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Abstract New bivariate models are obtained with conditional distributions (in two
different senses) satisfying the proportional generalized odds rate (PGOR)model. The
PGOR semi-parametricmodel includes as particular cases theCox proportional hazard
rate (PHR) model and the proportional odds rate (POR) model. Thus the new bivariate
models are very flexible and include, as particular cases, the bivariate extensions of
PHR and POR models. Moreover, some well known parametric bivariate models are
also included in these general models. The basic theoretical properties of the new
models are obtained. An application to fit a real data set is also provided.

Keywords Conditionally specified distributions · Proportional hazard rate ·
Proportional odds rate · Bivariate Pareto distribution

1 Introduction

The extension of univariate models to the bivariate setup is a relevant topic in Proba-
bility Theory. Conditionally specified models are good options to get these extensions
(see Arnold et al. 1993, 1999). The Cox proportional hazard rate (PHR) model is a
very useful univariate semi-parametric model with applications in different areas such
as Survival Analysis and Reliability Theory (see e.g. Guo and Zeng 2014; Meeker
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692 J. Navarro et al.

and Escobar 1998, and the references therein). Recently, Navarro and Sarabia (2013)
extend the PHR model to the bivariate setup by using different conditional specifica-
tion techniques. The basic properties of the new models are obtained. Similar studies
of other bivariate models are given in Gupta (2001), Gupta and Gupta (2012), Gupta
et al. (2013), Navarro et al. (2006).

Another popular univariate semi-parametric model is the proportional odds rate
(POR) model (see e.g. Guo and Zeng 2014, and the references therein). The PHR and
POR univariate models can be included in a more general model called proportional
generalized odds rate (PGOR) model (see Bennett 1983; Dabrowska and Doksum
1988; Marshal and Olkin 2007; Zintzaras 2012, and the references therein).

In this paper, we extend the PGOR model to the bivariate set up by using different
conditional specifications techniques. The basic properties of the new models are
obtained. These extensions contain, as particular cases, the extensions of PHR and
POR models. Moreover, we show that some well known parametric bivariate models
are also included in the new bivariate models.

The rest of the paper is organized as follows. In Sect. 2 we introduce the univari-
ate PGOR model and we obtain some preliminary properties. The PGOR model is
extended to the bivariate setup in Sects. 3 and 4 by using different conditioning. The
basic properties of the new models are included in these sections. An application to a
real data set is presented in Sect. 5. Some conclusions are given in Sect. 6.

Throughout the paper we use the terms increasing and decreasing in a wide sense,
that is, a function g is increasing (resp. decreasing) if g(x) ≤ g(y) (≥) for all x ≤ y.

2 The univariate PGOR model

Let T be a nonnegative (lifetime) random variable with absolutely continuous survival
(reliability) function S(t) = Pr(T > t). Then the Generalized Odds (GO) function
for T is defined by

�T (t |c) =
{

1
c
1−Sc(t)
Sc(t) , if c > 0

− ln S(t), if c = 0

for t ≥ 0 such that S(t) > 0. Note that �T (t |1) = (1 − S(t))/S(t) is the odds
of occurring T before time t , which is known in the literature as the survival odds
of T (i.e. the probability of failure at time t divided by the probability of survival
at time t). Moreover, limc→0+ �T (t |c) = − ln S(t) which is the cumulative hazard
function of T . For other values of c, the quantity c�T (t |c) has an interpretation as a
type of survival odds of the survival function Sc(t). In particular (see Dabrowska and
Doksum 1988), if c is a positive integer, say k, and we consider a series system which
consists in k independent components whose lifetimes, T1, T2, . . . , Tk , are distributed
as T , then the lifetime of the series system T1:k = min(T1, T2, . . . , Tk) has survival
function Pr(T1:k > t) = Sk(t). Therefore, the survival odds of the system failure time
T1:k occurring before time t is

k�(t |k) = (1 − Sk(t))/Sk(t),
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Proportional generalized odds rate model 693

that is, k�(t |k) is the odds rate for a series system with k i.i.d. components with a
common survival function S(t). The function ln�T (t |1) is called the log-odds function
of T (see Navarro et al. 2008; Sunoj et al. 2007).

The derivative of �T (t |c) with respect to t , denoted by λT (t |c), is called the gen-
eralized odds rate (GOR) function and is given by

λT (t |c) = f (t)

Sc+1(t)
,

for c ≥ 0, where f (t) = −S′(t) is the probability density function (PDF) of T . In
particular, λT (t |0) is the hazard (or failure) rate function of T .

For c > 0, it is easy to prove that λT (t |c) = α > 0 for t ≥ 0 if, and only if, T has
a Pareto type-II distribution, denoted by T ∼ Pareto (c α, 1/c), with survival function

S(t) = (1 + c αt)−1/c, t ≥ 0, c, α > 0. (2.1)

For c = 0, it is well known that the hazard rate function satisfies λ(t |0) = α > 0
for t ≥ 0 if, and only, if T has an exponential distribution with survival function
S(t) = exp(−αt) for t ≥ 0. The exponential model can be obtained from the Pareto
model (2.1) when c → 0+.

The proportional generalized odds rate model was proposed in the literature to
analyse lifetime data (see among others, Bennett 1983; Dabrowska and Doksum 1988;
Marshal and Olkin 2007). It is defined as follows: Two random variables X and Y
satisfy the proportional generalized odds rate (PGOR) model if

λX (t |c) = θλY (t |c),

for all t ≥ 0, where λX (t |c) and λY (t |c) are the respective GOR functions and where
θ is a positive parameter. Obviously, this is equivalent to

�X (t |c) = θ�Y (t |c),

for all t ≥ 0, where �X (t |c) and �Y (t |c) are the respective GO functions. In the
sequel, to simplify the notation, we drop the c in �X and �Y and we take �X = �.
Then the univariate PGOR model is defined by

�(t; θ) = θ−1�(t)

and its survival function is

S(t; θ) =
(
1 + c

θ
�(t)

)−1/c
, (2.2)

for t ≥ 0, where c, θ > 0 and �(t) is a given baseline GO function. We assume
that �(t) does not depend on parameters θ and c but that it might depend on other
parameters. Throughout the paper, we use the notation T ∼ PGOR(θ, c,�(t)) for
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694 J. Navarro et al.

a random variable T with survival function S(t; θ) satisfying (2.2). Notice that if
c → 0+ and �(t) = − ln S(t), then (2.2) is equivalent to

S(t; θ) = S1/θ (t),

that is, to the well known PHR model.
It is easy to prove that an arbitrary function �(t) is a genuine GO function of an

absolutely continuous survival function if, and only if, �(t) is absolutely continuous,
increasing, �(0) = 0 and �(∞) = ∞. For c > 0, the PDF of S(t; θ) is given by

f (t; θ) = λ(t)

θ

(
1 + c

θ
�(t)

)−1−1/c
, (2.3)

where λ(t) = �′(t) is the baseline generalized odds rate function.
It is easy to see that (2.2) defines a proper survival function for any baseline survival

function S (GO function �), any c ≥ 0 and any θ > 0 since it can be written as
S(t; θ) = h(S(t)), where h(x) = (1 − 1/θ + x−c/θ)−1/c for c > 0 or h(x) = x1/θ

for c = 0. In both cases, h is an strictly increasing continuous function in [0, 1] such
that h(0) = 0 and h(1) = 1 and so, h(S(t)) is a survival function. This is a particular
case of the distorted distributions studied in Navarro et al. (2013, 2014, 2015) and in
the references therein.

Some well known parametric models can be obtained from the PGOR model (2.2)
as follows:

• �(t) = t for t ≥ 0, gives the Pareto distribution P(c/θ, 1/c) for c > 0 and the
exponential distribution when c → 0+.

• �(t) = tα for t ≥ 0 and α > 0, gives the log-logistic distribution for c = 1 and
gives the Weibull distribution when c → 0+. If c > 0, the model can be called
generalized log-logistic distribution. This model includes Pareto, exponential, log-
logistic and Weibull models.

Therefore, the extensions to the bivariate case of the PGOR model obtained in the
following sections will include as particular cases the extensions of these models.

3 Bivariate model with PGOR conditionals

In this section, we assume that (X,Y ) is a bivariate random vector with support
(0,∞) × (0,∞). We are interested in specifying the bivariate distribution of (X,Y ),
under the following conditions:

(X |Y = y) ∼ PGOR(θ1(y), c,�1(x)) (3.1)

and

(Y |X = x) ∼ PGOR(θ2(x), c,�2(y)), (3.2)
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Proportional generalized odds rate model 695

where x, y, c ≥ 0, θ1(y), θ2(x) ≥ 0 and�1(x) and�2(y) are two GO functions. The
model is obtained in the following theorem.

Theorem 3.1 Let �1 and �2 be univariate generalized odds functions for c > 0
and let (X,Y ) be a random vector with an absolutely continuous distribution having
support (0,∞) × (0,∞). If (X,Y ) satisfies (3.1) and (3.2), then its PDF is given by

f (x, y) = Ka1a2λ1(x)λ2(y)

(a0 + ca1�1(x) + ca2�2(y) + cφa1a2�1(x)�2(y))1+1/c , (3.3)

for x, y ≥ 0, where K , a1, a2 > 0 and a0, φ ≥ 0 are constants and λi (t) = �′
i (t),

i = 1, 2.

The proof follows the lines of the proof of Theorem 2.1 in Navarro and Sarabia
(2013) and can be obtained from the authors.

Clearly, if a0 > 0, then, without loss of generality, we can take a0 = 1. However,
the value a0 = 0 leads to a valid model whenever c > 1 (see case (i) in Arnold
et al. 1999, p.106). Additional conditions about the parameters are given in the next
section. If a0 = 1 and c tends to zero in (3.3), then we obtain the model given in
(2.3) of Navarro and Sarabia (2013). If c > 0 and �1(t) = �2(t) = t for t ≥ 0
in (3.3), then we obtain the bivariate Pareto model given in (5.7) (p. 105) of
Arnold et al. (1999) (see also (2.2) in Gupta 2001).

3.1 Marginal and conditional distributions

From (3.3), the marginal PDF are given by

fX (x) = K
a1λ1(x)

1 + φa1�1(x)
(a0 + ca1�1(x))

−1/c, x > 0

and

fY (y) = K
a2λ2(y)

1 + φa2�2(y)
(a0 + ca2�2(y))

−1/c , y > 0.

So, when c �= φ, the marginals of X and Y does not belong to the class of univariate
PGOR models from �i , i = 1, 2. The PDF of Z = a1�1(X) is

fZ (z) = K
1

1 + φz
(a0 + cz)−1/c, z > 0

and

K−1 =
∫ ∞

0

1

1 + φx
(a0 + cx)−1/cdx .
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696 J. Navarro et al.

Then the normalizing constant can be evaluated in the following way. If a0 > 0, using
formula 3.197-1 in Gradshteyn and Ryzhik (1994), we have

∫ ∞

0

1

(1 + φx)(a0 + cx)1/c
dx = a1−1/c

0 F

(
1, 1; 1 + 1

c
; 1 − a0φ

c

)
,

where

F(a, b; c; z) = 1

β(b, c − b)

∫ 1

0
tb−1(1 − t)c−b−1(1 − t z)−adt (3.4)

is the hypergeometric function and β(·, ·) is the beta function. In consequence,

K−1 = a1−1/c
0 F

(
1, 1; 1 + 1

c
; 1 − a0φ

c

)
.

If a0 = 0, then

K−1 =
∫ ∞

0

c−1/c

x1/c + φx1+1/c dx

and so we need c > 1 and φ > 0. Analogously, if φ = 0, then

K−1 =
∫ ∞

0
(a0 + cx)−1/cdx

and so we need c < 1 and a0 > 0. Then

K−1 = a1−1/c
0

1 − c
.

The conditional PDF are given by

fX |Y=y(x) = f (x, y)

fY (y)
= a1λ1(x)(1 + φa2�2(y)) (a0 + ca2�2(y))1/c

(a0 + ca1�1(x) + ca1�2(y) + cφa1a2�1(x)�2(y))1+1/c

and

fY |X = x (y)= f (x, y)

fX (x)
= a2λ2(y)(1 + φa1�1(x)) (a0 + ca1�1(x))1/c

(a0 + ca1�1(x) + ca2�2(y) + cφa1a2�1(x)�2(y))1+1/c ,

for x, y > 0. Then the conditional survival functions are

Pr(X > x |Y = y) =
(
1 + c

a1 + φa1a2�2(y)

a0 + ca2�2(y)
�1(x)

)−1/c
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Proportional generalized odds rate model 697

and

Pr(Y > y|X = x) =
(
1 + c

a2 + φa1a2�1(x)

a0 + ca1�1(x)
�2(y)

)−1/c

,

for x, y > 0. Of course, they are of the forms (3.1) and (3.2), respectively, with

θ1(y) = a0 + ca2�2(y)

a1 + φa1a2�2(y)

and

θ2(x) = a0 + ca1�1(x)

a2 + φa1a2�1(x)
.

Note that θ1(y) and θ2(x) are strictly increasing (decreasing) functions when c > φa0
(<). The special case c = a0φ corresponds to the case of independence.

Then the conditional hazard rate functions of (X |Y = y) and (Y |X = x) are given
by

hX |Y=y(x) = λ1(x)

θ1(y) + c�1(x)
(3.5)

and

hY |X=x (y) = λ2(y)

θ2(x) + c�2(y)
,

respectively. Again, we see that if c → 0+, then the conditional distributions satisfy
the PHR model (see Navarro and Sarabia 2013) with hX |Y=y(x) = λ1(x)/θ1(y) and
hY |X=x (y) = λ2(y)/θ2(x), where λ1(y) and λ2(x) are two given baseline hazard rate
functions. Analogously, for the bivariate Pareto model, if c > 0 and�1(t) = �2(t) =
t for t ≥ 0, then we obtain the expressions given in Gupta (2001).

Note that hX |Y=y(x) increases (decreases) in y and hY |X=x (y) increases (decreases)
in x whenever c < φa0 (>). Analogously, hX |Y=y(x) increases (decreases) in x when
θ1(y) + c�1(x) is logconvex (logconcave) in x and hY |X=x (y) increases (decreases)
in y when θ2(x) + c�2(y) is logconvex (logconcave) in y.

3.2 Dependence

In this section we study the following dependence concept.

Definition 3.2 Let X and Y be subsets of the real line. A function f (x, y) is said to
be totally positive of order 2 (T P2) (reverse regular of order 2 (RR2)) if

f (x1, y1) f (x2, y2) ≥ f (x1, y2) f (x2, y1) (≤),

for all x1 ≤ x2 in X and y1 ≤ y2 in Y .
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698 J. Navarro et al.

Holland and Wang (1987) showed that this definition is closely related to the fol-
lowing local dependence function

γ (x, y) = ∂2

∂x∂y
ln f (x, y).

In fact, they showed that under the assumption that f (x, y) is a PDF with support
X × Y , f (x, y) is TP2 (RR2) if and only if γ (x, y) ≥ 0 (≤) in X × Y . Then, for the
PDF given in (3.3), we obtain

γ (x, y) = a1a2(c + 1)λ1(x)λ2(y)(c − φa0)

(a0 + ca1�1(x) + ca2�2(y) + cφa1a2�1(x)�2(y))2
,

for x, y > 0. Hence, if c > φa0, then f (x, y) is TP2 and X an Y are positively depen-
dent. Also, if c < φa0, then f (x, y) is RR2 and X and Y are negatively dependent. As
we have already mentioned, the case c = φa0 corresponds to the independence case.

3.3 Bivariate survival function and bivariate hazard rate

The bivariate survival function of the model (3.3) is obtained in the following propo-
sition.

Proposition 3.3 The bivariate survival function of the PDF (3.3) can be obtained as

S(x, y) =

⎧⎪⎪⎨
⎪⎪⎩

cKφ−1+1/c

(g(x,y))1/c
F

(
1
c ,

1
c ; 1+c

c ; c−a0φ
g(x,y)

)
,

c−a0φ
g(x,y) > −1

cKφ−1+1/c

(g(x,y)+a0φ−c)1/c
F

(
1
c , 1; 1+c

c ; a0φ−c
g(x,y)−c+a0φ

)
,

c−a0φ
g(x,y) ≤ −1

(3.6)

for x, y ≥ 0, where g(x, y) = c(1 + φa2�2(y))(1 + φa1�1(x)) and F is the hyper-
geometric function defined in (3.4).

The proof follows the lines of Sect. 2.3 in Navarro and Sarabia (2013) and can be
obtained from the authors. Themarginal survival functions can be computed from (3.6)
since SX (t) = Pr(X > t) = S(t, 0) and SY (t) = Pr(Y > t) = S(0, t). Analogously,
the bivariate hazard rate function defined by Basu (1971) as

r(x, y) = f (x, y)

S(x, y)

can be computed from (3.3) and (3.6).

3.4 Hazard gradient and marginal hazard functions

The hazard gradient corresponding to the vector (X,Y ) is defined as follows (see
Johnson and Kotz 1975).
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Proportional generalized odds rate model 699

h(x, y) = (h1(x, y), h2(x, y))
′ = −∇ ln S(x, y),

where ∇ = (∂/∂x, ∂/∂y)′. Note that h1(x, y) = hX |Y>y(x) and h2(x, y) =
hY |X>x (y), where hX |Y>y(x) and hY |X>x (y) are the hazard rate functions of (X |Y >

y) and (Y |X > x), respectively, that is,

h1(x, y) = − ∂

∂x
ln S(x, y) = 1

S(x, y)

∫ ∞

y
f (x, v)dv

and

h2(x, y) = − ∂

∂y
ln S(x, y) = 1

S(x, y)

∫ ∞

x
f (u, y)du.

Hence, we get

h1(x, y) = 1

S(x, y)

Ka1λ1(x)

1 + φa1�1(x)
m−1/c

1 (x, y) (3.7)

and

h2(x, y) = 1

S(x, y)

Ka2λ2(y)

1 + φa2�2(y)
m−1/c

1 (x, y), (3.8)

where

m1(x, y) = a0 + ca1�1(x) + ca2�2(y) + cφa1a2�1(x)�2(y).

Notice that we have

h1(x, y)

h2(x, y)
= a1λ1(x)

a2λ2(y)

1 + φa2�2(x)

1 + φa1�1(x)
= hX |Y=y(x)

hY |X=x (y)
. (3.9)

In particular, if c > 0 and�1(t) = �2(t) = t for t ≥ 0, thenwe obtain the expressions
for the hazard components of the bivariate Pareto model given in (3.3) and (3.4) of
Gupta (2001).

The explicit expressions of the hazard components can be obtained from (3.6).
The monotonicity of the hazard gradient components can be obtained by using the
following result (Shaked 1977, Proposition 3.4 ).

Lemma 3.4 If f (x, y) is T P2 (RR2), then h1(x, y) is decreasing (increasing) in y
and h2(x, y) is decreasing (increasing) in x.

Then, by using the result given in Sect. 3.2, if c ≥ φa0 (c ≤ φa0), we conclude
that h1(x, y) is decreasing (increasing) in y and h2(x, y) is decreasing (increasing) in
x . Moreover we have the following result.

Proposition 3.5 Let c ≤ a0φ (≥).
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700 J. Navarro et al.

(i) If 1+ φa1�1(x) is logconvex (logconcave), then h1(x, y) is increasing (decreas-
ing) in x.

(ii) If 1+ φa2�2(y) is logconvex (logconcave), then h2(x, y) is increasing (decreas-
ing) in y.

The proof follows the lines of the proof of Proposition 2.2 in Navarro and Sarabia
(2013) and can be obtained from the authors.

In particular, for the bivariate Pareto model, if c > 0 and �1(t) = �2(t) = t for
t ≥ 0, then 1 + φa1�1(x) = 1 + φa1x and 1 + φa2�2(y) = 1 + φa2y which are
logconcave functions and hence h1(x, y) is decreasing in x and h2(x, y) is decreasing
in y. This result was obtained in Gupta (2001), p. 219. Analogously, if c → 0+, then
we obtain Proposition 2.2 in Navarro and Sarabia (2013).

3.5 Clayton–Oakes measure

A well known measure of association corresponding to bivariate survival models is
Clayton–Oakes measure (see e.g. Oakes 1989) defined by

θ(x, y) = f (x, y)S(x, y)

S1(x, y)S2(x, y)
. (3.10)

where S1(x, y) = ∂
∂x S(x, y) and S2(x, y) = ∂

∂y S(x, y). It is well know (see e.g.
Gupta 2001) that

θ(x, y) = hX |Y=y(x)

h1(x, y)
. (3.11)

Then θ(x, y) can be computed from (3.5) and (3.7). Moreover, fromGupta (2001) (see
p. 210), we have that θ(x, y) ≥ 1 (≤) if, and only if, h1(x, y) is increasing (decreasing)
in y. Hence, from the results obtained in Sect. 3.4, θ(x, y) ≥ 1 if, and only, if c ≥ φa0
(c ≤ φa0). Note in passing that there is a typo in the condition given in Gupta (2001),
p. 210, line 13, for θ(x, y) > 1 in the bivariate Pareto model (the second λ2 should be
replaced with λ0).

3.6 Series and parallel systems

Let us consider series and parallel systems with two components having lifetimes X
and Y . Suppose that the PDF of (X,Y ) is of the form (3.3). Then, using (3.1) and
(3.2), if it is known that a component has failed at time t , then the lifetime of the other
component satisfies a PGOR model with parameter θi (t) and a baseline GO function
�i , i = 1, 2. Now if T1:2 = min(X,Y ) is the lifetime of the series system, then its
survival function is

S1:2(t) = Pr(min(X,Y ) > t) = S(t, t).
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Proportional generalized odds rate model 701

Hence, it can be computed from (3.6). Analogously, its hazard rate can be computed
from (3.7) and (3.8), by using the fact that

h1:2(t) = h1(t, t) + h2(t, t)

(see e.g. Gupta (2001)). Alternatively, from (3.9), it can be computed as

h1:2(t) = h2(t, t)

(
1 + h1(t, t)

h2(t, t)

)
= h2(t, t)

(
1 + a1λ1(t)

a2λ2(t)

1 + φa2�2(t)

1 + φa1�1(t)

)
.

(3.12)
Hence, from Proposition 3.5, we have the following result.

Proposition 3.6 If c ≥ a0φ (≤), 1+φa2�2(y) is logconcave (logconvex),λ1(t)/λ2(t)
is decreasing (increasing), λ1(t)/λ2(t) ≥ a2/a1 (≤) and λ1(t)/λ2(t) ≥ �1(t)/�2(t)
(≤), then h1:2(t) is decreasing (increasing).

In particular, if a1 = a2 and �1(t) = �2(t), then h1:2(t) is decreasing (increasing)
whenever c ≥ a0φ (≤) and 1+φa2�2(y) is logconcave (logconvex). For the bivariate
Pareto model, we have �1(t) = �2(t) = t and hence 1 + φa2�2(y) = 1 + φa2y
which is logconcave. Therefore, h1:2(t) is decreasing whenever c ≥ a0φ and a1 ≥ a2.
Gupta (2001) proved, by using a different approach, that h1:2(t) is always decreasing.

Analogously, the lifetime of a parallel system with component lifetimes X and Y
is T2:2 = max(X,Y ) for which the survival function can be computed as

S2:2(t) = S(t, 0) + S(0, t) − S(t, t).

Hence S2:2(t) can be obtained from (3.6).

4 Bivariate models with PGOR conditional survival distributions

In this sectionwe obtain an alternative bivariate model by assuming that its conditional
survival distributions satisfy

(X |Y > y) ∼ PGOR(θ1(y), c1(y),�1(x)) (4.1)

and

(Y |X > x) ∼ PGOR(θ2(x), c2(x),�2(y)), (4.2)

for x, y ≥ 0, where �1(x) and �2(y) are GO functions and c1(y), c2(x) > 0. In
the next theorem, we obtain the unique models satisfying (4.1) and (4.2).

Theorem 4.1 If �1 and �2 are GO functions and (X,Y ) is a random vector with
support (0,∞) × (0,∞) satisfying (4.1) and (4.2) for x, y ≥ 0, then its survival
function is

S(x, y) = (1 + ca1�1(x) + ca2�2(y) + θca1a2�1(x)�2(y))
−1/c , (4.3)
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for x, y ≥ 0, where a1, a2, c > 0 and 0 ≤ θ ≤ c + 1 or

S(x, y) = exp(−θ1 ln(1 + a1�1(x)) − θ2 ln(1 + a2�2(y))

− θ3 ln(1 + a1�1(x)) ln(1 + a2�2(y))) (4.4)

for x, y ≥ 0, where a1, a2, θ1, θ2 > 0 and θ3 ≥ 0.

Proof As X and Y have support (0,∞), then �1 and �2 are strictly increasing func-
tions in (0,∞). If X∗ = �1(X) and Y ∗ = �2(Y ), then (X∗,Y ∗) satisfies (4.1) and
(4.2) for �∗

1(x) = x and �2(y)∗ = y, that is, their conditional distributions satisfy

Pr(X∗ > x |Y ∗ > y) =
(
1 + x

θ∗
1 (y)

)−1/c∗
1(y)

,

Pr(Y ∗ > y|X∗ > x) =
(
1 + y

θ∗
2 (x)

)−1/c∗
2(x)

,

for x, y ≥ 0. Hence, (X∗,Y ∗) satisfies the conditions (11.31) and (11.32) (p. 262) in
Arnold et al. (1999) in the case (i). Therefore, the survival function S∗ of (X∗,Y ∗)
satisfies (11.35) or (11.36) (p. 263) in Arnold et al. (1999).

In the first case, it can be written as

S∗(x, y) = (1 + ca1x + ca2y + cθa1a2xy)
−1/c,

for x, y > 0, where a1, a2, c > 0 and 0 ≤ θ ≤ c + 1. The last condition is needed
in order to assure that its PDF is nonnegative. Note in passing that there is a mistake
in p. 263 of Arnold et al. (1999) since we need θ ∈ [0, c + 1] (instead of θ ∈ [0, 2])
in order to assure that the model in (11.35) is a valid model. Hence, in this case, the
survival function of (X,Y ) is given by S(x, y) = S∗(�1(x),�2(y)) and (4.3) holds.

In the second case, S∗ can be written as

S∗(x, y) = exp(−θ1 ln(1 + a1x) − θ2 ln(1 + a2y) − θ3 ln(1 + a1x) ln(1 + a2y)),

for x, y ≥ 0, where a1, a2, θ1, θ2 > 0 and θ3 ≥ 0. Hence, in this case, the survival
function of (X,Y ) is given by S(x, y) = S∗(�1(x),�2(y)) and (4.4) holds.

Remark 4.2 If we restrict conditions (4.1) and (4.2) to the case c1(y) = c2(x) = c > 0
for x, y ≥ 0, then the unique solution is (4.3) since, if (4.4) holds, then

Pr(X > x |Y > y) = (1 + a1�1(x))
−θ1−θ3 ln(1+a2�2(y))

for x, y ≥ 0. Hence θ3 = 0 and θ1 = 1/c. In a similar way, it can be proved that
θ2 = 1/c. Therefore, (4.4) reduces to

S(x, y) = (1 + a1�1(x))
−1/c(1 + a2�2(y))

−1/c
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which is included in the model (4.3) (by taking θ = c). So wewill restrict our attention
to the model (4.3) in the following sections.

As an immediate consequence we have that, if S is given by (4.3), then

lim
c→0+ S(x, y) = exp (−a1�1(x) − a2�2(y) − θa1a2�1(x)�2(y)) ,

which is the survival function of the model obtained in (3.3) of Navarro and Sara-
bia (2013) under the condition that the conditional distributions of (X |Y > y) and
(Y |X > x) satisfy the PHR model.

4.1 Marginal and conditional distributions

If (4.3) holds, then the marginal survival functions are

SX (x) = (1 + ca1�1(x))
−1/c,

for x ≥ 0 and

SY (y) = (1 + ca2�2(y))
−1/c,

for y ≥ 0. Note that both satisfy the PGOR model. The marginal PDF are

fX (x) = a1λ1(x)(1 + ca1�1(x))
−1−1/c,

for x ≥ 0 and

fY (y) = a2λ2(y)(1 + ca2�2(y))
−1−1/c,

for y ≥ 0. Hence the marginal hazard rate functions are

hX (x) = a1λ1(x)

1 + ca1�1(x)
,

for x ≥ 0 and

hY (y) = a2λ2(y)

1 + ca2�2(y)
,

for y ≥ 0. Therefore, hX is increasing (decreasing) if and only if 1 + a1�1(x) is
logconvex (logconcave). Analogously, hY is increasing (decreasing) if and only if
1 + a2�2(y) is logconvex (logconcave). Then the conditional survival functions can
be written as

Pr(X > x |Y > y) =
(
1 + ca1

1 + θa2�2(y)

1 + ca2�2(y)
�1(x)

)−1/c
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and

Pr(Y > y|X > x) =
(
1 + ca2

1 + θa1�1(x)

1 + ca2�1(x)
�2(y)

)−1/c

,

for x, y ≥ 0. Therefore (4.1) and (4.2) hold for c1(y) = c2(x) = c > 0,

θ1(y) = 1

a1

1 + ca2�2(y)

1 + θa2�2(y)

and

θ2(x) = 1

a2

1 + ca1�1(x)

1 + θa1�1(x)
,

for x, y ≥ 0. Hence θ1(y) and θ2(x) are increasing (decreasing) functions whenever
0 ≤ θ ≤ c (c ≤ θ ≤ c + 1). The case c = θ corresponds to the independence case
with θ1(y) = 1/a1 and θ2(x) = 1/a2 for x, y ≥ 0.

The conditional survival PDF are

fX |Y>y(x) = a1λ1(x)
1 + θa2�2(y)

1 + ca2�2(y)

(
1 + ca1

1 + θa2�2(y)

1 + ca2�2(y)
�1(x)

)−1−1/c

and

fY |X>x (y) = a2λ2(y)
1 + θa1�1(x)

1 + ca2�1(x)

(
1 + ca2

1 + θa1�1(x)

1 + ca2�1(x)
�2(y)

)−1−1/c

,

for x, y ≥ 0. Hence their hazard rate functions are

hX |Y>y(x) = λ1(x)

c�1(x) + θ1(y)

and

hY |X>x (y) = λ2(y)

c�2(y) + θ2(x)
.

Therefore, hX |Y>y(x) is decreasing (increasing) in y and hY |X>x (y) is decreasing
(increasing) in x whenever 0 ≤ θ ≤ c (c ≤ θ ≤ c + 1). Moreover, hX |Y>y(x) is
increasing (decreasing) in x if, and only, if c�1(x)+ θ1(y) is logconvex (logconcave)
in x . Analogously, hY |X>x (y) is increasing (decreasing) in y if, and only, if c�2(y)+
θ2(x) is logconvex (logconvex) in y. Recall that these functions are the components
of the hazard gradient h = (h1, h2) of (X,Y ), that is, h1(x, y) = hX |Y>y(x) and
h2(x, y) = hY |X>x (y).
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4.2 Bivariate density and bivariate hazard rate

The bivariate PDF of the survival function (4.3) is

f (x, y)=a1a2λ1(x)λ2(y)
c+1 − θ+θa1�1(x)+θa2�2(y)+θ2a1a2�1(x)�2(y)

(m2(x, y))2+1/c ,

for x, y ≥ 0, where

m2(x, y) = 1 + ca1�1(x) + ca2�2(y) + θca1a2�1(x)�2(y).

Note that f is nonnegative whenever 0 ≤ θ ≤ c+1. The bivariate hazard rate function
r(x, y) = f (x, y)/S(x, y) can be obtained as

r(x, y) = a1a2λ1(x)λ2(y)
c − θ + (1 + θa1�1(x))(1 + θa2�2(y))

(m2(x, y))2
, (4.5)

for x, y ≥ 0. In the next theorem we show that this bivariate hazard rate function
jointly with the marginal survival functions characterize the model (4.3) (under some
assumptions). The proof is obtained from Theorem 1 in Navarro (2008).

Theorem 4.3 Let �1 and �2 be analytical GO functions in (0,∞) and let S(x, y)
be a bivariate survival function such that ln S(x, y) is analytical in (0,∞) × (0,∞).
Then S(x, y) satisfies (4.3) if and only if the following conditions hold:

(i) X ∼ PGOR(1/a1, c,�1(x)),
(ii) Y ∼ PGOR(1/a2, c,�2(y)) and
(iii) r(x, y) is given by (4.5).

4.3 Conditional densities and conditional hazard functions

Suppose that (X,Y ) has survival function of the form (4.3), then the (usual) conditional
PDF are

fX |Y=y(x) = a1λ1(x)
c − θ + (1 + θa1�1(x))(1 + θa2�2(y))

(1 + ca2�2(y))−1−1/c(m2(x, y))2+1/c

and

fY |X=x (y) = a2λ2(y)
c − θ + (1 + θa1�1(x))(1 + θa2�2(y))

(1 + ca1�1(x))−1−1/c(m2(x, y))2+1/c ,

for x, y ≥ 0. The conditional hazard functions can be computed from the preceding
expressions as

hX |Y=y(x) = fX |Y=y(x)∫ ∞
x fX |Y=y(z)dz
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and

hY |X=x (y) = fY |X=x (y)∫ ∞
y fY |X=x (z)dz

,

for x, y ≥ 0. Alternative expressions are given in the following section.

4.4 Clayton–Oakes measure

If the joint survival function of (X,Y ) is given by (4.3), then the Clayton–Oakes
measure of association θ(x, y) defined by (3.10) is given by

θ(x, y) = 1 + c − θ

(1 + θa1�1(x))(1 + θa2�2(y))
,

for x, y ≥ 0. Note that θ(x, y) is decreasing (increasing) in both x and y whenever
0 ≤ θ ≤ c (c ≤ θ ≤ c + 1). Also note that θ(x, y) = 1 if and only if c = θ . Hence,
from (3.11), the conditional hazard rate hX |Y=y(x) can be computed as

hX |Y=y(x) = θ(x, y)hX |Y>y(x) = θ(x, y)
λ1(x)

c�1(x) + θ1(y)
.

Analogously, hY |X=x (y) can be computed as hY |X=x (y) = θ(x, y)hY |X>x (y).

4.5 Series and parallel systems

In this subsection we consider series and parallel systems with components lifetimes
X,Y where (X,Y ) has the joint survival function (4.3). This is equivalent from (4.1)
and (4.2) to assume that if it is known that a component is working at age t , then the
conditional distribution of the other component has a PGOR model with parameter
θi (t) and GO functions �i , i = 1, 2. Then the survival function of the lifetime of the
series system T1:2 = min(X,Y ) is

S1:2(t) = S(t, t) = (m2(t, t))
−1/c.

and its hazard rate function is

h1:2(t) = h1(t, t) + h2(t, t) = λ1(t)

θ1(t) + c�1(t)
+ λ2(t)

θ2(t) + c�2(t)
.

For the parallel system lifetime T2:2 = max(X,Y ), the survival function is given by

S2:2(t) = (1 + ca1�1(t))
−1/c + (1 + ca2�2(t))

−1/c − (m2(t, t))
−1/c.

123



Proportional generalized odds rate model 707

5 An application

In this section we fit our model (3.3) to the data set presented in Simiu and Fil-
liben (1975) on annual maximal wind speeds (mph) at two locations (Eastport and
North Head) in the United States of America for the period 1912–1948 (see also
Arnold et al. 1999, Table 12.1, p. 287). In our model we assume that

�1(x) = 1 − (1 − exp{− exp(−(x − 5)/10)})α1
α1(1 − exp{− exp(−(x − 5)/10)})α1 ,

�2(y) = 1 − (1 − exp{− exp(−(y − 5)/10)})α2
α2(1 − exp{− exp(−(y − 5)/10)})α2 ,

a0 = 1.

Arnold et al. (1999) fitted their models (model (12.21) on p. 279 and model (12.39)
on p. 282) to this data set obtaining ln(L) = 110.992, 114.025, respectively, where
L is the likelihood function (see also Arnold et al. 1998). The corresponding para-
meter estimations together with the estimated standard errors and the corresponding
values of the log-likelihoods are displayed in Table 12.2, p. 288, of Arnold et al.
(1999).

Under the above assumptions, the parameter estimations together with the esti-
mated standard errors and the value of the log-likelihood function for our model (3.3)
are displayed in Table 1. The parameters are estimated by using MLE with numeri-
cal procedures by using the interior-point method. The estimated standard errors are
obtained by using numerical methods with computing the elements of Fisher infor-
mation matrix. As the results show, our model fits better than the models considered
by Arnold et al. (1999). Furthermore, according to Sect. 3.2, the values of c and φ

indicate a negative correlation as one can expect for this data set. The density contour
plot for this model can be seen in Fig. 1.

Instead of the log-likelihood function we can use the AIC value to compare the
models. For any statistical model, the AIC value is

AIC = 2k − 2 ln(L),

where k is the number of parameters in the model, and L is the maximized value
of the likelihood function for the model. Given a set of candidate models for the

Table 1 Parameter estimations
together with the estimated
standard errors and the value of
the log-likelihood function for
the model (3.3)

Parameters Estimations Standard errors

α1 6.8118 0.0043

α2 3.578 0.0074

a1 0.01 0.0056

a2 0.01 0.0038

φ 0.5526 0.0047

c 0.01 0.0048

ln(L) 170.17
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Fig. 1 Density contour plot for
model (3.3) for the maximum
wind speeds data set
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data, the model with the minimum AIC value is preferred. The AIC not only rewards
goodness of fit, but also includes a penalty that is an increasing function of the number
of estimated parameters. The AIC for the models in Arnold et al. (1999) are: 2 · 5−
2 · 110.992 = −211.984, and 2 · 5− 2 · 114.025 = −218.5 and the AIC of our model
is: 2 ·6−2 ·170.17 = −318.34. Hence, using the AIC criterion, our model is preferred
to the models considered in Arnold et al. (1999).

6 Conclusions

In this paper two new bivariate models are obtained and studied from a theoretical
point-of-view. The models are characterized by the property that their conditional
distributions (in two different senses) belong to the proportional generalized odds rate
(PGOR) model with parameter c > 0. The proposed models are very flexible and
contain in the limit (when c → 0+) the models obtained in Navarro and Sarabia
(2013) characterized by conditional distributions in the Cox PHR model. They also
contain the bivariate Pareto models obtained and studied in Arnold et al. (1993, 1999)
and Gupta (2001).
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