θ → 0.

Using the Glivenko–Cantelli theorem for V -statistics (Helmers et al. 1988) we have

bK (θ) = sup
t≥0

∣∣P{max(X2, X3, X4) < t} − P{X1 + med(X2, X3, X4) < t}∣∣

= sup
t≥0

∣∣G3(t, θ) − 6

t∫

0

g(x, θ)

t−x∫

0

G(y, θ)(1 − G(y, θ))g(y, θ)dydx
∣∣. (15)

Put

a(t, θ) = G3(t, θ) − 6

t∫

0

g(x, θ)

t−x∫

0

G(y, θ)(1 − G(y, θ))g(y, θ)dydx . (16)

After differentiating under the integral sign and some more calculations we get

a′
θ (t, 0) =

t∫

0

h(x)(4ξ(x, t) + e−3t
(
1 − 6et + 2e3t + e2t (3 − 6t)

)
dx

= 4

∞∫

0

h(x)ξ(x, t)dx .

Expanding a(t, θ) in a Maclaurin series and inserting the result into (15) we obtain
the statement of the lemma.

Now we calculate the local Bahadur efficiencies in the same manner as we did for
the integral-type statistic. For the alternatives (7) and (11) the process of calculations
is presented in following two examples, while for the others the values of efficiencies
are presented in Table 3.
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Table 3 Local Bahadur
efficiency for the statistic Kn

Alternative Efficiency

Weibull 0.258

Makeham 0.370

EMNW (3) 0.364

GED 0.298

EE 0.213

2 4 6 8 10

0.05

0.10

0.15

0.20

0.25

0.30

Fig. 2 Plot of the function a′
θ (t, 0)

Example 3 Let the alternative hypothesis be a Weibull distribution with density func-
tion (7). Using Lemma 4 we have

a(t, θ) = 4θ
∫ ∞

0
ξ(x, t)

(
e−x + e−x log x − e−x x log x

)
dx + o(θ), θ → 0.

The plot of the function a′
θ (t, 0), is shown in Fig. 2. The supremum of a(t, θ) is

attained at t1 = 1.761, thus bK (θ) = 0.34θ + o(θ), θ → 0.
Using Lemma 3 and Eqs. (2) and (4) we get that the local Bahadur efficiency in case
of the statistic Kn is 0.258.

Example 4 Let the alternative density function be (11). The function a(t, θ) from (16)
is

a(t, θ) = 3

4(1 + θ)4
e−3tθ2

(
−2 − 8θ − 9θ2 − 2t3θ2 − 4t2θ(1 + 2θ)

+ 8et (1 + θ)
(
2 + t + 6θ + 4tθ + t2θ

)
− t

(
2 + 10θ + 13θ2

)

+e2t
(
−14 − 56θ − 39θ2 + t

(
6 + 18θ + 11θ2

)))

= 3

2

(
−e−3t + 8e−2t − 7e−t − te−3t + 4e−2t t + 3e−t t

)
θ2 + o

(
θ2

)
.

123



232 B. Milošević

2 4 6 8 10

0.05

0.10

0.15

0.20

Fig. 3 Plot of the function a2(t)

The plot of the function a2(t), the coefficient next to θ2, in the expression above is
given in Fig. 3. Thus we have

sup
t≥0

|a(t, θ)| = 0.241θ2 + o
(
θ2

)
, θ → 0.

The value of the double Kullback–Leibler distance is given in (12). Using Lemma 3
and Eqs. (2) and (4), the local Bahadur efficiency is seen to be 0.213.

We can see that, as expected, the efficiencies are lower than in case of the
integral-type test. However the efficiencies are not that bad compared to some other
Kolmogorov-type tests based on characterizations (e. g. Volkova 2010).

3.2 Locally optimal alternatives

In this section we derive one class of alternatives that are locally optimal for the test
based on statistic Kn .

Theorem 2 Let g(x; θ) be the density from G that satisfies the condition

∞∫

0

ex h2(x)dx < ∞.

Then, for small θ , alternative densities

g(x; θ) = e−x + e−xθ(Cξ(x, t0) + D(x − 1)), x ≥ 0, C > 0, D ∈ R,

where t0 = 1.892, are locally asymptotically optimal for the test based on Kn.
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Proof We use the function h0 defined in (13). It can be shown that the function h0
satisfies condition (14), and we have

∞∫

0

ξ(x)h0(x)dx =
∞∫

0

ξ(x)h(x)dx .

The local asymptotic efficiency is

eK = lim
θ→0

cK (θ)

2K (θ)
= lim

θ→0

2 f (bK (θ))

2K (θ)
= lim

θ→0

b2K (θ)

16σK (t0)22K (θ)

= lim
θ→0

16θ2 sup
t≥0

( ∞∫
0

ξ(x, t)h(x)dx

)2

+ o(θ2)

16 sup
t≥0

∞∫
0

ξ2(x, t)e−x dx

(
θ2

(∞∫
0

ex h2(x)dx − ( ∞∫
0

h(x)xdx
)2

)
+ o(θ2)

)

=
sup
t≥0

( ∞∫
0

ξ(x, t)h(x)dx

)2

sup
t≥0

∞∫
0

ξ2(x, t)e−x dx

( ∞∫
0

ex h2(x)dx − ( ∞∫
0

h(x)xdx
)2)

=
sup
t≥0

( ∞∫
0

ξ(x, t)h0(x)dx

)2

∞∫
0

ξ2(x, t)e−x dx
∞∫
0

h2
0(x)ex dx

.

From the Cauchy–Schwarz inequality we have eK = 1 if, and only if, h0(x) =
Cξ(x, t0)e−x . Inserting that in (13) we obtain h(x). The densities from the statement
of the theorem have the same h(x), hence the proof is completed. 
�

4 Power comparison

For purpose of comparison we calculated the powers for sample sizes n = 20 and
n = 50 for some common distributions and compare the results with some other tests
for exponentiality which can be found in Henze and Meintanis (2005). The powers
are shown in Tables 4 and 5. The labels used are identical to the ones in Henze and
Meintanis (2005). Bolded numbers represent cases where our test(s) have the higher
or equal power than the competing tests. It can be noticed that in the majority of cases
the statistic In is the most powerful. Also, the statistic Kn performs better in most
cases than the other tests for n = 20, while it is reasonably competitive for n = 50.
However, there are few cases where the powers of both our tests are unsatisfactory.
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Table 4 Percentage of significant samples for different exponentiality tests n = 20, α = 0.05

Alternative EP KS CM ω2 KS KL S CO I K

W (1.4) 36 35 35 34 28 29 35 37 46 32

Γ (2) 48 46 47 47 40 44 46 54 59 32

LN (0.8) 25 28 27 33 30 35 24 33 9 6

HN 21 24 22 21 18 16 21 19 30 25

U 66 72 70 66 52 61 70 50 79 89

CH (0.5) 63 47 61 61 56 77 63 80 23 20

CH (1.0) 15 18 16 14 13 11 15 13 22 19

CH (1.5) 84 79 83 79 67 76 84 81 22 20

LF (2.0) 28 32 30 28 24 23 29 25 39 32

LF (4.0) 42 44 43 41 34 34 42 37 53 44

EW (0.5) 15 18 16 14 13 11 15 13 22 19

EW (1.5) 45 48 47 43 35 37 46 37 57 52

Table 5 Percentage of significant samples for different exponentiality tests n = 50, α = 0.05

Alternative EP KS CM ω2 KS KL S CO I K

W (1.4) 80 71 77 75 64 72 79 82 82 62

Γ (2) 91 86 90 90 83 93 90 96 94 72

LN (0.8) 45 62 60 76 71 92 47 66 14 7

HN 54 50 53 48 39 37 54 45 58 50

U 98 99 99 98 93 97 99 91 99 100

CH (0.5) 94 90 94 95 92 99 94 99 41 37

CH (1.0) 38 36 37 32 26 23 38 30 41 38

CH (1.5) 100 100 100 100 98 100 100 100 40 38

LF (2.0) 69 65 69 64 53 54 69 60 73 62

LF(4.0) 87 82 87 83 72 75 87 80 88 79

EW (0.5) 38 36 37 32 26 23 38 30 41 37

EW (1.5) 90 88 90 86 75 79 90 78 90 88

5 Application to real data

This data set represents inter-occurrence times of fatal accidents to British registered
passenger aircraft, 1946–1963, measured in number of days and listed in the order of
their occurrence in time (see Pyke 1965):

20 106 14 78 94 20 21 136 56 232 89 33 181 424 14
430 155 205 117 253 86 260 213 58 276 263 246 341 1105 50 136.
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Applying our tests to these data, we get the following values of the test statistics In

and Kn , as well as the corresponding p values:

Statistic In Kn

Value 0.04 0.21
p value 0.32 0.24

so we conclude that the tests do not reject exponentiality.

6 Conclusion

In this paper, we studied two goodness of fit tests for exponentiality based on a charac-
terization. The major advantage of our tests is that they are free of the scale parameter
λ. We calculated the local Bahadur efficiencies for some alternatives and the results
are more than satisfactory. We determined a locally optimal class of alternatives for
each test. Finally, we compared these tests with some other goodness-of-fit tests and
noticed that in most cases our tests were more powerful.
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