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Abstract For a linear regression model subject to left-truncation and right-censoring
where the truncation and censoring points are known constants (or always observed
if random), Karlsson and Laitila (Stat Probab Lett 78:2567–2571, 2008) proposed
a semiparametric estimator which deals with left-truncation by trimming and right-
censoring by ‘winsorizing’. The estimator was motivated by a zero moment condition
where a transformed error term appears with trimmed and winsorized tails. This paper
takes the semiparametric estimator further by deriving the asymptotic distribution that
was not shown in Karlsson and Laitila (Stat Probab Lett 78:2567–2571, 2008) and
discusses its implementation aspects in practice, albeit brief.

Keywords Left truncation · Right censoring · LTRC · Semiparametrics ·
Trimmed mean · Winsorized mean

1 Introduction

Left-truncated and right-censored (LTRC) data occur in many situations due to, e.g., the
sampling procedure, the study design and/or the measuring instrument. Left-truncation
of a response variable in a regression model means that neither the response or the
explanatory variables are observed if the value of the response is smaller than a trun-
cation point t . Right-censoring of the response variable means that the observed value,
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Y , is the minimum of the (latent) value of the response, Y ∗, and the censoring point c,
i.e., whenever the value of the response is larger than c its true value is not observed
but c is recorded instead.

One example of LTRC can be seen in an income survey where only individuals
with income above a certain level get sampled (truncation) and then their income
is top-coded (censoring). Another example is studies of damages sizes measured as
claims paid by insurance companies, where only those damages larger than their
deductibles are reported to the insurance companies (truncation) and where the is an
upper limit of indemnification (censoring). LTRC also occurs when an individual is
observed for an event A1, but gets sampled only when another event A0 holds. For
instance, studying the duration of un-employment, suppose the sampling is done only
from individuals that has been un-employed more than a specific amount of days, e.g.,
long enough to receive un-employment insurance contributions. Here the truncation
point is a known constant, i.e., fixed. Depending on how the study ends, the censoring
point can be fixed or random, and known or unknown. If the study ends on a fixed-
calendar date, the censoring point is random, but known for everybody. If the study
follows everybody until a fixed duration of un-employment (e.g., until the compensa-
tion days from un-employment insurance has run out) the censoring point is known
and fixed. Suppose instead that, the sampling is done among the individuals (still)
being un-employed at a fixed-calender date, then the truncation point is random and
unknown.

In this paper we consider linear regression models where the truncation and cen-
soring points are both known constants or always observed (i.e., known) if they are
random.

Ignoring the truncation and/or censoring, e.g., by using the least squares (LS)
approach to estimate a regression model, when the response variable is in fact LTRC,
can yield very misleading estimates. Moreover, maximum likelihood based estima-
tors are rather sensitive to distributional misspecification, i.e., the specification of
the distribution of the error term, when data is LTRC. The goal of this paper is to
estimate the regression coefficients without specifying the distribution of the error
term in the regression model under LTRC. This is accomplished by using the semi-
parametric estimator proposed by Karlsson and Laitila (2008). This paper takes the
estimator further by deriving the asymptotic distribution that was not shown in their
paper.

There are many estimators for LTRC data (see e.g., Shen 2009, 2012, and the refer-
ences therein) but they are mostly for two-sample location differences. For regression
parameters, the estimators are rather complicated (Lai and Ying 1991, 1994; Gross
and Lai 1996) involving estimation of the Y ∗ distribution. Moreover, most of them
require random LTRC data. The estimator of Karlsson and Laitila (2008) is a sim-
ple semiparametric estimator for LTRC when the truncation and censoring points
are fixed (or always observed if random). While the simplicity is its advantage, the
disadvantage is inapplicability if the censoring point is unknown when greater than
Y ∗.

Section 2 explains the estimator, and Sect. 3 examines its asymptotic distribution
and discusses its implementation. The paper ends with a section with conclusions.
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2 The estimator and its main idea

For each individual i in the population,

Y ∗
i = X ′

iβ + Ui , independent and identically distributed (i id), (1)

where Xi = (1, X̃ ′
i )

′, X̃i ≡ (Xi2, ..., Xik)
′ is a (k − 1) × 1 regressor vector, β ≡

(β1, β̃
′)′ is a k × 1 coefficient vector with β̃ being the (k − 1) × 1 slope coefficients,

and Ui is an error term independent of Xi (“U � X”) with its density function (pdf)
and distribution function (cdf) denoted by fU and FU .

Now, consider a LTRC linear regression model with, for simplicity, left-truncation
at t = 0 and right-censoring at a known constant c > 0 for all individuals. Let
Yi ≡ min(Y ∗

i , c) and sample N units (Xi , Yi ) from the sub-population (or stratum)
where Y ∗

i > t = 0. Henceforth, if possible, the subscripts i of Y ∗
i , Yi , Xi and Ui are

dropped for convenience.
It is easy to allow for a known non-zero truncation constant by subtracting it from

the response, the intercept and from the censoring point. Similarly, we can, as long as
they are observed (i.e., known), allow left-truncation at ti and right-censoring at ci ,
i.e., truncation and censoring points varying across individuals. The main finding of
this paper still holds conditionally on (ti , ci ) so long as Y ∗

i � (ti , ci ) given Xi .
Without truncation/censoring, an estimate of β in (1) can be calculated by apply-

ing the LS estimator under the moment condition of E(XU ) = 0. With LTRC data,
Karlsson and Laitila (2008) proposed an estimator motivated by a zero moment con-
dition where a transformed error trimmed at the lower end and winsorized at the
upper tail appears. Henceforth, the estimator of Karlsson and Laitila (2008) is called
the “trimmed and winsorized estimator” (TWE). The moment condition of TWE is a
combination of the two moment conditions under which, the two estimators suggested
in Karlsson (2006) for left truncation and left censoring respectively, are derived. They,
in turn, are generalizations of the “quadratic mode regression estimator” (QME) by
Lee (1993) and the “winsorized mean estimator” (WME) by Lee (1992). In order to
explain the TWE, we first take a closer look at QME and WME and their properties.

2.1 The QME and the WME

If data is left-truncated at 0 (but not right-censored), i.e., only observed if 0 < Y ∗ or
equivalently only observed if −X ′β < U , the QME can be used. The QME is derived
from the moment condition

E{1[X ′β > w]X · 1[−w < U < w]U } = 0 (2)

where 1[A] denotes an indicator function taking value 1 if condition A is valid and 0
otherwise and w > 0 is a “trimming” constant. This means that the “trimmed error”
1[−w < U < w]U is orthogonal to X . The factor 1[X ′β > w] in (2) is for −w < U to
hold when −X ′β < U . QME is consistent under semiparametric assumptions—e.g.,
partial symmetry of U |X up to ±w.
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In contrast to QME, when there is only left censoring at 0, the WME used another
modified moment condition

E{1[X ′β > w]X ·(−w1[U ≤ −w]+1[−w < U < w]U +w1[w ≤ U ])} = 0; (3)

instead of trimming U when |U | ≥ w, U gets replaced by ±w. The “winsorized error”
−w1[U ≤ −w] + 1[−w < U < w]U + w1[w ≤ U ] is orthogonal to X under the
partial symmetry of U up to ±w and P(U ≤ −w) = P(U ≥ w).

Whereas the LS estimator has E(X X ′) as its second order matrix, QME has (−1
times)

HQME ≡ E

[
X X ′

{(
“area under density

fU

1 − FU (−X ′β)
between ± w”

)

− 2w
fU (w)

1 − FU (−X ′β)

}]
, (4)

where 1 − FU (−X ′β) is the truncation normalizing factor (see the left panel of Fig.
1). For HQM E to be positive definite, fU should be strictly unimodal at 0, explaining
the word “mode” in QME.

The asymptotic variance of WME has as its second order matrix

HWME ≡ E
[

X X ′{(“area under fU between ± w′′)
}]

, (5)

(see right panel of Fig. 1) which differs somewhat from (4).
Although we used fU for QME and WME, QME and WME allow heteroskedasticity

of unknown form, in which case fU |X replaces fU . It is the local symmetry assumption
up to ±w that assures E(1[|U | < w]U ) = 0 while allowing for heteroskedasticity of
unknown form.

Fig. 1 Density areas for QME (left) and WME (right) hessians
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2.2 The trimmed and winsorized estimator

In QME and WME where only one tail of U is subject to truncation/censoring, sym-
metric trimming/winsorizing is done artificially at the other tail of U . But symmetric
trimming/winsorizing is not feasible under LTRC as both tails of U are subject to
truncation/censoring. The left-truncation and right-censoring points give the interval
(−X ′β, c − X ′β] for U . In this case, a transformed error trimmed at the lower end
and winsorized at the upper end can be used; for some chosen trimming constants
wl , wu > 0. The trimming and winsorizing interval (−wl , wu) should be placed
within the range of U , such that,

−X ′β < −wl < U < wu ≤ c − X ′β.

For this, it is necessary to have

wl < X ′β ≤ c − wu (6)

for which it is in turn necessary to have wl + wu < c. Added to this condition is
‘0 < wu < wl ’ to help the expected value of the trimmed and winsorized error

1[−wl < U < wu]U + wu1[wu ≤ U ]. (7)

to be equal to zero conditional on X . Because of the restrictions wl + wu < c and
0 < wu < wl , we can choose wu from (0, c/2) first, and then wl over (wu, c − wu).

In view of (6), one may try to use

1[−X ′β < U < c − X ′β]U + (c − X ′β)1[c − X ′β ≤ U ]

instead of (7), but this fails because the intercept that makes its expected value, con-
ditional on X , equal to zero depends on X . Using the constant interval (−wl , wu)

falling within the X -varying interval (−X ′β, c − X ′β) is the key idea.
The restriction on X ′β in (6) combined with the trimmed and winsorized error in

(7), yields the key unconditional moment condition under LTRC; E{m(X, Y ∗;β)} = 0
(or just E{m(β)} = 0 if (X, Y ∗) is omitted), where

m(β) ≡ 1
[
wl < X ′β < c − wu

]
X ·

(
1
[−wl < Y ∗ − X ′β < wu

] (
Y ∗ − X ′β

)

+wu1
[
wu ≤ Y ∗ − X ′β

] )
.

This is thus a combination of the corresponding moment conditions of QME and
WME, (2) and (3) respectively.

Recall from (1) that Y ∗ = β1 + X̃ ′β̃ + U and consider

E
(

1
[
−wl < Y ∗−β∗

1 − X̃ ′β̃ < wu

] (
Y ∗−β∗

1 − X̃ ′β̃
)
+wu1

[
wu ≤ Y ∗−β∗

1 − X̃ ′β̃
]
|X

)
= E (1 [−wl < U − Δ < wu] (U − Δ) + wu1 [wu ≤ U − Δ])
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with Δ ≡ β∗
1 −β1, where β∗

1 is for the intercept shift (i.e., β∗
1 that does not necessarily

equal β1), which is assumed to exist (Assumption A1, Karlsson and Laitila 2008) for
E{m(β∗

1 , β̃)} = 0 to hold. If U is not independent of X , then β∗
1 may have to change

depending on X because wl and wu are fixed. This would then hamper the identification
of β̃, which is why U � X is invoked in this paper although it was not assumed in
Karlsson and Laitila (2008). ‘U � X ’ can be relaxed if the form of heteroskedasticity
of U |X is known. For instance, if U = exp(Xk)V where Xk is the k th element of
X and V is an error term with V � X , we can replace wl and wu with wl exp(Xk)

and wu exp(Xk), respectively. Then the above moment condition becomes a moment
condition involving V , wl and wu . But since a known form of heteroskedasticity is
rare, we will proceed with U � X .

The TWE is defined using a minimand in Karlsson and Laitila (2008),

1

N

∑
i

{
1
[
X ′

i b ≤ wl
]

g (Yi − wl) + 1
[
wl < X ′

i b < c − wu
]

g
(
Yi − X ′

i b
)

+1
[
c − wu ≤ X ′

i b
]

g(Yi − c + wu)
}

where

g(r) ≡ 1[r ≤ −wl ]w
2
l

2
+ 1[−wl < r < wu]r2

2
+ 1[wu ≤ r ]

(
wur − wu

2

)
.

This minimand has three components depending on where X ′b locates relative to
wl and c − wu , and each component can take three different forms as can be seen in
g(·). The first term w2

l /2 of g(·) appears for the QME maximand to make use of the
truncated part, the second term r2/2 is the usual squared residual in the LS estimator,
and the last term wur − wu/2 appears for the WME minimand to make use of the
censored part.

Karlsson and Laitila (2008) obtained this minimand by integrating the population
moment condition back. Their proof uses the proofs in Newey (2001), who showed that
integrating a population moment condition back, a minimand is obtained with a unique
minimum, and that the estimator minimizing the sample version is

√
N -consistent

satisfying the sample moment condition N−1/2 ∑
i m(Xi , Yi ; bN ) = op(1). Karlsson

and Laitila (2008) defined β∗ ≡ (β∗
1 , β̃ ′)′ and showed that bN converged in probability

to β∗, i.e. bN →p β∗.

3 Asymptotic distribution

In addition to the assumptions in Karlsson and Laitila (2008) for the consistency of
TWE, with |X | denoting the Euclidean norm of X , suppose the following assumptions
hold:

Assumption U U � X , E(U ) < ∞, and fU is continuous and satisfies, for Δ ≡
β∗

1 − β1, P(Δ − wl < U < Δ + wu) > wl fU (Δ − wl)/{1 − FU (−X ′β)}.
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Assumption X E{X X ′1[wl < X ′β∗ < c − wu]} is positive definite, E |X |2 < ∞
and for some constants ν0, ν1, ν2 > 0,

(i): E{1[|wl − X ′β∗| < |X ||b − β∗|] · |X |} ≤ ν1|b − β∗| and
(ii): E{1[|c − wu − X ′β∗| < |X ||b − β∗|] · |X |} ≤ ν2|b − β∗|
for all |b − β∗| < ν0.

Assumption X is for smoothness of indicator functions of b such as E(1[X ′b ≥
wl ]). Almost the same assumptions appeared in Powell (1984, p. 310), Newey and
Powell (1990, p. 304), and, Lee (1993, p. 4) in the proofs of asymptotic normality of
the estimators of censored or truncated regression models suggested in those papers.
Assumption X can be replaced with another assumption that makes X ′β smooth, e.g.,
Fk|−k(xk |x−k)having a continuously differentiable derivative fk|−k(xk |x−k) for xk that
is uniformly bounded over x = (x ′−k, xk)

′, where Fk|−k is the distribution function of
Xk given the other elements X−k of X . The motivation for making Assumption U will
be explained shortly.

Theorem AD Under Assumptions U and X, with ‘�’ denoting convergence in law,

√
N (bN − β∗) � N

[
0, H−1

TWE E{m(β∗)m(β∗)′}H−1
T W E

]

where

HTWE ≡ E

[
1
[
wl < X ′β∗ < c − wu

]
X X ′

×
{

1 [Δ − wl < U < Δ + wu] − wl
fU (Δ − wl)

1 − FU (−X ′β)

} ]
.

Theorem AD is proven in the Appendix. Roughly speaking, HT W E falls between
HQM E and HW M E , see (4) and (5), because the X -conditional mean of {·} in HT W E is
“area under the density fU

1−FU (−X ′β)
between Δ−wl and Δ+wu” minus wl

fU (Δ−wl )
1−FU (−X ′β)

.
If β∗

1 = β1 ⇐⇒ Δ = 0, then the strict unimodality of U at 0 is enough to make this
display positive. But β∗

1 might differ much from β1, depending on fU and (−wl , wu)

so that the interval (−wl , wu) may fall under a downward sloping part of fU to make
the last display non-positive. This is why Assumption U was imposed.

3.1 Estimation and implementation aspects of TWE

Let Ûi ≡ Yi − X ′
i bN →p Yi − X ′

iβ + β1 − β∗
1 = Ui − Δ. Then Ĥ−1

T W E Ĝ Ĥ−1
T W E can

be used to estimate the asymptotic variance, where

Ĝ ≡ 1

N

∑
i

1
[
wl < X ′

i bN < c − wu
]

Xi X ′
i

×
{

1
[
−wl < Ûi < wu

]
Ûi + wu1

[
wu ≤ Ûi

]}2
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and

ĤTWE ≡ 1

N

∑
i

1
[
wl < X ′

i bN < c − wu
]

Xi X ′
i

×
{

1
[
−wl < Ûi < wu

]
− wl

1

h
1
[
−wl ≤ Ûi ≤ −wl + h

]}

for a bandwidth h →+ 0 as N → ∞. The expression‘h−11[−wl ≤ Ûi ≤ −wl + h]’
in ĤT W E is to estimate fU (Δ − wl)/{1 − FU (−X ′β)} nonparametrically. As ĤT W E

is bandwidth-dependent, practitioners would prefer using nonparametric bootstrap
instead. This is one reason why we omit proving ĤT W E →p HT W E and Ĝ →p

E{m(β∗)m(β∗)′} that need more assumptions.
The above derivation suggests an iteration algorithm: with Ui (b0) ≡ Yi − X ′

i b0,

b1 = b0 + Ĥ−1
T W E

1

N

∑
i

1
[
wl < X ′

i b0 < c − wu
]

Xi

×{1 [−wl < Ui (b0) < wu] Ui (b0) + wu1 [wu ≤ Ui (b0)]}

which is to be iterated until convergence; bN in ĤT W E should be replaced by b0 as
well. In the iteration, ĤT W E may pose a trouble as it may not be positive definite, in
which case wl h−11[−wl ≤ Ui (b0) ≤ −wl + h] in ĤT W E may be dropped. If the
problem persists, 1[wl < X ′

i b0 < c − wu] may be dropped as well.
The finite sample bias could be large for the intercept estimator since it plays the

role of satisfying E{m(β∗
1 , β̃)} = 0, and the intercept bias magnitude would depend

on (−wl , wu). Instead of modifying the intercept, TWE might try to adjust the scale of
U , but this cannot be done easily because the scale of Y is fixed and there is no scale
parameter to estimate. What could still happen though is scaling all slope estimates
up/down to alter the scale of the residual Y − X ′bN —this would be how the intercept
bias affects the slope estimates. In this case, all slope estimates will be biased up/down
by the same positive factor. This, however, would not bias signs of slope estimates,
nor their ratios.

4 Conclusions

LTRC data is a common problem that face researchers and it is important to use an esti-
mator that takes the truncation and censoring into account in order not to draw incorrect
conclusions due to misleading results. In this paper we derive the asymptotic distribu-
tion of the semiparametric estimator TWE, suggested by Karlsson and Laitila (2008).√

N -consistency for the slope estimates were already shown in Karlsson and Laitila
(2008). The results in this paper together with the results in Karlsson and Laitila (2008)
suggest that the TWE is a suitable estimator when data is LTRC. However, there are
also situations in practice, where it has drawbacks as discussed in the previous section.
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Appendix

We will first show that E{m(b)} is continuously differentiable at b = β∗ with derivative
matrix HT W E . Rewrite E{m(b)} − E{m(β∗)} as

E
{
1
[
wl < X ′b < c − wu

]
X

{
1
[−wl < Y − X ′b < wu

] (
Y − X ′b

)
+wu1

[
wu ≤ Y − X ′b

]}
−E

{
1
[
wl < X ′b < c − wu

]
X

{
1
[−wl < Y − X ′β∗ < wu

] (
Y − X ′β∗)

+wu1
[
wu ≤ Y − X ′β∗]}

+E
{
1
[
wl < X ′b < c − wu

]
X

{
1
[−wl < Y − X ′β∗ < wu

] (
Y − X ′β∗)

+wu1
[
wu ≤ Y − X ′β∗]}

−E
{
1
[
wl < X ′β∗ < c − wu

]
X

{
1
[−wl < Y − X ′β∗ < wu

] (
Y − X ′β∗)

+wu1
[
wu ≤ Y − X ′β∗]} .

The last two terms are 0 because U � X and the transformed error with Y − X ′β∗ has
mean zero. The first two terms share 1[wl < X ′b < c − wu]X , and thus we rewrite
them as

E
(
1
[
wl < X ′β∗ < c − wu

]
X

[{
1
[−wl < Y − X ′b < wu

]
(Y − X ′b)

+wu1
[
wu ≤ Y − X ′b

]} − {
1
[−wl < Y − X ′β∗ < wu

]
(Y − X ′β∗)

+wu1
[
wu ≤ Y − X ′β∗]}]) + E

({
1[wl < X ′b < c − wu]

−1[wl < X ′β∗ < c − wu]} X
[{

1[−wl < Y − X ′b < wu](Y − X ′b)

+wu1
[
wu ≤ Y − X ′b

]} − {
1
[−wl < Y − X ′β∗ < wu

] (
Y − X ′β∗)

+wu1
[
wu ≤ Y − X ′β∗]}]) . (8)

The following shows that the first two terms give HT W E and that the remainder is
o(|b − β∗|).

With fU,X ′β(·) ≡ fU (·)/{1 − FU (−X ′β)}, observe, for the first two terms of (8),

E{1[−wl < Y − X ′b < wu](Y − X ′b) + wu1[wu ≤ Y − X ′b] |X}
=

∫ X ′b−X ′β+wu

X ′b−X ′β−wl

(u + X ′β − X ′b) fU,X ′β(u)du + wu

∫ ∞

X ′b−X ′β+wu

fU,X ′β(u)du.

Differentiate this for b to get a continuous derivative vector

X ′{wl fU,X ′β(X ′b − X ′β − wl) + wu fU,X ′β(X ′b − X ′β + wu)

−
∫ X ′b−X ′β+wu

X ′b−X ′β−wl

fU,X ′β(u)du − wu fU,X ′β(X ′b − X ′β + wu)}

= −X ′{
∫ X ′b−X ′β+wu

X ′b−X ′β−wl

fU,X ′β(u)du − wl fU,X ′β(X ′b − X ′β − wl)}.

Set b = β∗, attach 1[wl < X ′β∗ < c − wu]X and then take E(·) to get −HT W E .
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Since the transformed error is bounded by −wl and wl , the last two terms of (8) is
less than a constant times

E{|1[wl < X ′b < c − wu] − 1[wl < X ′β∗ < c − wu]| · |X |}
≤ E[{1[X ′b < wl < X ′β∗] + 1[1[X ′β∗ < wl < X ′b]

+1[X ′b < c − wu < X ′β∗] + 1[X ′β∗ < c − wu < X ′b]} · |X |]
= E[{1[X ′b − X ′β∗ < wl − X ′β∗ < 0]

+1[1[0 < wl − X ′β∗ < X ′b − X ′β∗]
+1[X ′b − X ′β∗ < c − wu − X ′β∗ < 0]
+1[0 < c − wu − X ′β∗ < X ′b − X ′β∗]} · |X |]

≤ E[{1[0 < |wl − X ′β∗| < |X ||b − β∗|]
+1[0 < |c − wu − X ′β∗| < |X ||b − β∗|]} · |X |]

≤ E[{1[|wl − X ′β∗| < |X ||b − β∗|]
+1[|c − wu − X ′β∗| < |X ||b − β∗|]}|X |]

≤ (ν1 + ν2)|b − β∗|.

Since the transformed error difference is O(|b − β∗|), this shows that the last two
terms of (8) are O(|b − β∗|2), and thus o(|b − β∗|).

Consider the stochastic equicontinuity of the empirical process

G N (b) ≡ 1√
N

∑
i

[m(Xi , Yi , b) − E{m(Xi , Yi , b)}].

Since m(b) consists of indicator and polynomial functions, {m(b), b ∈ B} with B
being a compact parameter space is a Donsker class with a square-integrable envelope
under E |X |2; see, e.g., Van der Vaart (1998). From the stochastic equicontinuity,
op(1) = G N (bN )− G N (β∗) holds. Substitute N−1/2 ∑

i m(Xi , Yi , bN ) = op(1) into
this to obtain

op(1) = − 1√
N

∑
i

m(Xi , Yi , β
∗) − √

N [E{m(bN )} − E{m(β∗)}]

= − 1√
N

∑
i

m(Xi , Yi , β
∗)− ∂ E{m(b∗

N )}
∂b

√
N (bN −β∗)

(for some b∗
N →p β∗)

�⇒ √
N (bN − β∗) = −[∂ E{m(β∗)}

∂b
]−1 1√

N

∑
i

m(Xi , Yi , β
∗) + op(1).

From this, Theorem AD follows.
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