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Abstract Panel data of our interest consist of a moderate or relatively large number of
panels, while the panels contain a small number of observations. This paper establishes
testing procedures to detect a possible common change in means of the panels. To
this end, we consider a ratio type test statistic and derive its asymptotic distribution
under the no change null hypothesis. Moreover, we prove the consistency of the test
under the alternative. The main advantage of such an approach is that the variance
of the observations neither has to be known nor estimated. On the other hand, the
correlation structure is required to be calculated. To overcome this issue, a bootstrap
technique is proposed in the way of a completely data driven approach without any
tuning parameters. The validity of the bootstrap algorithm is shown. As a by-product
of the developed tests, we introduce a common break point estimate and prove its
consistency. The results are illustrated through a simulation study. An application of
the procedure to actuarial data is presented.
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No. P201/13/12994P.

B. Peštová · M. Pešta (B)
Department of Probability and Mathematical Statistics, Faculty of Mathematics and Physics,
Charles University in Prague, Sokolovská 83, 18675 Prague 8, Czech Republic
e-mail: Michal.Pesta@mff.cuni.cz

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s00184-014-0522-8&domain=pdf


666 B. Peštová, M. Pešta

1 Introduction

The problem of an unknown common change in means of the panels is studied here,
where the panel data consist of N panels and each panel contains T observations
over time. Various values of the change are possible for each panel at some unknown
common time τ = 1, . . . , N . The panels are considered to be independent, but this
restriction can be weakened. In spite of that, observations within the panel are usually
not independent. It is supposed that a common unknown dependence structure is
present over the panels.

Tests for change point detection in the panel data have been proposed only in case
when the panel size T is sufficiently large, i.e., T increases over all limits from an
asymptotic point of view, cf. Chan et al. (2013) or Horváth and Hušková (2012). How-
ever, the change point estimation has already been studied for finite T not depending
on the number of panels N , see Bai (2010). The remaining task is to develop testing
procedures to decide whether a common change point is present or not in the panels,
while taking into account that the length T of each observation regime is fixed and
can be relatively small.

1.1 Motivation

Structural changes in panel data—especially common breaks in means—are wide
spread phenomena. Our primary motivation comes from non-life insurance busi-
ness, where associations in many countries uniting several insurance companies col-
lect claim amounts paid by every insurance company each year. Such a database of
cumulative claim payments can be viewed as panel data, where insurance company
i = 1, . . . , N provides the total claim amount Yi,t paid in year t = 1, . . . , T into the
common database. The members of the association can consequently profit from the
joint database.

For the whole association it is important to know, whether a possible change in the
claim amounts occurred during the observed time horizon. Usually, the time period is
relatively short, e.g., 10–15 years. To bemore specific, a widely used and very standard
actuarial method for predicting future claim amounts—called chain ladder—assumes
a kind of stability of the historical claim amounts. The formal necessary and sufficient
condition is derived in Pešta and Hudecová (2012). This paper shows a way how to
test for a possible historical instability.

2 Panel change point model

Let us consider the panel change point model

Yi,t = μi + δiI{t > τ } + σεi,t , 1 ≤ i ≤ N , 1 ≤ t ≤ T ; (1)

where σ > 0 is an unknown variance-scaling parameter and T is fixed, not depending
on N . The possible common change point time is denoted by τ ∈ {1, . . . , T }. A sit-
uation where τ = T corresponds to no change in means of the panels. The means
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Testing structural changes in panel data 667

μi are panel-individual. The amount of the break in mean, which can also differ for
every panel, is denoted by δi . Furthermore, it is assumed that the sequences of panel
disturbances {εi,t }t are independent and within each panel the errors form a weakly
stationary sequence with a common correlation structure. This can be formalized in
the following assumption.

Assumption A1 The vectors [εi,1, . . . , εi,T ]� existing on a probability space
(Ω,F , P) are i id for i = 1, . . . , N with Eεi,t = 0 and Var εi,t = 1, having the
autocorrelation function

ρt = Corr
(
εi,s, εi,s+t

) = Cov
(
εi,s, εi,s+t

)
, ∀s ∈ {1, . . . , T − t},

which is independent of the lag s, the cumulative autocorrelation function

r(t) = Var
t∑

s=1

εi,s =
∑

|s|<t

(t − |s|)ρs,

and the shifted cumulative correlation function

R(t, v) = Cov

(
t∑

s=1

εi,s,

v∑

u=t+1

εi,u

)

=
t∑

s=1

v∑

u=t+1

ρu−s, t < v

for all i = 1, . . . , N and t, v = 1, . . . , T .

The sequence {εi,t }Tt=1 can be viewed as a part of a weakly stationary process.
Note that the dependent errors within each panel do not necessarily need to be linear
processes. For example,GARCHprocesses as error sequences are allowed aswell. The
assumption of independent panels can indeed be relaxed, but it would make the setup
much more complex. Consequently, probabilistic tools for dependent data need to be
used (e.g., suitable versions of the central limit theorem). Nevertheless, assuming, that
the claim amounts for different insurance companies are independent, is reasonable.
Moreover, the assumption of a common homoscedastic variance parameter σ can
be generalized by introducing weights wi,t , which are supposed to be known. Being
particular in actuarial practice, it would mean to normalize the total claim amount by
the premium received, since bigger insurance companies are expected to have higher
variability in total claim amounts paid.

It is required to test the null hypothesis of no change in the means

H0 : τ = T

against the alternative that at least one panel has a change in mean

H1 : τ < T and ∃i ∈ {1, . . . , N } : δi �= 0.
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668 B. Peštová, M. Pešta

3 Test statistic and asymptotic results

We propose a ratio type statistic to test H0 against H1, because this type of statistic
does not require estimation of the nuisance parameter for the variance. Generally, this
is due to the fact that the variance parameter simply cancels out from the nominator and
denominator of the statistic. In spite of that, the common variance could be estimated
from all the panels, of which we possess a sufficient number. Nevertheless, we aim
to construct a valid and completely data driven testing procedure without interfering
estimation and plug-in estimates instead of nuisance parameters. A bootstrap add-on
is going to serve this purpose as it is seen later on.

For surveys on ratio type test statistics, we refer to Chen and Tian (2014), Csörgő
and Horváth (1997), Horváth et al. (2009), Liu et al. (2008), andMadurkayová (2011).
Our particular panel change point test statistic is

RN (T ) = max
t=2,...,T−2

maxs=1,...,t

∣∣∣
∑N

i=1

[∑s
r=1

(
Yi,r − �Yi,t

)]∣∣∣

maxs=t,...,T−1

∣∣∣
∑N

i=1

[∑T
r=s+1

(
Yi,r − Ỹi,t

)]∣∣∣
,

where �Yi,t is the average of the first t observations in panel i and Ỹi,t is the average of
the last T − t observations in panel i , i.e.,

�Yi,t = 1

t

t∑

s=1

Yi,s and Ỹi,t = 1

T − t

T∑

s=t+1

Yi,s .

An alternative way for testing the change in panel means could be a usage of
CUSUM type statistics. For example, a maximum or minimum of a sum (not a ratio)
of properly standardized or modified sums from our test statisticRN (T ). The theory,
which follows, can be appropriately rewritten for such cases.

Firstly, we derive the behavior of the test statistics under the null hypothesis.

Theorem 1 (Under null) Under hypothesis H0 and Assumption A1

RN (T )
D−−−−→

N→∞ max
t=2,...,T−2

maxs=1,...,t
∣
∣Xs − s

t Xt
∣
∣

maxs=t,...,T−1

∣
∣∣Zs − T−s

T−t Zt

∣
∣∣
,

where Zt := XT − Xt and [X1, . . . , XT ]� is a multivariate normal random vector
with zero mean and covariance matrix Λ = {λt,v}T,T

t,v=1 such that

λt,t = r(t) and λt,v = r(t) + R(t, v), t < v.

The limiting distribution does not depend on the variance nuisance parameter σ ,
but it depends on the unknown correlation structure of the panel change point model,
which has to be estimated for testing purposes. The way of its estimation is shown
in Sect. 4.1. Furthermore, Theorem 1 is just a theoretical mid-step for the bootstrap
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Testing structural changes in panel data 669

test, where the correlation structure need not to be known. That is why the presence
of unknown quantities in the asymptotic distribution is not troublesome.

Note that in case of independent observations within the panel, the correlation
structure and, hence, the covariance matrix Λ is simplified such that r(t) = t and
R(t, v) = 0.

Next, we show how the test statistic behaves under the alternative.

Assumption A2 limN→∞ 1√
N

∣∣∣
∑N

i=1 δi

∣∣∣ = ∞.

Theorem 2 (Under alternative) If τ ≤ T − 3, then under Assumptions A1, A2 and
alternative H1

RN (T )
P−−−−→

N→∞ ∞. (2)

Assumption A2 is satisfied, for instance, if 0 < δ ≤ δi ∀i (a common lower change
point threshold) and δ

√
N → ∞, N → ∞. Another suitable example of δi s for the

condition in Assumption A2, can be 0 < δi = K N−1/2+η for some K > 0 and η > 0.
Or δi = Ciα−1

√
N may be used as well, where α ≥ 0 and C > 0. The assumption

τ ≤ T −3 means that there are at least three observations in the panel after the change
point. It is also possible to redefine the test statistic by interchanging the nominator
and the denominator ofRN (T ). Afterwards, Theorem 2 for the modified test statistic
would require three observations before the change point, i.e., τ ≥ 3.

Theorem 2 says that in presence of a structural change in the panel means, the
test statistic explodes above all bounds. Hence, the procedure is consistent and the
asymptotic distribution from Theorem 1 can be used to construct the test.

4 Change point estimation

Despite the fact that the aim of the paper is to establish testing procedures for detection
of a panel mean change, it is necessary to construct a consistent estimate for a possible
change point. There are two reasons for that: Firstly, the estimation of the covariance
matrix Λ from Theorem 1 requires panels as vectors with elements having common
mean (i.e., without a jump). Secondly, the bootstrap procedure, introduced later on,
requires centered residuals to be resampled.

A consistent estimate of the change point in the panel data is proposed inBai (2010),
but under circumstances that the change occurred for sure. In our situation, we do not
know whether a change occurs or not. Therefore, we modify the estimate proposed
by Bai (2010) in the following way. If the panel means change somewhere inside
{2, . . . , T −1}, let the estimate consistently select this change. If there is no change in
panel means, the estimate points out the very last time point T with probability going
to one. In other words, the value of the change point estimate can be T meaning no
change. This is in contrast with Bai (2010), where T is not reachable.

Let us define the estimate of τ :

τ̂N := arg max
t=2,...,T

1

t

N∑

i=1

t∑

s=1

(Yi,s − �Yi,t )2. (3)
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670 B. Peštová, M. Pešta

Now, we show the desired property of consistency for the proposed change point
estimate under the following assumptions.

Assumption C1 L < limN→∞ 1
N

∑N
i=1 δ2i < ∞, where L = −∞ if τ = T and

L = maxt=τ+1,...,T
σ 2t2

τ(t−τ)

(
r(τ )

τ 2
− r(t)

t2

)
otherwise.

Assumption C2 Eε41,t < ∞, t ∈ {1, . . . , T }.
Theorem 3 (Changepoint estimate consistency)Suppose that τ �= 1and the sequence
{r(t)/t2}Tt=2 is decreasing. Then under Assumptions A1, C1, and C2

lim
N→∞ P[̂τN = τ ] = 1.

Assumption C1 assures that the values of changes have to be large enough com-
pared to the variability of the random noise in the panels and to the strength of depen-
dencies within the panels as well. On one hand, Assumption C1 implies the usual
assumption limN→∞ 1√

N

∑N
i=1 δ2i = ∞ in change point analysis, cf. Bai (2010)

or Horváth and Hušková (2012). On the other hand, Assumption C1 assures that
limN→∞ 1

N2

∑N
i=1 δ2i = 0, which is not present when the panel size T is considered

as unbounded, i.e., T → ∞. Here, this second part is needed to control the asymptotic
boundedness of the variability of 1

t

∑N
i=1

∑t
s=1(Yi,s−�Yi,t )2, because a finite T cannot

do that.
Similarly as in the previous section, Assumption C1 is satisfied for 0 < δ ≤

δi < �,∀i (a common lower and upper bound for the change amount) and suitable
σ and r(t). Assumptions A2 and C1 are generally incomparable. The monotonicity
assumption from Theorem 3 in not very restrictive at all. For example in case of
independent observations within the panel, this assumption is automatically fulfilled,
since {1/t}Tt=2 is decreasing. Moreover, the weaker the dependency within the panel,
the faster the decrease of r(t)/t2.

One can check the proof of Theorem 3 and see that Assumption C1 can
be replaced by more restrictive assumptions limN→∞ 1

N

∑N
i=1 δ2i = ∞ and

limN→∞ 1
N2

∑N
i=1 δ2i = 0. This first assumption might be considered as too strong,

because a common value of δ = δi for all i does not fulfill it.
Various competing consistent estimates of a possible change point can be suggested,

e.g., themaximizer of
∑N

i=1

[∑t
s=1(Yi,s − �Yi,T )

]2
. To show the consistency, one needs

to postulate different assumptions on the cumulative autocorrelation function and
shifted cumulative correlation function compared to Theorem 3 and this may be rather
complex.

4.1 Estimation of the correlation structure

Since the panels are considered to be independent and the number of panelsmay be suf-
ficiently large, one can estimate the correlation structure of the errors [ε1,1, . . . , ε1,T ]�
empirically. We base the errors’ estimates on residuals
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Testing structural changes in panel data 671

êi,t :=
{
Yi,t − �Yi,̂τN , t ≤ τ̂N ,

Yi,t − Ỹi,̂τN , t > τ̂N .
(4)

Then, the empirical version of the autocorrelation function is

ρ̂t := 1

σ̂ 2NT

N∑

i=1

T−t∑

s=1

êi,s êi,s+t .

Consequently, the kernel estimation of the cumulative autocorrelation function and
shifted cumulative correlation function is adopted in lines with Andrews (1991):

r̂(t) =
∑

|s|<t

(t − |s|)κ
( s
h

)
ρ̂s,

R̂(t, v) =
t∑

s=1

v∑

u=t+1

κ

(
u − s

h

)
ρ̂u−s, t < v;

where h > 0 stands for the window size and κ belongs to a class of kernels given by

{
κ(·) : R → [−1, 1] ∣∣ κ(0) = 1, κ(x) = κ(−x), ∀x,

∫ +∞

−∞
κ2(x)dx < ∞,

κ(·) is continuos at 0 and at all but a finite number of other points

}
.

Since the variance parameter σ is not present in the limiting distribution of
Theorem 1, it neither has to be estimated nor known. Nevertheless, one can use
σ̂ 2 := 1

NT

∑N
i=1

∑T
s=1 ê

2
i,s .

5 Bootstrap and hypothesis testing

A wide range of literature has been published on bootstrapping in the change
point problem, e.g., Hušková and Kirch (2012) or Hušková et al. (2008). We
build up the bootstrap test on the resampling with replacement of row vectors
{[̂ei,1, . . . , êi,T ]}i=1,...,N corresponding to the panels. This provides bootstrapped row
vectors {[̂e∗

i,1, . . . , ê
∗
i,T ]}i=1,...,N . Then, the bootstrapped residuals ê∗

i,t are centered by

their conditional expectation 1
N

∑N
i=1 êi,t yielding

Ŷ ∗
i,t := ê∗

i,t − 1

N

N∑

i=1

êi,t .

The bootstrap test statistic is just a modification of the original statisticRN (T ), where
the original observations Yi,t are replaced by their bootstrap counterparts Ŷ ∗

i,t :
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672 B. Peštová, M. Pešta

R∗
N (T ) = max

t=2,...,T−2

maxs=1,...,t

∣
∣∣
∑N

i=1

[∑s
r=1

(
Ŷ ∗
i,r − �̂Y ∗

i,t

)]∣∣∣

maxs=t,...,T−1

∣∣
∣
∑N

i=1

[∑T
r=s+1

(
Ŷ ∗
i,r − ˜̂Y

∗
i,t

)]∣∣
∣
,

such that

�̂Y ∗
i,t = 1

t

t∑

s=1

Ŷ ∗
i,s and ˜̂Y

∗
i,t = 1

T − t

T∑

s=t+1

Ŷ ∗
i,s .

An algorithm for the bootstrap is illustratively shown in Procedure 1 and its validity
will be proved in Theorem 4.

Procedure 1 Bootstrapping test statisticRN (T ).
Input: Panel data consisting of N panels with length T , i.e., N row vectors of observations [Yi,1, . . . , Yi,T ].
Output: Bootstrap distribution of RN (T ), i.e., the empirical distribution where probability mass 1/B

concentrates at each of (1)R∗
N (T ), . . . , (B)R∗

N (T ).
1: estimate the change point by calculating τ̂N
2: compute residuals êi,t
3: for b = 1 to B do // repeat in order to obtain the empirical distribution
4: {[̂e∗i,1, . . . , ê∗i,T ]}Ni=1 resampled with replacement from original rows {[̂ei,1, . . . , êi,T ]}Ni=1
5: calculate bootstrap panel data Ŷ ∗

i,t
6: compute bootstrap test statistics (b)R∗

N (T )

7: end for

5.1 Validity of the resampling procedure

The idea behind bootstrapping is to mimic the original distribution of the test statistic
in some sense with the distribution of the bootstrap test statistic, conditionally on the
original data denoted byY ≡ {Yi,t }N ,T

i,t=1.
First of all, two simple and just technical assumptions are needed.

Assumption B1 {εi,t }t possesses the lagged cumulative correlation function

S(t, v, d) = Cov

(
t∑

s=1

εi,s,

v∑

u=t+d

εi,u

)

=
t∑

s=1

v∑

u=t+d

ρu−s, ∀i ∈ N.

Assumption B2 limN→∞ P[̂τN = τ ] = 1.

Assumption B1 is not really an assumption, actually it is only a notation. Notice
that S(t, v, 1) ≡ R(t, v). Assumption B2 is satisfied for our estimate proposed in (3),
if the assumptions of Theorem 2 hold. Assumption B2 is postulated in a rather broader
sense, because we want to allow any other consistent estimate of τ to be used instead.

Realize that it is not known, whether the common panel means’ change occurred
or not. In other words, one does not know whether the data come from the null or the
alternative hypothesis. Therefore, the following theorem holds under H0 as well as
H1.
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Testing structural changes in panel data 673

Theorem 4 (Bootstrap justification) Under Assumptions A1, B1, B2, and C2

R∗
N (T )|Y D−−−−→

N→∞ max
t=2,...,T−2

maxs=1,...,t
∣∣Xs − s

t Xt
∣∣

maxs=t,...,T−1

∣∣∣Zs − T−s
T−t Zt

∣∣∣
in probability P,

where Zt := XT − Xt and [X1, . . . ,XT ]� is a multivariate normal random vector
with zero mean and covariance matrix Γ = {

γt,v(τ )
}T,T
t,v=1 such that

γt,t (τ ) =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

r(t) + t2

τ 2
r(τ ) − 2t

τ
[r(t) + R(t, τ )],

t < τ ;
0, t = τ ;
r(t − τ) + (t−τ)2

(T−τ)2
r(T − τ) − 2(t−τ)

T−τ
[r(t − τ) + R(t − τ, T − τ)] ,

t > τ ;

and

γt,v(τ ) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0, t = τ or v = τ,

r(t) + R(t, v) + tv
τ 2
r(τ ) − v

τ
[r(t) + R(t, τ )]

− t
τ
[r(v) + R(v, τ )], t < v < τ ;

S(t, v, τ + 1 − t) + t (v−τ)
τ (T−τ)

R(τ, T )

− v−τ
T−τ

S(t, T, τ + 1 − t) − t
τ
R(τ, v), t < τ < v;

r(t − τ) + R(t − τ, v − τ) + (t−τ)(v−τ)

(T−τ)2
r(T − τ)

− v−τ
T−τ

[r(t − τ) + R(t − τ, T − τ)]
− t−τ

T−τ
[r(v − τ) + R(v − τ, T − τ)], τ < t < v.

The validity of the bootstrap test is assured by Theorem 4. Indeed, the conditional
asymptotic distribution of the bootstrap test statistic is a functional of a multivariate
normal distribution under the null as well as under the alternative. It does not converge
to infinity (in probability) under the alternative. That is why it can be used for correctly
rejecting the null in favor of the alternative, having sufficiently large N . Moreover, the
following theorem states that the conditional distribution of the bootstrap test statistic
and the unconditional distribution of the original test statistic coincide. And that is the
reason why the bootstrap test should approximately keep the same level as the original
test based on the asymptotics from Theorem 1.

Theorem 5 (Bootstrap test consistency) Under Assumptions A1, B2, C2 and hypoth-
esis H0, the asymptotic distribution of RN (T ) from Theorem 1 and the asymptotic
distribution of R∗

N (T )|Y from Theorem 4 coincide.

Now, the simulated (empirical) distribution of the bootstrap test statistic can be
used to calculate the bootstrap critical value, which will be compared to the value of
the original test statistic in order to reject the null or not.

Finally, note that one cannot think about any local alternative in this setup, because
τ has a discrete and finite support.
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6 Simulations

A simulation experiment was performed to study the finite sample properties of the
asymptotic and bootstrap test statistics for a common change in panel means. In par-
ticular, the interest lies in the empirical sizes of the proposed tests under the null
hypothesis and in the empirical rejection rate (power) under the alternative. Random
samples of panel data (5000 each time) are generated from the panel change point
model (1). The panel size is set to T = 10 and T = 25 in order to demonstrate the
performance of the testing approaches in case of small and intermediate panel length.
The number of panels considered is N = 50 and N = 200.

The correlation structurewithin each panel ismodeled via randomvectors generated
from iid, AR(1), and GARCH(1,1) sequences. The considered AR(1) process has
coefficient φ = 0.3. In case of GARCH(1,1) process, we use coefficients α0 = 1,
α1 = 0.1, and β1 = 0.2, which according to (Lindner 2009, [Example 1]) gives
a strictly stationary process. In all three sequences, the innovations are obtained as iid
randomvariables from a standard normalN(0, 1) or Student t5 distribution. Simulation
scenarios are produced as all possible combinations of the above mentioned settings.

When using the asymptotic distribution from Theorem 1, the covariance matrix is
estimated as proposed in Sect. 4.1 using the Parzen kernel

κP (x) =
⎧
⎨

⎩

1 − 6x2 + 6|x |3, 0 ≤ |x | ≤ 1/2;
2(1 − |x |)3, 1/2 ≤ |x | ≤ 1;
0, otherwise.

Several values of the smoothing window width h are tried from the interval [2, 5]
and all of them work fine providing comparable results. To simulate the asymptotic
distribution of the test statistics, 2000 multivariate random vectors are generated using
the pre-estimated covariance matrix.

The bootstrap approach does not need to estimate the covariance structure. The
number of bootstrap replications used is 2000. To access the theoretical results under
H0 numerically, Table 1 provides the empirical specificity (one minus size) of the tests

Table 1 Empirical specificity (1−size) of the test under H0 using the asymptotic and the bootstrap critical
values, considering a significance level of 5%

T N Innovations IID AR(1) GARCH(1,1)

10 50 N(0, 1) .948 .949 .943 .955 .949 .955

t5 .949 .954 .941 .956 .946 .953

200 N(0, 1) .952 .951 .937 .954 .942 .952

t5 .948 .953 .935 .960 .944 .953

25 50 N(0, 1) .948 .951 .929 .952 .954 .959

t5 .946 .951 .932 .954 .944 .958

200 N(0, 1) .950 .950 .927 .951 .947 .949

t5 .948 .953 .931 .952 .952 .952
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Table 2 Empirical sensitivity (power) of the test under H1 using the asymptotic and the bootstrap critical
values, considering a significance level of 5%

H1 T N Innovations IID AR(1) GARCH(1,1)

33 % 10 50 N(0, 1) .25 .29 .26 .28 .21 .22

t5 .18 .18 .19 .21 .20 .24

200 N(0, 1) .46 .50 .48 .51 .40 .45

t5 .37 .38 .39 .41 .40 .47

25 50 N(0, 1) .38 .43 .31 .37 .30 .36

t5 .34 .32 .27 .30 .32 .37

200 N(0, 1) .72 .79 .69 .66 .60 .67

t5 .53 .54 .51 .52 .58 .59

66 % 10 50 N(0, 1) .45 .52 .47 .50 .39 .41

t5 .36 .35 .38 .39 .39 .42

200 N(0, 1) .76 .84 .81 .81 .70 .77

t5 .65 .66 .68 .64 .69 .76

25 50 N(0, 1) .71 .79 .63 .66 .60 .7

t5 .60 .63 .44 .45 .60 .72

200 N(0, 1) .96 .98 .95 .95 .90 .94

t5 .84 .82 .86 .85 .90 .92

100 % 10 50 N(0, 1) .64 .69 .67 .71 .56 .64

t5 .52 .48 .49 .51 .55 .62

200 N(0, 1) .93 .96 .94 .95 .86 .92

t5 .84 .83 .86 .83 .87 .92

25 50 N(0, 1) .86 .91 .83 .86 .80 .85

t5 .76 .79 .66 .67 .79 .85

200 N(0, 1) 1.00 1.00 .99 .99 .98 .97

t5 .98 .97 .98 .97 .99 .99

for both the asymptotic and bootstrap version of the panel change point test, where
the significance level is α = 5%.

It may be seen that both approaches (using asymptotic and bootstrap distribution)
are close to the theoretical value of specificity .95. As expected, the best results are
achieved in case of independence within the panel, because there is no information
overlap between two consecutive observations. The precision of not rejecting the null
is increasing as the number of panels is getting higher and the panel is getting longer
as well.

The performance of both testing procedures under H1 in terms of the empirical
rejection rates is shown in Table 2, where the change point is set to τ = �T/2� and
the change sizes δi are independently uniform on [1, 3] in 33%, 66% or in all panels.

One can conclude that the power of both tests increases as the panel size and the
number of panels increase, which is straightforward and expected. It should be noticed
that numerical instability issues may appear for larger T , when generating from a T -
variate normal distribution. Moreover, higher power is obtained when a larger portion
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676 B. Peštová, M. Pešta

Table 3 Empirical sensitivity of
the test for small values of τ

under H1 using the asymptotic
and the bootstrap critical
values, considering
a significance level of 5%

T N τ H1, iid, N(0, 1)

10 50 3 .59 .63

200 3 .89 .91

25 50 5 .66 .68

200 5 .94 .96

of panels is subject to have a change in mean. The test power drops when switching
from independent observations within the panel to dependent ones. Innovations with
heavier tails (i.e., t5) yield smaller power than innovations with lighter tails. Generally,
the bootstrap outperforms the classical asymptotics in all scenarios.

Let us mention that for finite sections of processes with a stronger dependence
structure than taken into account in the simulation scenarios, Assumption C1 does not
have to be fulfilled. For example, Assumption C1 is violated for AR(1) with coefficient
φ = 0.9, δi = 2, σ = 1, standard normal or Student t5 innovations, and τ = 5 for
T = 10 or τ = 12 for T = 25. Here, the dependency under the considered variability
is too strong compared to the change size. It is rather difficult to detect possible changes
in such a setup.

Finally, an early change point is discussed very briefly. We stay with standard
normal innovations, iid observations within the panel, the size of changes δi being
independently uniform on [1, 3] in all panels, and the change point is τ = 3 in case
of T = 10 and τ = 5 for T = 25. The empirical sensitivities of both tests for small
values of τ are shown in Table 3.

When the change point is not in the middle of the panel, the power of the test
generally falls down. The source of such decrease is that the left or right part of the
panel possesses less observations with constant mean, which leads to a decrease of
precision in the correlation estimation in case of the asymptotic test and in the change
point estimation in case of the bootstrap test. Nevertheless, the bootstrap test again
outperforms the asymptotic version and,moreover, provides solid results even for early
or late change points (the late change points are not numerically demonstrated here).

7 Real data analysis

As mentioned in the introduction, our primary motivation for testing the panel mean
change comes from the insurance business. The data set is provided by the National
Association of InsuranceCommissioners (NAIC) database, seeMeyers andShi (2011).
We concentrate on the ‘Commercial auto/truck liability/medical’ insurance line of
business. The data collect records from N = 157 insurance companies (one extreme
insurance company was omitted from the analysis). Each insurance company provides
T = 10 yearly total claim amounts starting from year 1988 up to year 1997. Figure 1
graphically shows series of claim amounts for 20 selected insurance companies (a plot
with all 157 panels would be cluttered).

The data are considered as panel data in the way that each insurance company corre-
sponds to one panel, which is formed by the company’s yearly total claim amounts. The
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678 B. Peštová, M. Pešta

length of the panel is quite short. This is very typical in insurancebusiness, because con-
sidering longer panels may invoke incomparability between the early claim amounts
and the late ones due to changing market or policies’ conditions over time.

Wewant to test whether or not a change in the claim amounts occurred in a common
year, assuming that the claim amounts are approximately constant in the years before
and after the possible change for every insurance company. Our ratio type test statistic
givesR157(10) = 39.9. The asymptotic critical value is 52.4 and the bootstrap critical
value equals 203.1. These values mean that we do not reject the hypothesis of no
change in panel means in both cases. The striking difference between the two critical
values may come from the inefficient correlation structure estimation (since T = 10
is quite short) or from violation of the model assumptions.

That is why we also try to take the logarithms of claim amounts and to consider log
amounts as the panel data observations. Nevertheless, we do not reject the hypothesis
of no change in the panel means (i.e., means of log amounts) again. Additionally
to that, one can consider normalizing the claim amounts by the premium received by
company i in year t . That is thinking of panel data Yi,t/pi,t , where pi,t is thementioned
premium. This may yield a stabilization of series’ variability, which corresponds to
the assumption of a common variance. In spite of that, we again do not reject the null
(neither by the asymptotic test, nor by the bootstrap one). For the sake of completeness,
we may reveal that our estimate of the panel change point provides value τ̂N = 10
meaning no change in panels.

8 Conclusions

In this paper, we consider the change point problem in panel data with fixed panel size.
Occurrence of common breaks in panel means is tested. We introduce a ratio type test
statistic and derive its asymptotic properties. Under the null hypothesis of no change,
the test statistic weakly converges to a functional of the multivariate normal random
vector with zero mean and covariance structure depending on the intra-panel covari-
ances. As shown in the paper, these covariances can be estimated and, consequently,
used for testing whether a change in means occurred or not. This is indeed feasible,
because the test statistic under the alternative converges to infinity in probability.

The secondary aim of the paper lies in proposing a consistent change point esti-
mate, which is straightforwardly used for bootstrapping the test statistic. We establish
the asymptotic behavior of the bootstrap version of the test statistic, regardless of the
fact whether the data come from the null or the alternative hypothesis. Moreover, the
asymptotic distribution of the bootstrap test statistic coincides with the original test
statistic’s limiting distribution. This provides justification for the bootstrap method.
One of the main goals is to obtain a completely data driven testing approach whether
the means remain the same during the observation period or not. The ratio type test
statistic allows us to omit a variance estimation and the bootstrap technique over-
comes estimation of the correlation structure. Hence, neither nuisance nor smoothing
parameters are present in the whole testing process, which makes it very simple for
practical use. Furthermore, the whole stochastic theory behind requires relatively sim-
ple assumptions, which are not too restrictive.
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Testing structural changes in panel data 679

A simulation study illustrates that even for small panel size, both presented
approaches—based on traditional asymptotics and on bootstrapping—work fine. One
may judge that both methods keep the significance level under the null, while various
simulation scenarios are considered. Besides that, the power of the test is slightly
higher in case of the bootstrap. Finally, the proposed methods are applied to insurance
data, for which the change point analysis in panel data provides an appealing approach.

8.1 Discussion

First of all, it has to be noted that the non-ratio CUSUM type test statistic can be used
instead of the ratio type, but this requires to estimate the variance of the observations.
The statements of theorems and proofs would become even less complicated. Omitting
the usage of the bootstrap test statistic can especially be unreliable in short panels from
a computational point of view. This is due to the fact that the bootstrap overcomes the
issue of estimating the correlation structure.

Furthermore, our setup can be modified by considering large panel size, i.e., T →
∞. Consequently, the whole theory leads to convergences to functionals of Gaussian
processes with a covariance structure derived in a very similar fashion as for fixed T .
However, our motivation is to develop techniques for fixed and relatively small panel
size.

Dependent panels may be taken into account and the presented work might be
generalized for some kind of asymptotic independence over the panels or prescribed
dependence among the panels. Nevertheless, our incentive is determined by a problem
fromnon-life insurance,where the association of insurance companies consists of a rel-
atively high number of insurance companies. Thus, the portfolio of yearly claims is so
diversified, that the panels corresponding to insurance companies’ yearly claims may
be viewed as independent and neither natural ordering nor clustering has to be assumed.

Acknowledgments The authors thank two anonymous referees and the Associate Editor for the sugges-
tions that improved this paper. This paper was written with the support of the Czech Science Foundation
Project GAČR No. P201/13/12994P.

Appendix 1: Supporting theorems

Suppose that {ξn}∞n=1 is a sequence of random variables/vectors existing on a prob-
ability space (Ω,F , P). A bootstrap version of ξ ≡ [ξ1, . . . , ξn]� is its (randomly)
resampled sequence with replacement—denoted by ξ∗ ≡ [ξ∗

1, . . . , ξ
∗
n]�—with the

same length, where for each i ∈ {1, . . . , n} it holds that P∗
ξ
[ξ∗

i = ξ j ] ≡ P[ξ∗
i =

ξ j |ξ ] = 1/n, j = 1, . . . , n. In the sequel,P∗
ξ
denotes the conditional probability given

ξ . So, ξ∗
i has a discrete uniform distribution on {ξ1, . . . , ξn} for every i = 1, . . . , n.

The conditional expectation and variance given ξ are denoted by EP∗
ξ
and Var P∗

ξ
.

If a statistic has an approximate normal distribution, one may be interested in the
asymptotic comparison of the bootstrap distribution with the original one. A tool for
assessing such an approximate closeness can be a bootstrap central limit theorem for
triangular arrays.
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680 B. Peštová, M. Pešta

Theorem 6 (Bootstrap CLT for triangular arrays) Let {ξn,kn }∞n=1 be a triangular array
of zero mean random variables on the same probability space such that the elements
of the vector [ξn,1, . . . , ξn,kn ]� are iid for every n ∈ N satisfying

sup
n∈N

EPξ4n,1 < ∞ (5)

and kn → ∞ as n → ∞. Suppose that ξ∗ ≡ [ξ∗
n,1, . . . , ξ

∗
n,kn

]� is the bootstrapped

version of ξ ≡ [ξn,1, . . . , ξn,kn ]� and denote

ξ̄n := k−1
n

kn∑

i=1

ξn,i , ξ̄∗
n := k−1

n

kn∑

i=1

ξ∗
n,i , and ς2

n := Var Pξn,1.

If
lim inf
n→∞ ς2

n = ς2 > 0, (6)

then

sup
x∈R

∣∣∣∣
∣
P∗

ξ

[√
kn√
ς2
n

(
ξ̄∗
n − ξ̄n

) ≤ x

]

− P

[√
kn√
ς2
n

ξ̄n ≤ x

]∣∣∣∣
∣

P−−−→
n→∞ 0.

Theorem 7 (Bootstrap multivariate CLT for triangular arrays) Let {ξn,kn }∞n=1 be a tri-
angular array of zero mean q-dimensional random vectors on the same probability
space such that the elements of the vector sequence {ξn,1, . . . , ξn,kn } are iid for every
n ∈ N satisfying

sup
n∈N

EP|ξ ( j)
n,1 |4 < ∞, j ∈ {1, . . . , q}, (7)

where ξn,1 ≡ [ξ (1)
n,1, . . . , ξ

(q)
n,1 ]� ∈ Rq , n ∈ N and kn → ∞ as n → ∞. Assume

that Ξ∗ ≡ [ξ∗
n,1, . . . , ξ

∗
n,kn ]� is the bootstrapped version of Ξ ≡ [ξn,1, . . . , ξn,kn ]�.

Denote

ξ̄n := k−1
n

kn∑

i=1

ξn,i , ξ̄
∗
n := k−1

n

kn∑

i=1

ξ∗
n,i , and Γ n := Var Pξn,1.

If
lim inf
n→∞ Γ n = Γ > 0, (8)

then

P∗
Ξ

[√
knΓ

−1/2
n

(
ξ̄

∗
n − ξ̄n

)
≤ x

]
− P

[√
knΓ

−1/2
n ξ̄n ≤ x

]
P−−−→

n→∞ 0, ∀x ∈ Rq .
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Appendix 2: Proofs

Proof (of Theorem 1) Let us define

UN (t) := 1

σ
√
N

N∑

i=1

t∑

s=1

(Yi,s − μi ).

Using the multivariate Lindeberg-Lévy CLT for a sequence of T -dimensional iid
random vectors {[∑1

s=1 εi,s, . . . ,
∑T

s=1 εi,s]�}i∈N, we have under H0

[UN (1), . . . ,UN (T )]� D−−−−→
N→∞ [X1, . . . , XT ]�,

since Var [∑1
s=1 ε1,s, . . . ,

∑T
s=1 ε1,s]� = Λ. Indeed, the t-th diagonal element of the

covariance matrix Λ is

Var
t∑

s=1

ε1,s = r(t)

and the upper off-diagonal element on position (t, v) is

Cov

(
t∑

s=1

ε1,s,

v∑

u=1

ε1,u

)

= Var
t∑

s=1

ε1,s + Cov

(
t∑

s=1

ε1,s,

v∑

u=t+1

ε1,u

)

= r(t) + R(t, v), t < v.

Moreover, let us define the reverse analogue to UN (t), i.e.,

VN (t) := 1

σ
√
N

N∑

i=1

T∑

s=t+1

(Yi,s − μi ) = UN (T ) −UN (t).

Hence,

UN (s) − s

t
UN (t) = 1

σ
√
N

N∑

i=1

{
s∑

r=1

[
(
Yi,r − μi

)− 1

t

t∑

v=1

(
Yi,v − μi

)
]}

= 1

σ
√
N

N∑

i=1

s∑

r=1

(
Yi,r − �Yi,t

)
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and, consequently,

VN (s)− T−s

T−t
VN (t) = 1

σ
√
N

N∑

i=1

{
T∑

r=s+1

[
(
Yi,r −μi

)− 1

T−t

T∑

v=t+1

(
Yi,v−μi

)
]}

= 1

σ
√
N

N∑

i=1

T∑

r=s+1

(
Yi,r − Ỹi,t

)
.

Using the Cramér–Wold device, we end up with

max
t=2,...,T−2

maxs=1,...,t
∣∣UN (s) − s

t UN (t)
∣∣

maxs=t,...,T−1

∣∣∣VN (s) − T−s
T−t VN (t)

∣∣∣

D−−−−→
N→∞ max

t=2,...,T−2

maxs=1,...,t
∣∣Xs − s

t Xt
∣∣

maxs=t,...,T−1

∣∣∣(XT − Xs) − T−s
T−t (XT − Xt )

∣∣∣
.

��
Proof (of Theorem 2) Let t = τ + 1. Then, under alternative H1

1

σ
√
N

max
s=1,...,τ+1

∣∣∣
∣∣

N∑

i=1

[
s∑

r=1

(
Yi,r − �Yi,τ+1

)
]∣∣∣
∣∣

≥ 1

σ
√
N

∣
∣∣∣∣

N∑

i=1

τ∑

r=1

(
Yi,r − �Yi,τ+1

)
∣
∣∣∣∣

= 1

σ
√
N

∣∣∣∣
∣

N∑

i=1

τ∑

r=1

(

μi + σεi,r − 1

τ + 1

τ+1∑

v=1

(μi + σεi,v) − 1

τ + 1
δi

)∣∣∣∣
∣

= 1√
N

∣∣∣
∣∣

N∑

i=1

τ∑

r=1

(
εi,r −�εi,τ+1

)− τ

σ (τ + 1)

N∑

i=1

δi

∣∣∣
∣∣

= OP(1) + τ

σ (τ + 1)
√
N

∣
∣∣∣∣

N∑

i=1

δi

∣
∣∣∣∣

P−→ ∞, N → ∞,

where�εi,τ+1 = 1
τ

∑τ+1
v=1 εi,v .

Since there is no change after τ + 1 and τ ≤ T − 3, then by Theorem 1 we have

1

σ
√
N

max
s=τ+1,...,T−1

∣∣∣
∣∣

N∑

i=1

T∑

r=s+1

(
Yi,r −Ỹi,τ+1

)
∣∣∣
∣∣

D−−−−→
N→∞ max

s=τ+1,...,T−1

∣∣∣
∣Zs− T−s

T−τ
Zτ+1

∣∣∣
∣ .

��
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Proof (of Theorem 3) Let us define S(i)
N (t) := 1

t

∑t
s=1(Yi,s−�Yi,t )2 and, consequently,

SN (t) := 1
N

∑N
i=1 S

(i)
N (t). Then,

S(i)
N (t) =

⎧
⎪⎪⎨

⎪⎪⎩

σ 2

t

∑t
s=1(εi,s −�εi,t )2, t ≤ τ,

1
t

[∑τ
s=1(σεi,s − σ�εi,t − t−τ

t δi )
2

+∑t
s=τ+1(σεi,s − σ�εi,t + τ

t δi )
2
]
, t > τ ;

where�εi,t = 1
t

∑t
s=1 εi,s . By the definition of the cumulative autocorrelation function,

we have for 2 ≤ t ≤ τ

ES(i)
N (t) = σ 2

t

t∑

s=1

E(εi,s −�εi,t )2 = σ 2

t

t∑

s=1

[

1 − 2

t

t∑

r=1

Eεi,sεi,r + 1

t2
r(t)

]

= σ 2
(
1 − r(t)

t2

)
.

In the other case when t > τ , one can calculate

ES(i)
N (t) = σ 2

(
1 − r(t)

t2

)
+ τ

t

(
t − τ

t

)2

δ2i + t − τ

t

(τ

t

)2
δ2i

= σ 2
(
1 − r(t)

t2

)
+ τ(t − τ)

t2
δ2i .

Realize that S(i)
N (t) − ES(i)

N (t) are independent with zero mean for fixed t and i =
1, . . . , N . Due to Assumption C2, for 2 ≤ t ≤ τ it holds

Var SN (t) = 1

N 2

N∑

i=1

σ 4

t2
Var

[
t∑

s=1

(εi,s −�εi,t )2
]

= 1

N
C1(t, σ ),

where C1(t, σ ) > 0 is some constant not depending on N . If t > τ , then

Var SN (t) = 1

N 2

N∑

i=1

1

t2
Var

[
σ 2

τ∑

s=1

(εi,s −�εi,t )2

− 2
t − τ

t
σδi

τ∑

s=1

(εi,s −�εi,t ) +
(
t − τ

t

)2

δ2i

+ σ 2
t∑

s=τ+1

(εi,s −�εi,t )2 + 2
τ

t
σδi

t∑

s=τ+1

(εi,s −�εi,t ) +
(τ

t

)2
δ2i

]

≤ 1

N
C2(t, τ, σ ) + 1

N 2C3(t, τ, σ )

N∑

i=1

δ2i + 1

N 2C4(t, τ, σ )

∣∣∣∣∣

N∑

i=1

δi

∣∣∣∣∣
,

where C j (t, τ, σ ) > 0 does not depend on N for j = 2, 3, 4.
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The Chebyshev inequality provides SN (t)−ESN (t) = OP
(√

Var SN (t)
)
as N →

∞. According to Assumption C1 and the Cauchy-Schwarz inequality, we have

1

N 2

∣∣∣
∣∣

N∑

i=1

δi

∣∣∣
∣∣
≤ 1

N

√√√√ 1

N

N∑

i=1

δ2i → 0, N → ∞.

Since the index set {1, . . . , T } is finite and τ is finite as well, then

max
1≤t≤T

Var SN (t) ≤ 1

N
K1(σ ) + K2(σ )

1

N 2

N∑

i=1

δ2i + K3(σ )
1

N 2

∣∣∣∣
∣

N∑

i=1

δi

∣∣∣∣
∣
≤ 1

N
K4(σ ),

where K j (σ ) > 0 are constants not depending on N for j = 1, 2, 3, 4. Thus, we also
have uniform stochastic boundedness, i.e.,

max
1≤t≤T

|SN (t) − ESN (t)| = OP

(
1√
N

)
, N → ∞.

Adding and subtracting, one has

SN (τ ) − SN (t) = SN (τ ) − ESN (τ ) − [SN (t) − ESN (t)] + ESN (τ ) − ESN (t)

≥ −2 max
1≤r≤T

|SN (r) − ESN (r)| + ESN (τ ) − ESN (t)

= −2 max
1≤r≤T

|SN (r) − ESN (r)| + σ 2
(
r(t)

t2
− r(τ )

τ 2

)

+ I{t > τ }τ(t − τ)

t2
1

N

N∑

i=1

δ2i .

The above inequality holds for each t ∈ {2, . . . , T } and, particularly, it holds for τ̂N .
Note that τ̂N = argmaxt SN (t). Hence, SN (τ ) − SN (̂τN ) ≤ 0. Therefore,

2
√
N max

1≤r≤T
|SN (r) − ESN (r)|

≥ √
N

[

σ 2

(
r (̂τN )

τ̂ 2N
− r(τ )

τ 2

)

+ I {̂τN > τ }τ (̂τN − τ)

τ̂ 2N

1

N

N∑

i=1

δ2i

]

. (9)

If τ̂N > τ , then the left hand side of (9) is OP(1) as N → ∞, but the right hand side
is unbounded because of Assumption C1. So, if τ̂N ≤ τ , then

0
P←−−−−

N→∞ 2 max
1≤r≤T

|SN (r) − ESN (r)| ≥ σ 2

(
r (̂τN )

τ̂ 2N
− r(τ )

τ 2

)

,

which yields due to the monotonicity of r(t)/t2 that P[̂τN = τ ] → 1 as N → ∞. ��
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Proof (of Theorem 4) Let us define ε̂i,t := σ−1∑t
s=1 êi,s , ε̂

∗
i,t := σ−1∑t

s=1 ê
∗
i,s ,

ÛN (t) := 1

σ
√
N

N∑

i=1

t∑

s=1

êi,s = 1√
N

N∑

i=1

ε̂i,t ,

and

Û∗
N (t) := 1

σ
√
N

N∑

i=1

t∑

s=1

Ŷ ∗
i,s = 1

σ
√
N

N∑

i=1

t∑

s=1

(

ê∗
i,s − 1

N

N∑

i=1

êi,s

)

= 1

σ
√
N

N∑

i=1

t∑

s=1

(
ê∗
i,s − êi,s

) = 1√
N

N∑

i=1

(
ε̂∗
i,t − ε̂i,t

)
.

Realize that ε̂i,t depends on τ̂N and, hence, it depends on N . Thus, ε̂i,t ≡ ε̂i,t (N ).
Since Assumption C2 holds, then according to the bootstrap multivariate CLT for tri-
angular arrays (Theorem 7) of T -dimensional vectors ξ N ,i = [̂εi,1(N ), . . . , ε̂i,T (N )]�
with kN = N , we have

P
[
Γ

−1/2
N [Û∗

N (1), . . . , Û∗
N (T )]� ≤ x

∣∣Y
]

− P
[
Γ

−1/2
N [ÛN (1), . . . , ÛN (T )]� ≤ x

]

P−−−−→
N→∞ 0, ∀x ∈ RT ,

where Γ N = Var [̂εi,1, . . . , ε̂i,T ]�.
Now, it is sufficient to realize that [ÛN (1), . . . , ÛN (T )]� has an approximatemulti-

variate normal distribution with zero mean and covariance matrix Γ = limN→∞ Γ N .
Using the law of total variance,

Var ε̂i,t = E[Var {̂εi,t |̂τN }] + Var [E{̂εi,t |̂τN }]

=
T∑

π=1

P[̂τN = π ]Var [̂εi,t |̂τN = π ] +
T∑

π=1

P[̂τN = π ]{E[̂εi,t |̂τN = π ]}2

−
{

T∑

π=1

P[̂τN = π ]E[̂εi,t |̂τN = π ]
}2

.

Since limN→∞ P[̂τN = τ ] = 1 and E[̂ei,t |̂τN = τ ] = 0, then

lim
N→∞ Var ε̂i,t = lim

N→∞ Var [̂εi,t |̂τN = τ ].

Similarly with the covariance, i.e., after applying the law of total covariance, we have

lim
N→∞ Cov

(
ε̂i,t , ε̂i,v

) = lim
N→∞ Cov

(
ε̂i,t , ε̂i,v |̂τN = τ

)
.
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Note that

(
êi,t |̂τN = τ

) =
{

σ(εi,t −�εi,τ ), t ≤ τ ;
σ(εi,t − ε̃i,τ ), t > τ ;

where

�εi,t = 1

t

t∑

s=1

εi,s and ε̃i,t = 1

T − t

T∑

s=t+1

εi,s .

Taking into account the definitions of r(t), R(t, v), and S(t, v, d) together with some
simple algebra,we obtain thatVar [̂εi,s |̂τN = τ ] = γt,t (τ ) andCov

(
ε̂i,t , ε̂i,v |̂τN = τ

)

= γt,v(τ ) for t < v, where the elements γt,t (τ ) and γt,v(τ ) are as in the statement of
Theorem 4.

Then the sum in the nominator of R∗
N (T ) can be alternatively rewritten as

1

σ
√
N

N∑

i=1

s∑

r=1

(
Ŷ ∗
i,r − �̂Y ∗

i,t

)
= 1

σ
√
N

N∑

i=1

{[
s∑

r=1

Ŷ ∗
i,r

]

− s

t

t∑

v=1

Ŷ ∗
i,v

}

= Û∗
N (s) − s

t
Û∗

N (t).

Concerning the denominator ofR∗
N (T ), one needs to perform a similar calculation

as in the proof of Theorem 1with VN (t), i.e., to define V̂N (t) and V̂ ∗
N (t) analogously to

ÛN (t) and Û∗
N (t) as VN (t) is toUN (t). Applying theCramér–Wold theorem completes

the proof. ��
Proof (of Theorem 5) Recall the notation from the proof of Theorem 4. Under H0,
B2, and C2 it holds

lim
N→∞ P[̂τN = T ] = 1.

Then in view of (4),

lim
N→∞ P

[
ÛN (s) − s

t
ÛN (t) = UN (s) − s

t
UN (t)

]
= 1, 1 ≤ s ≤ t ≤ T .

��
Proof (of Theorem 6) The Lyapunov condition (Billingsley 1986, [p. 371]) for a tri-
angular array of random variables {ξn,kn }∞n=1 is satisfied due to (5) and (6), i.e., for
ω = 2:

1
√
knς2

n
2+ω

kn∑

i=1

E|ξn,i |2+ω ≤ k−ω/2
n

ς2+ω
n

sup
ι∈N

E|ξι,1|2+ω → 0, n → ∞.
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Therefor, the CLT for {ξn,kn }∞n=1 holds and

sup
x∈R

∣∣∣∣∣
P

[√
kn√
ς2
n

ξ̄n ≤ x

]

−
∫ x

−∞
1√
2π

exp

{
− t2

2

}
dt

∣∣∣∣∣
−−−→
n→∞ 0.

Now, to prove the theorem, it suffices to show the following three statements:

(i) supx∈R

∣
∣∣∣∣
P∗

ξ

[ √
kn√

Var P∗
ξ
ξ∗
n,1

(
ξ̄∗
n − EP∗

ξ
ξ̄∗
n

)
≤ x

]

−∫ x
−∞

1√
2π

exp
{
− t2

2

}
dt

∣
∣∣∣∣

P−−−→
n→∞

0;

(ii) Var P∗
ξ
ξ∗
n,1 − ς2

n
P−−−→

n→∞ 0;

(iii) EP∗
ξ
ξ̄∗
n = ξ̄n, [P] − a.s.

Proving (iii) is trivial, because EP∗
ξ
ξ̄∗
n = EP∗

ξ
ξ∗
n,1 = k−1

n
∑kn

i=1 ξn,i = ξ̄n, [P]-a.s.

Let us calculate the conditional variance of the bootstrapped variable ξ∗
n,1:

Var P∗
ξ
ξ∗
n,1 = EP∗

ξ
ξ∗2
n,1 − (EP∗

ξ
ξ∗
n,1)

2 = k−1
n
∑kn

i=1 ξ2n,i −
(
k−1
n
∑kn

i=1 ξn,i

)2
, [P]-a.s.

The weak law of large numbers together with (5) provides

ξ̄n − n−1
kn∑

i=i

EPξn,i = ξ̄n
P−−−→

n→∞ 0

and

0
P←−−−

n→∞ k−1
n

kn∑

i=1

ξ2n,i −
(

k−1
n

kn∑

i=1

ξn,i

)2

− EPξ2n,1 = Var P∗
ξ
ξ∗
n,1 − ς2

n .

The last result of the WLLN is true, because (5) implies

k−2
n

kn∑

i=1

Var Pξ2n,i ≤ k−2
n

kn∑

i=1

EPξ4n,i ≤ k−1
n sup

ι∈N
EPξ4ι,1 −−−→

n→∞ 0.

Thus (ii) is proved.
The Berry–Esseen–Katz theorem (see Katz 1963) with g(x) = |x |ε, ε > 0 for the

bootstrapped sequence of i id (with respect toP∗) random variables {ξ∗
n,i }kni=1 results in

sup
x∈R

∣
∣∣∣∣∣
P∗

ξ

⎡

⎣
√
kn√

Var P∗
ξ
ξ∗
n,1

(
ξ̄∗
n − EP∗

ξ
ξ̄∗
n

)
≤ x

⎤

⎦−
∫ x

−∞
1√
2π

exp

{
− t2

2

}
dt

∣
∣∣∣∣∣

≤ Ck−ε/2
n EP∗

ξ

∣∣
∣∣∣

ξ∗
n,1 − EP∗

ξ
ξ∗
n,1

Var P∗
ξ
ξ∗
n,1

∣∣
∣∣∣

2+ε

[P] − a.s., (10)

for all n ∈ N where C > 0 is an absolute constant.
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The Jensen inequality and Minkowski inequality provide an upper bound for the
nominator from the right-hand side of (10):

EP∗
ξ
|ξ∗
n,1 − EP∗

ξ
ξ∗
n,1|2+ε = k−1

n

kn∑

i=1

∣∣∣∣
∣∣
ξn,i − k−1

n

kn∑

j=1

ξn, j

∣∣∣∣
∣∣

2+ε

≤ k−1
n

⎧
⎨

⎩

( kn∑

i=1

|ξn,i |2+ε

)1/(2+ε)

+ k−(1+ε)/(2+ε)
n

∣
∣∣∣∣
∣

kn∑

j=1

ξn, j

∣
∣∣∣∣
∣

⎫
⎬

⎭

2+ε

≤ 21+εk−1
n

kn∑

i=1

|ξn,i |2+ε + 21+ε

∣∣∣∣
∣
k−1
n

kn∑

i=1

ξn,i

∣∣∣∣
∣

2+ε

[P] − a.s.

The right-hand side of the previously derived upper bound is uniformly bounded in
probability P, because of Markov’s inequality and (5). Indeed, for fixed η > 0

P

[

k−1
n

kn∑

i=1

|ξn,i |2+ε ≥ η

]

≤ η−1k−1
n

kn∑

i=1

EP|ξn,i |2+ε

≤ η−1 sup
ι∈N

EP|ξι,1|2+ε < ∞, ∀n ∈ N

and

P

[∣∣∣∣∣
k−1
n

kn∑

i=1

ξn,i

∣
∣∣∣∣
≥ η

]

≤ η−1k−1
n EP

∣
∣∣∣∣

kn∑

i=1

ξn,i

∣
∣∣∣∣

≤ η−1 sup
ι∈N

EP|ξι,1| < ∞, ∀n ∈ N.

Since EP∗
ξ
|ξ∗
n,1 − EP∗ξ∗

n,1|2+ε is bounded in probability P uniformly over n and the
denominator of the right-hand side of (10) is uniformly bounded away from zero due
to (6), then the left-hand side of (10) converges in probability P to zero as n tends to
infinity. So, (i) is proved as well. ��
Proof (of Theorem 7) According to the Cramér–Wold theorem, it is sufficient to
ensure that all assumptions of one-dimensional bootstrap CLT (6) for triangular arrays
are valid for any linear combination of the elements of the random vector ξn,1, n ∈ N.

For arbitrary fixed t ∈ Rq using the Jensen inequality, we get

sup
n∈N

EP|t�ξn,1|4 ≤ q3 sup
n∈N

q∑

j=1

t4j EP|ξ ( j)
n,1 |4 ≤ q4 max

j=1,...,q
t4j sup

n∈N
EP|ξ ( j)

n,1 |4 < ∞.

Hence, assumption (7) implies assumption (5) for the random variables {t�ξn,kn }n∈N.
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Similarly, assumption (8) implies assumption (6) for such an arbitrary linear com-
bination, i.e., positive definiteness of the matrix Γ yields

lim inf
n→∞ Var Pt�ξn,1 = lim inf

n→∞ t�
(
Var Pξn,1

)
t ≥ t�

(
lim inf
n→∞ Γ n

)
t = t�Γ t > 0.

��
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